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Combinatorial Analysisof Star Graph Networks

Yordan Rouskov; Shahram Latifif and Pradip K Srimani*

Abstract

It is well known that star graphs are strongly reslient like the n cubesin the sense that they are optimally fault tolerant
and the fault diameter is increased only by one in the presence of maximum number of allowable faults [Lat93b, RS93]. We
investigate star graphs under the conditions of forbidden faulty sets[Esf89] where all the neighbors of any node cannot be faulty
simultaneously; we show that under these conditions star graphscan tolerate upto (2n — 5) faulty nodesand the fault diameter is
increased only by 2 in theworst casein presence of maximum number of faults. Thus, star graphs enjoy the similar property of
strong resilience under forbidden faulty setslike the n-cubes[Lat93a]. We have developedalgorithms to trace the vertex disjoint
paths under different conditions.

1 Introduction

The underlying topology of any multipleprocessor systemis, in general, modeled as an undirected graph where the nodes rep-
resent the processing elements and the arcs (edges) represent the bidirectional communication channels. Design features for an
efficient interconnection topol ogy include propertieslikelow degree, regul arity, small diameter, high connectivity, efficient rout-
ing algorithms, high fault-tolerance, low fault diameter etc. Since more and more processors must work concurrently these days
inamultipleprocessor environment, thecriterion of high fault tolerance and strong resilience hasbecome increasingly important.
One of the most efficient interconnection network has been the well known binary n-cubes or hypercubes; they have been used
to design various commercial multiprocessor machines [Sei85] and they have been extensively studied. Very recently another
family of regular graphs, called the star graphs[AK 89, AK87], are being extensively studied; star graphs seem to enjoy most of
thedesirable properties[QMA92, NSK90, QMA91, DT94] of the hypercubesat considerably |ess cost; they accommodate more
nodeswith lessinterconnection hardware and less communication delay. 1t has also been shown [QAM93, MS90, FA91, MS92]
that many parallel agorithms can be efficiently mapped on these star graphs.

Thefocus of thispaper ison fault tolerance of these star graph networks. The fault tolerance of an interconnection network
isusualy measured by the vertex connectivity of the underlying graph as well as the fault diameter. Vertex connectivity of an
n-cube (which is a n-regular graph) is n and the corresponding fault diameter is»n + 1 (the fault-free diameter is n) [SS88].
Vertex connectivity of astar graph S,, of dimensionn (whichisa(n — 1) regular graph) isn — 1 [AK89] and the corresponding
fault diameter is |3(n — 1)/2] + 1 [Lat93b, RS93] (the fault-free diameter is |3(n — 1)/2]). Star graphsthus are comparable
to hypercubes also in the sense that the fault diameter isincreased only by one over the fault free diameter.

Although the measure of vertex connectivity correctly reflects the fault tolerance of systems with few processors, it under-
estimates the resilience of large networks. Esfahanian [Esf89] has emphasi zed and elaborated on the second point with respect
tothen-cubes. Let usillustratethe point with respect to the star graphs. Notethat each minimumcut in S,, isof sizen — 1 and
also thefact that a subset of (n — 1) vertices can be a cut when, and only when, these vertices represent the entire adjacency set
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of any vertex in S,,. Thus, out of al possible (nn_'l) vertex subsets of sizen — 1, only n! are minimum cuts of the star graph
S,. Assuming that every fault set is equally probable, the probability that an arbitrary fault set of size n — 1 will disconnect
the remaining network isvery small and gets smaller as n growslarge. This motivates one to define the restricted connectivity
or connectivity under forbidden faulty sets [Esf89]. In particular, for the n-cube, Esfahanian has defined each forbidden faulty
set to be al n neighbors of one processor (thusthere are 2" forbidden faulty setsin an n-cube, each containing n processors).
Esfahanian has shown that an n-cube, under the forbidden sets, can tolerate up to (2n — 3) processor failures without being
disconnected; Latifi [Lat93a] has shown that the fault diameter of n-cube under forbidden faulty setsisn + 2, i.e,, the fault
diameter isincreased only by 2 over the fault free diameter.

In this paper, our purposeisto investigatethe star graphs under forbidden faulty sets and to show that astar graph, under the
forbidden sets, can tolerate up to (2n — 5) processor failures without being disconnected and that the fault diameter isincreased
only by 2 over the fault free diameter. Thus we show that the star graphs also enjoy the same strong resilience propertieslike
n-cubes and hence are strong competitorsof n-cubesfor large multiprocessor design. We a so design algorithmsto trace vertex
digoint paths in star graphs under the forbidden faulty sets. The rest of the paper is organized as follows. In section 2 we in-
troduce the notationsand terminologies. Section 3 treats the restricted vertex connectivity of star graphs and its fault diameter.
Section 4 concludes the paper.

2 Basic Concepts

In this section we briefly introduce the basic terminology about star graphs and identify certain structura properties of these
graphs. Graph theoretic terms not defined here can be found in [Har72]. A detailed trestment of star graphs can be found in
[AK89, AK87] and more details about forbidden faulty sets can be found in [Esf89].

2.1 Star Graphs

A star graph S, of order n, isdefined to beasymmetric graph G = (V, E') where V' isthe set of n! vertices, each representing a
distinct permutation of n elements and £’ isthe set of symmetric edges such that two permutations (nodes) are connected by an
edgeiff one can be reached from the other by interchangingitsfirst symbol with any other symbol. For example, in S5, the node
representing permutation A BC' have edges to two other permutations (nodes) BAC and C'BA. Throughout our discussion we
denote the nodes by permutations of English alphabets. For example, the identity permutationisdenotedby 7 = (ABCD...7)
(7 isthelast symbol, not necessarily the 26th).

Remarks:

e These star graphs are members of the family of Cayley group graphs. For astar graph S,, of dimensionn, therearen — 1
generators, g, 93, - - -, ¢n, Where g; swaps the first symbol with the i-th symbol of any permutation. Each generator is
itsown inverse, i.e, the star graph is symmetric. Also, the star graph S,, isa(n — 1)-regular graph with n! nodes and
nl(n —1)/2 edges.

e Since star graphs are vertex symmetric [AK89], we can aways view the distance between any two arbitrary nodes as
the distance between the source node and the identity permutation by suitably renaming the symbols representing the
permutations. For example, let BDFEC A be the source node and £C' DA B be the destination node. We can map the
destination node to the identity node by renaming the symbolsas £/ — A, C +— B, D +— C, A +— D,and B — F.
Under thismapping the source node becomes £ C' A B D. Then the paths between the original source and destination nodes
become isomorphicto the pathsbetween thenode £ C' A B D and theidentity node A BC D E intherenamed graph. Hence,
inour subsequent discussion about apath from asource nodeto adestination node, the destination nodeisaways assumed
to be the identity node 7 without any loss of generality. Also, we use distance of a hode (permutation) to indicate its
distance to the identity node.



¢ |tiseasy to seethat any permutation of n e ements can a so be specified in terms of its cycle structure with respect to the
identity permutation I. For example, CDEBAF = (ACE)(BD)(F'). Themaximum number of cyclesin apermutation
of n elementsisn and the minimum number is 1. When acycle has only one symbol, that symbol isinits correct position
inthe permutationwithrespect totheidentity permutation. Thesingleton cycles may be omittedinthecyclerepresentation
of apermutation if the number of symbolsin the permutation is understood from the context.

We use following notations throughout the paper:

n:
N:
Ayl
u:

symboly, (7):

positiony, («):

p(u):
m(u):

n —m(u)

Order of the star graph S, .

Number of nodesin S,,, N = n!.
Diameter of S,,, A, = |3(n — 1)/2].
An arbitrary permutation.

The ¢-th symbol in the permutation of thenode », 1 < ¢ < n (the symbols are numbered 1 through » from left
to right).

An integer denoting the position of the symbol « in the permutation of the node w.

. Distance of the node « (from the identity permutation).

. Cycle representation of the node (permutation) u, IT = {xy, 72, -+, 7 }. We omit al singleton cyclesin the

representation except the one containing the symbol A (if any) and =, isthe cycle containing A and al other
cycles are in any arbitrary order. Furthermore, each cycle ; is represented as a sequence of symbols, =; =
(xl, 72, xl™); =) isalways represented as (r!, 72, - - -, A), while other cycles may be represented in any

arbitrary order. Thus, CDEBAF isrepresented as (C' EA)(BD). Hencethe symbol x{ of any permutationis
thefirst symbol of that permutation.

Number of cycles of length at least 2 in any permutation «.
Total number of symbolsinthese i cycles of the permutation u.

Total number of invariant symbolsin a permutation v, i.e., the number of singleton cyclesin .

It has been shown in [AK89] that the distance D(«) for agiven node (permutation) « is given by:

{ nw+m when A isthefirst symbol
D(u) =

1+ m—2 whenA isnot thefirst symbol

Lemmal [R93] For oddn, anode (permutation) « in S,, isat themaximumdistance |3(n—1)/2]| fromI, iffitscycle structure

satisfiesthe following: (i) Aisthefirst symbol in « (i.e. Aformsa 1-cycle) (ii) All other cycles are 2-cycles.

Lemma?2 [RS93] For even n, any permutation » has the maximum distance A,, iff its cycle structure satisfies one of the fol-
lowingtwo: (i) A isthefirst symbol inw (i.e., Aformsa 1-cycle), three other symbolsforma 3-cycle and the rest form 2-cycles,

(i) A isnot inthefirst positioninw«, and all cycles are of length 2 (n/2 of them).

Remark 1 [AK89] For anarbitrary nodew in S,, if D(u) > A,, — 3, thenode (permutation) « can have at most two invariant

symbolsand if D(u) > A, — 2 then the node (permutation) « can have at most one invariant symbol.



Shortest Routingin Star Graph

Givenan arbitrary nodeu = {1, 72, - - -, 71 }, thealgorithmto find the shortest path to the destination node (theidentity permu-
tation) isdescribed in [AK87]; it has a so been shown that in general thisshortest path isnot unique, i.e., there may be multiple
shortest pathsto the destinationfromagiven node«. Inorder to generateapath fromw to 7, generatorsare applied in aparticul ar
sequence. In order that the path is minimal in length, the moves (generating the next vertex in the sequence) must be restricted
to two possible choices : for any nodeu = {=, 79, - - -, 71}, €ither (1) exchange =+ with 7# thereby reducing the length of the
cycle; by 1, or (2) exchange =1 with w]‘f (where2 < j < kand1 < ¢ < |x;| thereby merging the two cycles =; and 7; into
onecycle (xf, ! w}”' ,wl, w7 wl, -+, A)). When apath from anode u to the destination is said to follow the
shortest routing scheme if the moves are restricted to these two types. We make the foll owing observations about this shortest
routing scheme:

e For any node u at least one of these movesis always possible until the node I is reached.
e The path generated by using only these two moves from a node « to the destination node I has alength D(w).

e Any other move leads to a non minimal path. More specificaly, if anode v’ isreached from u by any other move, then
D(u') = D(u) + 1. Also, if wego to anode ' from «’ by anon-minima move, then D(v") = D(u') + 1 = D(u) + 2.

2.2 Forbidden Faulty Sets

The set A(v) (A(v) denotes the adjacency set of any vertex v) of any vertex v is named as the forbidden faulty set; it implies
that al the neighborsof any vertex in S,, cannot be faulty simultaneously. The restricted vertex connectivity < (.S,,) of the star
graph S,, isdefined as the minimum cardinality |Y'| of vertices such that the subgraph S,, — G isdisconnected and Y isrestricted
to the set of vertices R = {Z C S,|Vv € S,, A(v) € Z}. Thus, star graph can tolerate up to (S, ) — 1 processor failures
provided that for any node in the graph all of its adjacent nodes do not fail smultaneously. We use A to denote the diameter
of the star graph in presence of an arbitrary set of «™(S,,) — 1 node failures. Our purposein the next section is to prove that
kR (S,) = 2n — 4 and that AT = A,, + 2. We present two quick lemmas to establish the upper bounds.

Lemma3 «%(S,) isupper bounded by 2n — 4.

Proof : Consider any arbitrary edge (u, v) of S,,. |A(u,v)| = 2n — 4 since S,, doesn’t have a cycle of length less than 6. If
these 2n — 4 nodesfail, the particular edge (, v) will be disconnected from the remaining graph. 2
Lemma4 AZ islower bounded by A,, + 2.

Proof : Considerthescenarioin Figure 1; node« hasasinglefault free neighbor v, node v hasjust one morefault free neighbor

w such that D(w) = A,,. Total number of faulty nodesis 2n — 5 and the fault set does not contain any forbidden faulty set.
Distance of the node « from the identity nodeis A,, + 2. 2

3 Fault Diameter with Forbidden Faulty Sets

3.1 Nodesfor which |71| =1

Here we consider the nodes where the symbol A forms asingleton cycle and A isthefirst symbol of the permutation denoting
the arbitrary node u. Let S¢ _, denote the subgraph of the star graph S,, consisting of nodes (permutations) having the symbol
A in their é-th positions, 2 < ¢ < n; each of these subgraphsis a star graph of dimension n — 1 with (n — 1)! nodes. The
subgraph S _, isaset of (n — 1)! nodes (each with A asitsfirst symbol) and no edges. Consider then — 1 vertex digoint paths
(as computed in [RS93]) from anode v (with |7;| = 1) to theidentity node I; it is easy to observethat u, I € S} _, and each



n-3 faulty
nei ghbor s

/\\/ ..................

n-2 faulty
nei ghbor s

Figure 1: Lower bound for A%

of then — 1 vertex digoint pathsis contained exclusively in one subgraph S _,,2 < i < n. Let u; and I; denote the adjacent
nodes of « and I respectively with the symbol A in the i-th position.

Remark 2 Snceboth v and I have A asfirst symbol, u; and /; are defined for all 4, 2 < i < n; also, u;, I; € Sjl_l for 2 <
1 < n.

Remark 3 Sncenot all neighborsof a nodeare all owed to be faulty simultaneously, there exists at | east one non faulty neighbor
u; of node v and one non faulty neighbor /; of node /; but ¢ and j may not be equal, in general. In other words, the nodes u
and I may not have non faulty neighborsin the same subgraph S¢ _,, in general.

Our objectiveisto show that in presence of (2n — 5) maximum faults, there exists apath from « to 7 and establishitslength.
Obviousdly, if any of the substars S¢ _; does not have any faulty node, we are done since there exists a path from u to I viathat
subgraph [RS93]. We make the following observation:

Remark 4 If any substar 5, _, has > n — 2 faulty nodes, there exists at least one other substar 57 _,, j # 4, that has no faulty
nodes (since total number of faulty nodes cannot exceed 2n — 5 and number of substarsisn — 1).

So, we assume that each substar S? | hasno morethan (n—3) faulty nodes. Let «; denotethesymbol that isexchanged with
the symbol A to go from « to u; and /3; denote the symbol that is exchanged with the symbol A to go from I to I; respectively
forall i, 2 < i < n. We consider two cases:

Case 1. Thereexistsan i such that both «; and I; are non faulty

Here, we go from the node « to «; (by exchanging the symbol «; with A), trace a path from«; to 7; in S° _,, and go from

I; to I (by exchanging the symbol 3; with A). We show there are (n — 2) vertex digoint pathsin S¢ _; between the nodes u;

Subcase A: «; # ;. Inthiscase, the symbol «; iscontained in acycle of length > 2 of the node «, i.e., the move
from u to u; belongsto the shortest routing scheme. By similar reasons, the move from /; to 7 aso belongsto the
shortest routing scheme. Hence D(u;, I;) = D(u) — 2. The subgraph S _, isastar graph of dimensionn — 1
and hence there are n — 2 vertex digoint paths between two arbitrary nodes «; and I; each of which has alength
< D(uy, I;) + 4. Hence, in presence of amaximum number of » — 3 faulty nodesin S, _,, there exists a path from
node u to I (vianodes of S¢ _;) of maximum length D(u) + 4.

Subcase B: «; = ;. Inthiscase, the symbol «; isinvariantin node « (i.e., isin itscorrect position) and hence the
move from u to u; does not belong to the shortest routing scheme. Hence, D(u;, I;) = D(u). Now, Si_; isastar
graph of dimensionn — 1 and the source node «; and destination node /; have the same first symbol («; = 3;) and
hence there are n — 2 vertex digoint paths between «; and 7; each of which hasalength < D(u;, I;) + 2. Hence
again, in presence of a maximum number of n — 3 faulty nodesin S?_,, there exists a path from node « to I (via
nodes of S¢ _;) of maximum length D(u) + 4.



u_ =BCDEAGF=( BCDEA) ( FG)

. | g =EBCDAFG=(EA) u  =FEBCDAG=( FA) ( BCDE)

| & =FBCDEAG=( FA)

u = AEBCDGF = (A) (BCDE) (FG | = ABCDEFG u=AEBCDEG=( BCDE) | = ABCDEFG

Substar of dinension 5 with A
fixed in the 5th position

Substar of dinension 6 with A
fixed at 6th position

Figure2: Case 1, Subcase A withee = Aand = I Figure3: Case 1, Subcase B withae = FFand = F

Lemmab For case 1, in presence of maximum (2n — 5) faulty nodes, there exists a path from node « to node I whose length
isatmost A, + 2.

Proof: If D(u) < A, —2, theclaim easily followsfrom the above discussion of two subcases. If D(u) > A, —1, nodew has
at most one invariant symbol (by Remark 1). In subcase A, each of the n — 2 vertex digoint paths in the subgraph has alength
of D(u;, I;) + 2 (case of singleinvariant symbol, theorem 5 of [RS93]). In subcase B, thenode u; isreached by exchanging the
only invariant «;, nodes «; and /; have the same first symbol, and hence each of the n — 2 vertex disjoint pathsin the subgraph
has alength of D(u;, I;) (algorithm A in [RS93]). Hence the claim follows. 2

Examplel: Figure?2and Figure 3illustrate the two subcases with example nodes.

Case 2: Theredoes not exist an i such that both «; and I; are non faulty

Inthiscase, atotal of n— 1 faultshave aready been | ocated among theneighborsof « and /. By the presumption of forbidden
faulty sets, there exist at least one good neighbor of «, say »’ and one good neighbor of 7, say I’. Let « be the symbol that is
exchanged with the symbol A to makethemoveu — «/; if e isnotaninvariantin, then D(v') = D(u) — 1 and D(v/, I') is
at most D(u); otherwise, f o isaninvariant in«, then D(u') = D(u) + 1 and D(«/, I') isat most D(u) 4 2. Thereare(n — 1)
vertex-dig oint paths between the nodes «’ and I’ in the star graph S,,; consider those (n — 3) of them that does not go through
the nodes u or I; none of these paths can go through any immediate neighbor of the nodes « and I (since S,, does not have any
cycleof length lessthan 6; see [RS93] or [Lat93b]). Sincen — 1 faults have aready been located among the neighborsof « and
I and the maximum number of faultsis(2n —5), all of these (n — 3) paths between «’ and I’ cannot be disconnected and hence
the nodes u and I remain connected in presence of maximum number of faults.

Remark 5 Each of those (n — 3) paths between «' and I’ has a length of at most A,, + 1 [R93]; hence the length of the
surviving path between nodes « and I is upper bounded by A, + 3.

Remark 6 An interesting special case iswhen either w or I (or both) has only one good neighbor. Supposew” isthe only good
neighbor of u. Then thereare n — 2 vertex digoint pathsfromu’ to | (not to some I*) that do not contain any of the other (faulty)
neighborsof « and hence at least 1 cannot be disconnected. The same arguments apply if the only good neighbor of I is some
I'. There are n — 2 pathsfromw (not from«’) to I’ do not contain any other neighbor of I and at least 1 is guaranteed to be
good. Also, the length of the surviving path(s) is upper bounded by A, + 2.

Lemma6 The surviving path between « and I hasalength of at most D(u) + 8.



Proof : The distance between «’ and I’ is a most D(u) + 2. Any of then — 3 vertex digoint paths can require at most 2
non-optimal moves [RS93]; thus each of these paths has alength of at most D(«) + 6. Hence the surviving path between « and
I hasalength of at most D(u) + 8. 2

Lemma? For Case 2, at least one path survives between « and / of length not more than A,, + 2.

Proof :  We need to consider several cases separately.
o If D(u) < A,, — 6, thenthe claim followsfrom Lemma 6

e A, —5 < D(u) < A, — 3. Here, the node (permutation) « can have a most 3 invariant symbols, say é, o,w. The
distance D(«’, I') can be D(u) + 2 iff one of theinvariants(say ¢) isexchanged to reach «’ from « and another one (say
o) isexchangedtoreach I’ from I. Thenthenodesw’ and I’ areof theforms: v’ = (6, A)(o)(w)(...)and I’ = (o, A). Any
vertex disoint path from u’ to I’ requires a most one non-optimal move [see [RS93]]; hence any surviving path between
« and I’ isof length a most D(«) + 4 and the overall path between « and 7 isof lengthat most D(u) + 6 < A, + 2.

e A, —3< D(u) < A, — 1. Node « can have at most 2 invariant symbols(say, ¢ and §) and all other cycles of « contain
2 symbols, except possibly one that has 3. Then v = (4)(é)(¢)(«, B,w)(...). In order that a path between « and I hasa
length < A,,+2, orequivaently D(u)+4, either (1) D(vw’, I') = D(u)—2,0r(2) D(v', I'’) = D(u) and the path between
u’ and I’ requires at most one non-optimal move. By Remark 6, both nodes v and I have at least two good neighbors,
i.e., v must have a good neighbor ugx where X isasymbol suchthat X ¢ {6, 0}. Without loss of generality assume
ugy = v = (a, 3, w, A)(8)(c)(...) isagood neighbor if u. Since condition (1) is not satisfied, possible good neighbors
of [ are Ig., Igs, 1g-, Ig5. Since condition (2) is not satisfied, /¢, or g5 cannot be good neighborsof 1. So the only
possible good neighborsof I are Ig.,, or 1g5. Now, « has at |east one other good neighbor. If ugx isagood neighbor of
wand X € {6 ¢} (notethat X cannot bew or ), condition (1) issatisfied and if X € {4, ¢}, condition (2) is satisfied.
Thus the surviving path between « and 7 has alength of at most A,, + 2. If v haslessthan 2 invariant symbols, theclaim
followsusing similar arguments.

e A, —1< D(u) < A,. Nodewu hasaspecific cyclestructure; it hasoneinvariant symbol and other symbolsare contained
in doubleton cycles, or it has no invariant symbol with at most one cycle of length 3 or 4 or 5. In order that a path between
wand I hasalength < A, + 2,, ether (1) D(«/, I') = D(u) — 2 and each of the paths between «’ and I’ requires at
most one non-optimal move, or (2) D(w’, I') = D(u) and none of the paths between «’ and I’ requires any non-optimal
move. Proceeding along similar lines as above and treating thetwo cases of presence and absence of theinvariant symbol
Separately, itiseasy to show that the surviving path between « and 7 has alength of at most A, + 2.

2
Theorem 1 In presence of up to 2n — 5 faults(subject to the restriction of the forbidden faulty sets) the distance of an arbitrary
nodew in S, with |r| = 1is< A, + 2.

Proof :  The proof readily followsfrom Lemma 5 and Lemma 7. 2

3.2 Nodesfor which |71 > 1

Herewe consider the nodeswhere the symbol A doesnot formasingletoncycle, i.e., A isnotthefirst symbol of the permutation
denoting an arbitrary node u. Let o be thefirst symbol of the permutation denoting node u. Also, let S¢, 2 < i < n, denotethe
substar of (n — 1)! nodes each of which has the symbol « fixed at position.

Remark 7 Thesubstars S? for each i are mutually disjoint and the given node « has exactly one neighbor in each substar S?,
2<i<n.



Now, consider the neighborsof the node I'; each hasthe cyclestructure Ig., = (v, A) where~ isany symbol other than 4. Also,
each of these|-neighborshas (n — 2) neighborsof theform Ig., g, = (7,7, 4), v # ' (a0, neither v nor 4 isthesymbol 4).
By the assumption of forbidden faulty sets, there existsat least one good (non faulty) neighbor of node « and one good neighbor
of node I. We need to consider 2 different cases:

Part 1: For agiven node u (i.e., given symbol «), either the node («, A) isnon faulty or there exists at |east one symbol
v (v isnether & nor A) such that the node (v, 4) and node («, v, A) are non faulty.

Part 2: For agiven node« (i.e., given symbol «), thenode («, A) isfaulty and for every other symbol v (# « or A) either
the node (v, A) isfaulty or the node («, v, A) isfaulty or both are faulty.

321 Partl

Notation: Let @ be the set of good neighbors of the node « and 2 denote the set of good neighborsof node I of theform (o, A)
or of theform (v, A) such that thenode («, v, 4) isalso fault-free. By assumption of the present case, |2| > 1 and by the nature
of forbidden faulty sets, |®| > 1. Let |®| = k1, |Q] = ks and k& = min(ky, k2). Also, Let 3; be the symbol whose correct
position (i.e,, innode 1) isi, 2 < i < n (B; # «). Consider an arbitrary substar S’ for some i, such that 3; # «; call this 3;
smply 3, and this S* simply S’ (there are (n — 2) such substars S”). The node u has exactly one neighbor in each S; call this
neighbor .

Remark 8 For any such choice of substar 57, the symbol « (determined by the original source node ) isfixed for all nodesin
S’ at the position of the symbol 3 (determined by the choice of 5*).

Remark 9

e All nodesin® and 2 arefault free (good) by the conditions of this subsection and so are thenodes («, v, A) for each node
(7, 4) € 2(y # a).

e The move fromnode («, v, A) to the node (v, A) belongs to the shortest routing scheme.

Definition 1 There are (n — 3) nodesin S’ (call this subset of nodes of S’ to be X[S’]) each with cycle structure (5, «, v, A)
(for (n — 3) different symbols ), and one node with cycle structure (3, o, A) (call thisnodeto be Y [5]).

Remark 10 Each of these nodesin X [5’] or Y'[.S’] can reach, by application of the generator g5, a node of theform («, v, 4)
or (v, A) and by hypothesis of this case (subsection 3.2.1) at |east one of these nodes can reach the node I by at most two moves.

Thus, for each choice of S’ (and «’) there are exactly (n — 3) nodesin X[S’] and one nodein Y'[S]. We design algorithmsto
trace (n — 2) vertex digoint paths from the node «’ to these (n — 2) nodesin X[S']U Y'[S'].

Algorithm A:

Input: A nodew’ = ug, = {m}, 75, -+, @} inS’; thesymbol « isfixed in the correct position of the symbol 5 for al nodes
inS’. Thereare (n — 3) other symbolsin our symbol set; call any one of them .

Output: (n — 3) different paths from the node v’ to the nodes in the set X[5°], i.e.,, one path each for each choice of v from
node «’ to thenode (3, «, v, 4).

Note: Name an arbitrary symbol from acycle # =/ tobe . The proposed algorithmisin fact a collection of three procedures:
each oneisused in aparticular scenario as follows (see appendix for the details of the procedures):

If the cycle =} of thenode «’ contains symbols «, 3 and A and 5 isthefirst symbol of =
then call Procedure A1,



elseif thecycle | of thenode v’ contains symbols «, 3, but 5 is not the first symbol of =
then call Procedure A2;

elseif o and 3 arein some cycle «} (of node «’) not containing the symbol A
then call Procedure A3.

Remark 11

e When procedure Al is invoked, the move from node « to node v’ does not belong to shortest routing scheme (invariant
symbol 3 isexchanged with «).

e When procedure A2 isinvoked, the move from node « to node v’ bel ongsto shortest routing scheme (3 wasa symbol from
another cycle).

e When procedure A3 is invoked, the move from node u to node w’ does not belong to shortest routing scheme (the cycle
containing A issplit).

Remark 12 The following paths from from «’ to X[S’] require at most one move that does not belong to shortest routing
scheme:

Procedure Al: Case 1 subcaste b, Case 2 subcaste a, Case 3 sub cases b, and ¢
Procedure A2: Case?2, Case 3
Procedure A3 : Casel, Case 2, Case4

Remark 13 All other pathsrequire at most two moves that do not belong to shortest routing scheme; however, for the following
cases there is exactly one such move:

Procedure Al Case 1 sub case a and Case 3 sub case d,
Procedure A3 Case 3

Procedure A2 Case 5

when v isnot aninvariantin v’

Procedure A2 Case 1 if Sep 1 happensto be an optimal move,
Procedure A2 Case 4 if position, (A) = positions(7y)

Algorithm B:

Input: A nodew’ = ug, = {m}, 75, -+, @} inS’; the symbol « isfixed in the correct position of the symbol £ for al nodes
ins’.
Output: A path fromthenode«’ tothenode Y[S'] = (3, «, A4).

Casel: o, 3, Aareall inthecycle )

Sub case a: 5 isthefirst symbol of '
If 7} containsat least one other symboal, say é, than «, 5, A then

(8,6, .., A)(...) [Nodeu] EXCha”StggpAlw”hﬁ (A)(B,a,6,.)(...)

EXChans(%]gpAz\Mth(S (..3,a,A)(...) [NodeXX]

Merge dl cycles and
R&o?vethgas cycle (8,0, 4) [target node]

Else(f, @, A)(...) [Nodeuw’, aso Node XX] Merge all cyges tart by %&féanglng o
(8,a, A) [target node]




Sub caseb: 3 isnot thefirst symbol of v’
If 7} containsat least one symbol, say é, between o and A then

(.. 8,6, .., A)(...) [Nodew] B““stmbo'stféﬁf”gpos“on (A)(.., B, o, 8)(...)

Exchage AWIthS (5., 9,0, 4)(.) [NodeXX]

Merge dl cycles and
R&ogllvethg}fast cycle (8,0, 4) [target node]

Else

(w, .., B, o, A)(...) [Nodeuw] Excahg%gpﬁlw“hw (8,0, A)(...) [NodeXX]

Exchange 5 with symbol Merge all cycles and
other than w Resovethe last gyde~ (J» @A) [target node]

Case2: «, f arein somecycle 7 not containing A

(..)(.. 3 a,0) [Nodeu] B“”QAtSOtégthOQ“O“ (A)(.., B, o, 0)(..)

ExcahrggpAz\Mth Z— (o,..,f,a,4)(...) [NodeXX]

Merge dl cycles and
Resolve the [ast cycle (8,0, 4) [target node]

Remark 14 In AlgorithmB, (a) for Case 1, sub case a, /5 hasto be an invariant symbol in the original source node u; (b) for
Case 1, sub case b, the move from node « to «’ belongs to the shortest routing scheme. (c) in case 2, the Sep 1 may be a null
move.

Example2: Letu = BCDAFEG = (BCDA)(EF)withe = B. (1) if 8 = G, adgorithm B (case 1 subcase a) generates
path from v’ = (GBCDA)(EF) tothenode (GBA)

Remark 15 For a given node u, algorithms A and B trace (n — 2)? pathsto theidentity node 1.

Lemma8 For each choice of a neighbor «’ of node « as done here, the different paths from«’ to the nodesin XS] and Y'[5']
(generated by algorithms A and B) are mutually vertex digoint.

Proof : Each node labeled X X in the executions of the routing a gorithms has the property that a different symbol (for dif-
ferent paths) is fixed at position(«). That istrue for al permutations on the paths until the target is reached. Also, the node
(permutation) X X isreached in a most two moves from ' and the the starting movefor al pathsisdifferent. This provesthe
vertex digointnessof the paths generated within the same 5”. 2

Lemma9 The paths generated for different choices of v’ are vertex digoint.

Proof :  For each choiceof «’, dl the (n — 2) pathsare entirely contained in the substar S’. Since each S” ismutually disjoint
from any other S’, the claim follows. 2

Remark 16 While routing from node « to the node 7, there can be at most three moves that does not belong to the shortest
routing scheme. One of these can be the move to reach ' from u and the other two are in the paths from «’ to the designated
nodesinside S’. Therefore the maximum length of any of these pathsis D(u) + 6

Lemmal0 Thereareat least k1 X ky — k& pathsfromnodesin @ to the nodesin €2.
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u 2 ( ) | 1:( cA) 2 | 1
Figure4: ki ks — k paths between ¥ and 2 Figure5: kqk- paths between ¥ and €2

Proof : Consider the node «’ in an arbitrary substar S’, where position, («) = position;(§). Thereisonly one possible
nodein €2, namely (3, A) (if indeed the node (5, A) belongs to £2) to which a path may not be generated within S’. So there
are at least k» — 1 nodes to which paths are generated. The same istrue for each «’ in ®. Thus the number of pathsthat are
generated by the algorithms A and B between thenodesw and T is> &y x ko — min(ky, k2). 2

Example3: Consider thesourcenodeu = BCDAFEHG = (BCDA)(EF)(GH) (here, « = B). Let u has two good
neighbors: u; = (DA)(BC)(EF)(GH) (hereg = C),and uy = (GHBCDA)(EF) (here 5 = H). Let theidentity node I
also hastwogood neighbors: I; = (C'A) (herey = C)and I> = (H A) (herey = H). Thus, k1 = k2 = k = 2. No pathwill be
generated from nodew; to 7; (since 5 = v) and similarly no path will be generated between u» and 75. Thus, only kiks —k = 2
pathswill be generated, as shown in Figure 4. Now, for the same choice of u, u; and us, let thenode I has two good neighbors
asl, = (BA) (herey = B),and I, = (GA) (herey = G). Inthiscase, al k1 k2 pathswill be generated, as shownin Figure5.

Remark 17 The only nodes that can be common in any two of the paths mentioned in Lemma 10 are thosein @, or in €2, or are
of the cycle structure («, v, A) which are all fault-free (see Remark 9).

Theorem 2 Under the conditionsof thissubsection, the node « remains connected to the node I when the number of faultsdoes
not exceed 2n — 5 in the forbidden fault model; the surviving path(s) can have a maximum length of D(u) + 6.

Proof : Itisclear from Lemma 10 and the Remark 17 that in order to disconnect the nodes« and I weneed at least (k142 — k)
additional faults (in additionto the2n — 2 — |®| — || = 2n — 2 — (k1 + k2) faults dready identified). So, the total number
of faults needed to disconnect thenodes v and 7 is2n — 2 — (k1 + k2) + (k1k2 — k). Now, for any arbitrary nonzero positive
integers kq and k-, itistruethat (kiks — k) > ki + k2 — 2 where k = min(k+, k2). Thus, total number of faults needed to
disconnect the nodes « and 7 > 2n — 4, which isa contradiction. Hence the connectivity follows. The claim about the length
of the surviving paths directly followsfrom Remark 16. 2

Remark 18 For the previous theoremand the path generation algorithmswe assumed « # 5. If it isthe case that the neighbor
of « which isreached by exchanging « with symbol,, (position(«)) isgood,then o = 5. Then we can generate pathsto the
nodes (v, A) (y # «) insidethe substar S* as described in [RS93]. Again n — 2 pathsare generated to all neighborsof 7, but
(4, A). Since any of these paths cannot be longer than A,,_; + 1 thetotal path between « and I isof length at most A,, + 2.

Next, we want to provethat the node « remains connected to thenode 7 by apath of length < A,, 4+ 2 when the number of faults
does not exceed 2n — 5.

Remark 19 When D(u) < A,, — 3, the claimreadily followsfrom the previous theorem.
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Thus, we need to consider the scenarioswhen D(u) > A, — 3. We consider two distinct scenarios:

Scenario 1: A, —3< D(u) < A, —2.

We investigatethe case D(u) = A,, — 3. All resultsare directly applicabletothecase D(u) = A, — 2.

Remark 20 If D(u) = A, — 3, then one of the following must be true for the permutation «:
(A) There aretwo invariant symbolsin u, say é and o. All other symbols formdoubleton cycles, i.e,, u = (0)(6)(«, A)(...)
(B) Thereisoneinvariant symbol inu, say o and |77| < 5,i.e, u = (0)(«, x1, 22, 23, A)(...)
(C) There are no invariant symbolsin w.

Our approach is to consider these three cases separately and to show that in each scenario there always exist at least one path
between the nodes « and I of length < A, + 2, i.e, apath that requires at most two moves that do not belong to the shortest
routing scheme. Note that in certain cases this particular path may not be generated by the algorithms A and B; we indicate
alternate procedures for those situations.

Scenario 1A: Therearetwo invariant symbolsin u,i.e. u = ()(6)(a, A)(...).

Lemmall If thereare 2 invariant symbolsin « and all other symbols form doubleton cycles, then exactly two out of k1 ks — &
paths (Lemma 10) are of length D(«) + 6 (3 non-optimal moves required).

Proof :  The only non-optimal moves that can be made from node « are the ones exchanging 6 or o with «. Suppose é is

exchanged with . Then, o EXchanged witha, ;s 4)(..) [Node u’]. Routing from «’ (to destination node 7) is de-

scribed in procedure Al of algorithm A (7 = 6). The only path that requires two more non-optimal movesiswhen v = o (see
Remarks 9, 12 and 13). Same holdstrue for the symbol o. 2

Corollary 1 Inorder that a pathisof length D(u) + 6, the set Q@ must contain either thenode (6, A) or thenode (¢, A) or both
and the set & must contain ugs or ug, or both.

Example4: Considerthenodeu = BACDFEGH = (BA)(EF)(GH)whereo = B, 6 = D and ¢ = C'. Hence, thetwo
neighborsof nodew (whichwould generatepathsof length D(w)+-6) areu; = (DBA)(EF)(GH)andus = (CBA)EF)(GH);
adso, Q2 = {((CA),(DA)}. The pathsare shown in Figure 6.

Lemmal2 If k&, = 1 or k2 = 1, there exists a path from « to 7 of length at most A,, + 1 in presence of maximum number of
faults.

Proof : Same as Remark 6. 2

Lemma 13 Supposeboth k1, ko > 1. If k1 = ks = 3 0r k2 > 3 or k1 > 3, then at least one path survives of length < A, + 1
between nodes « and 7 in presence of maximum number of faults.

Proof : Inthelight of Lemma 11 we need only to provethat at least 3 out of k1 k; — k pathssurvive. Similar to the arguments
in the proof of Theorem 2, total number of faults needed to have less than 3 paths between v and I is2n — 2 — (k1 + ko) +
(k1ks — k — 2). For thegiven valuesof k; and ks, (k1k2 — k — 2) > 2n — 4, which isacontradiction. Hence, at least 3 paths
survive between « and I and by Lemma 11 at least one of them has alength < A,, + 1 (note D(u) = A, — 3). 2

Lemmal4 If ks = 2and k; < 3 or by = 2 and k2 < 3 and there does not exist a surviving path of length D(«) + 6, then
there exists a symbol &, such that the node (¢, 4) isnotinQ, and ¢ & {«, 0,6},
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Proof : Weassumen > 6. At least one of thenodes (6, A) or (o, A) must belong to 2 (Corollary 1).

Suppose k; = 2. Thus, thereisa most one node in €2 other than (6, A) and (o, A) (k2 = 2). Sincen > 4, thereexists at least
one other symbol £ such that the node (£, A) does not belong to the set 2.

Suppose k2 = 3and k; = 2. If oneof (6, A) or (¢, A) belong to 2 then there are at most two other nodes in €2 Ieft, which
establishesthe existence of ¢ if n > 6. 2

Lemmailb If k&, = ky = 2, algorithmA can be dightly modified such that a good path always survives with less than 3 non-
optimal moves from some nodein & to some nodein 2 in presence of maximum number of faults.

Proof : Consider application of algorithm A in some arbitrary substar S” in which position,: (o) = position;(3). Notethat
no path was generated from node «’ to the neighbor (5, A) of node I; (n — 3) vertex digoint paths are generated from «’ to all
other neighborsof /. In the present scenario, some neighborsof node / are known to be faulty and our approach isto replace a
path to one such faulty neighbor with a path to thenode (5, A). Let £ be asymbol such that (¢, 4) ¢ Q@ and¢ # § and € # o;
in the present scenario, ¢ belongs to some doubleton cycle, say, (€,&1). The path from ' to (¢, 4) is generated by Algorithm
A, Procedure A1, Case 1, sub case a(for simplicity assume ¢ isasymbol different from the one marked as o in the agorithm).
Consider the following path:

(B, a, A)(...) [Nodeu']
EXChaét%%glmdﬁ (f,&,ﬁ,a,A)(...)

Exchagtgeiﬂzxandf (€,&,8,a)(A)(...) [NodeXX]

Merge & Resolve dl cycles
egxcept thenrg Cyg|ye (gaglaﬁa a)(A) [NOdEYY]

Exchange A and o (o, €,1, 3, A)

%& (8, A) [Target Node]

Thispathisvertex digointtoal others. Therout to thenode marked YY" isthe same asfor the pathto (5, «, £, A) (whichis
not generated). The nodes on the path from Y'Y tothetarget (3, 4) lieentirely in the substar for which 3 = « and thereforeis
vertex digoint with the pathsin al other substars. Finally all such newly generated paths are vertex digjoint because A isfixed
at positiony (/) after thenode Y'Y and for different paths 3’s are different.

Thus, with the said modificationsin algorithm A, we generate k; x k2 paths (theterm min(k1, k=) isgone, since paths are
generated to every permutation of €2 from each nodein ®). For k1, ko = 2 itistruethat ky x k2 > k1 + k2, and total number
of faultsneeded to disconnect al thepathsis ki k2 + (2n — 2) — (k1 + k2) > 2n — 2. Thusin presence of at most 2n — 5 faults,
at least three paths survive and at least one of them needs |ess than 3 non optimal moves (Lemma 11). 2

Example5: Consider the previous examplewherew = BACDFEGH = (BA)(EF)(GH),® = {(DBA)(EF)(GH),
(CBA)EF)(GH)},and Q@ = {(CA),(DA)}. Here, k1 = ko = 2 and Algorithm A will generate only two pathsfrom @ to Q2
which are shown in Figure 6. Now, by Lemma 14 there existsa symbol ¢ = G and the dternate procedure given in Lemma 15
generates two more vertex digoint paths which are shown in Figure 7.

Scenario 1(B): Thereisoneinvariant symbol inu, i.e u = (8)(«, 21, 22, 23, A)(...).
Lemma16 In scenario 1(B), there can be at most 3 possible paths out of possible k1 k2 — & paths (Lemma 10) are of length

D(u) + 6 (3 non-optimal moves required).
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Figure 6: Example for Lemma 11 Figure 7: Example for Lemma 15

Proof :  For any path from node u to node I requiring 3 non optimal moves, it must be true that the node «’ is reached from
u by exchanging « with a symbol in the set {6, z2, 23, A}. The corresponding v’ is routed to node I using Procedure A1 of
Algorithm A (if ¢ is exchanged with « as afirst move) or Procedure A3 in Algorithm A (if any of the other listed symbolsis
exchanged with «). Further examination of the the paths revea that the three paths that require 3 non-optimal moves are;

ﬂ =22 (§,a, 29, A) — (x2, A) — node |

Y=0 (21,0,8 A) — (6, 4) — node T

d
2
u — u'(uge,) == xl%ata”hdg'y =3 (25,0,8 4) — (6, A) — node I
2

Remark 21 Path 1 of Lemma 16 isgenerated by Procedure A1, Case 3, Sub case 1; Path 2 and Path 3 of Lemma 16 isgenerated
by Procedure A3, Case 3.

Corollary 2 Inscenario 1(B), no paths of length D(«) + 6 from node « to node 7 can go via either the neighbor (z3, A) or the
neighbor (o, A) of I. Inorder that any of the paths of Lemma 16 isgenerated, €2 must have a node other than (z3, 4) or («, A).

Lemmal7 If k; = 1 or ky = 1, there exists a path from « to I of length at most A + 1 in presence of maximum number of
faults.

Proof : Same as the proof of Lemma 12. 2

Lemmal8 If ¥ > 3 and max(ki, k2) > 4 or k > 2 and max(ky, k2) > 4, at least one path generated by the proposed
algorithmsurvives in presence of maximum number of faults that needs less than 3 non-optimal moves.

Proof: Forthesevaluesof k; and k- itistruethat k1 x ko —k > k1 +k>. Thus, thetotal number of faults needed to disconnect
nodesw and I iskika —k + (2n — 2) + (k1 + k2) > 2n — 2. Hence, at least 4 of the generated paths are not disconnected. The
claim follows from Lemma 16. 2

Lemma 19 Ifthevaluesof k; and k- do not satisfy the conditionsof the previous lemma, but 2 includesboth the nodes (3, 4),
and («, A), then a good path always exists that requires less than 3 non-optimal moves.
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Proof :  The proof isbased on Corollary 2. If k2 = 2, no path requiring 3 non-optimal movesis generated.

If k2 = 3,thenk; must be2; at most two pathsrequiring 3 non-optimal moves can begenerated. Then, Number_of paths(u, I) =
k1 X ko = 6, since for each generated path of length D(u) + 6 thereare two generated paths of length D(w) + 4 to the nodes
(x3,A)and (o, A). Or, k1 +ko < Number_of _paths(u, I') and hence, at least 4 of the generated paths cannot be di sconnected.

Only 2 of the surviving paths require 3 non-optimal moves and hence the claim follows.

If /1 = 3 and k, = 3, the proof isidentical to that of Lemma 13 since there are at most two paths requiring 3 non-optimal
moves.

If ko, = 4 and k; = 2, again there are at most two paths requiring 3 non-optimal moves, since there are 2 nodesin ¢ and
each possible path requiring 3 non-optimal moves must start with different nodes of . Then use the same arguments asin the
proof of Lemma 13. 2

Remark 22 Weneed to consider the caseswhere (2 doesnot contain either of thenodes (3, A) or («, A) or both. Our approach
isto modify parts of algorithmA to exploit the fact that either (z3, A) or («, A) or both are faulty.

Lemma20 If (o, 4) ¢ €, then 2 of the three paths of Lemma 16, requiring 3 non-optimal moves can be replaced by paths,
requiring just 2 non-optimal moves. Smilarly if (z3, A) ¢ Q, then the third path requiring 3 non-optimal moves can also be
replaced by one with just two.

Proof :  For each path that requires 3 non-optimal moves we show alternative paths that require just 2 such moves. These
alternative paths start by exchanging at the first step the symbol A or the symbol 5.

Alternativeto Path 1:
Exchange § and A (A)(6, a, 1, 22, 23)(..)

ugs Step T
EXChanSgtgpAzand L3, (23,6, a, 21,2, A)(...) [Node XX]
MEﬁs\rr%]deraelleo(i}\//%!e£ (6, ¢, 21,29, A) [NodeYY]

Apply Ja, 9z 9o
Final Moves (2, 4)

Alternativeto Path 2:

uges = (8) (22, v, 21)(z3, A)(...) EXCha”ggpAlandxs (6)(22, o, 21)(x3)(A)(...)

Exchagtge%é andd . (5 A)(xy, o, 21)(w3)(...) [NodeXX]

Exchange sy ad?. (), s, a,6,4)(...)

Merge & Resolve (x2,a,68, A) [Target Node]

The first move of these two paths is the same as the first move of the pathsto («, A), but since that node is assumed to be
faulty and the pathsto («, A) are not generated, we can use the same first move to generate other paths. The node marked with
X X hasthe property that the symbol A isfixed at positions(v) (v isz2 and é for the two paths) and therefore from that point
these pathsare digoint with all the others. Thefirst aternative path reaches anodelabeled Y'Y whichisdifferent from thetarget
nodeintheorigina path. (z2, A) isreached with 3 movesfrom Y'Y going through one permutationinwhich « isat first position
and onein which « isat its correct position. Both of these permutations cannot be found on any other path.

Alternativeto Path 3:
uge, = (8)(z1, a)(xs, 23, A)(...) AE%L% (A)(6)(z1,0)(...)

Exchagtge%é andd. (5 A)(x1,a)(...)[NodeXX]
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_APDY 921 (21, 0, 6, A)(...)

Merge %y (F:%Igolve (21, a, 8, A)[Target Node]

To generate that path we have borrowed the first move of the path to (8, «, x5, A). If (3, A) isfaulty we can reuse that move
to generate that path of. The generated path is vertex digoint with al other paths that could be generated inside that substar
(assuming apathto (4, o, z3, A) isnot generated). To provethat it is enough to observe that the first move is different and the
third move reaches a permutation in which A4 isfixed at position;(§), which is not the case for any other path. Further, the
symbol A staysat that position throughout the path. 2

Lemma2l If («, A) ¢ Q, then there exists a good path from « to I that requires less than 3 non-optimal moves in the presence
of maximum number of faults.

Proof : By the previous lemma, if («, A) ¢ £, then & most one path (Path 1 of Lemma 16) is generated that requires 3
non-optimal moves. The only scenario, when only this path survives, isk; = k; = 2and ® = {ug,,,ugs} and Q =
{(6,4), (=1, A)} (in al other cases more than one path will survive). But since (z3, A) ¢ €, we can replace the path with
3 non optimal moves with one with two non optimal moves using similar techniques as used for the alternate to Path 3 in the
previouslemma. 2

Lemma22 If (4,«) € Qand (z3, 4) ¢ Q, then there exists a good path from « to I that requires less than 3 non-optimal
moves in the presence of maximum number of faults.

Proof :  Only one of the 3 paths (Lemma 16), requiring 3 non-optimal moves can be replaced with a path that requires just 2.
Also, a path is generated from each node in ® to («, A) (more precisaly to (3, «, A) from which («, A) is reached with one
move).

If k1 = k2 = 3 theresult from lemma 13 applies since there are just 2 possible paths of length D(u) + 6.

If k&, = k2 = 2 there are at least 3 path generated and at most one of these is of length D(u«) + 6. There is one other
permutation other than («, 4) in €2. The only permutation that is the final node of 2 paths of length D(u) + 6 is (6, A). But
one of these paths isreplaced by a path of length D(u) + 4, since (23, A) isknown to be faulty. In that case at least 2 of the 3
generated paths cannot be disconnected and therefore there exist one good path of length D(u) + 4. If £y = 3, k2 = 2 thesame
arguments apply.

If k1 = 2,k; = 3 then there are 2 possible paths of length D(u) + 6. The worst case is when only these two paths
are not disconnected. That can happen when Number of paths(u,I) = 4 = k1 x k2 — k1 and two paths requiring 3
non-optimal moves are among the four generated paths. For that specific case it should be true that ® = {ugs, ug.,} and
Q = {(x2, A)(6, A)(r, A)}. Inthat case there are four paths generated only, namely: ugs — (22, 4)ug., — (6, 4), ugs —
(o, A)ugy, — (v, A). Thefirst two are the two non-optimal paths. So there could be up to 2 faults outsidethe nodesin the set
® and © and it is possible that the two remaining paths (of length D(«) + 4) are disconnected. It is enough to show one more
path, which is vertex digjoint with the two paths of length D(«) + 4. We show the path ugs — (8, A). Origindly thispath is
not generated since position, (o) = positiony(§) and thereisno path to (6, A) inside that substar. However, for this specific

case consider the path: u’ = (68, o, w1, 2, 23, A)(...) Ag’_%gl@ (8,a)(x1, w0, x3, A) [NodeXX]

R%XOL\é;eatal(lo%?eﬁ (A)(8, ) [NodeYY]

Exchange 4 and « (a, 8, A) Apply gs, (8, A) [Target Node]

Note that until thenode YY" is reached the path is the same as the path to (#3, A) (Procedure A1, Case 3, Sub case b). Since
(x3, A) & Q (seeLemma 21) we can reusethat path. Thetarget (4, A) isreached from Y'Y intwo movesthruthenode(«, 6, 4),
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which is not on any other path. Having generated that path now there are 5 paths, 3 of which are of length D(«) + 4 and itis
not possibleto disconnect them with the 2 remaining faults. 2

Scenario 1(C): Thereisnoinvariant symbol inu,i.e. v == («, x1, 22, x3, 3, 4, A)(...).

Inthis case, if the move from node « to «’ belong to shortest routing, no path generated by the algorithmswill need 3 non
optimal moves. If the move from node v to v’ is obtained by exchanging o with z; € w'l, the move does not bel ong to shortest
routing, but thenode«’ will beof theform: «' = (...3, )(...A)(...). Path generationfrom«’ to n—2 nodesinside 5’ isdescribed
in Procedure A3 of Algorithm A; None of them requires more than one non optimal move and consequently any surviving path
in presence of maximum number of faults between nodes« and I has alength < D(u) + 4.

Scenario2: A, —1<D(u) <A,

In this scenario, the node (permutation) « has no invariant symbol. We assume D(u) = A, — 1 for brevity; the analysis and
the results are directly applicable when D(u) = A,,. We need to show that there exists at |east one good path between « and 7
that requires at most one non-optimal move.

Remark 23 If D(u) = A, — 1 and A isnot an invariant, then « has no invariant symbol, and the maximum cycle lengthin «
is4.

Lemma23 If |7, | = 2, all paths generated by the proposed scheme require at most one non-optimal move, except one (which
may need more than one non optimal move).

Proof: Letwu = («, 4)(...). Themaximum cyclelengthis4 and thefirst moveisaways optimal (merging 2 cycles). Suppose
thereisacycle m, with4 symbols, 7, = (21, 2, 23, 24). If asymbol (say x1) isexchanged with « as the first move, we get

tothenode u ﬁﬂzi‘ﬂ (x1, 22,23, 3,, A)(...) [Nodewu']. The paths, originatingfrom «’ are described in Procedure A2. The

only path that requires more than one non-optimal move isthe one, for which v = z3. If thereisno cycle of length 4, then no
path is generated with more than one non-optima move. 2

Example6: Considerthenodeu = (BA)(CDEF)(GH)(IJ)(KL). Herem, = (CDEF)andhencev’ = (CDEFBA)GH)(IJ)(K
and the path from «’ to the node (£ A) (neighbor of ) makes two non-optimal moves (note xz = E).

Lemma24 If |r,| = 3, then there exist k1 x k- — k paths fromw to I each of which requires at most one non-optimal move
(some of these paths need be generated by the alternate procedure described in the proof).

Proof: Letu = («a,$, 4)(...). Inthat casethereisat most onecycleof lengthmorethantwo, say m; = (1, #2, x3) If v’ # uys,
then the first move is optimal. Suppose a symbol from 7; is exchanged: u H%‘E (x1,22,5,,6,A)(..) [Nodew']. There
are no paths that require more than 1 non-optimal move, originating from «’ (see Procedure A2).

Now suppose u’ = ugs: u 3%7 (o, B)(A)(...) [Nodeu']

We use a modified routing scheme for this«’. First consider a path from «’ toanode (3, o, v, A). Sincey # «, it must betrue
that v belongs to some cycle of length 2, say m; = (v, §)

u' = (A)(, )3, 0)(..) —XNAEAMAT . (55, A)(a,B)(...) [NodeXX]

Applyge gdis . (4.0,7,4)(-)

M?ﬁé&éﬂ’,ﬁ'% (B,a,v,A) [Target Node] ,
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(GHA) (CB) (DEF)  (GA) (CB) ( DEF) ( BOGA) ( DEF) (BOGA) (B&A) (&
—@ \ PITTIITICIIIITIIIIT
Path 1

Path 2

(HGA) (CB) (DEF)  (HA) (CB) ( DEF) ( BCHA) ( DEF) ( BCHA) ( BHA) (HA)

Figure 8: Example for Lemma 24

Example7: Considerthenodeu = (CBA)(DEF)(GH) anduw' = (CB)(DEF)(GH). Hae,« = C, § = ¢ = B.
Figure 8 showstwo pathsfrom node v’ to I generated by the alternate procedure suggested in the above proof (notethat v = H
for Path 1 and v = G for Path 2.

Lemma25 Let 7 = (o, 1,22, A) (Since |7} | = 4, all other cycles of « are of length 2). Then, if ug,, ¢ ®, the generated
pathsfrom « to I require at most 1 non-optimal move.

Proof : There are two possiblefirst moves from node «: (1) « isexchanged with some symbol 6 from a doubleton cycle, say
(6,0). Wereach thenode v’ = (6, 3, o, 21, x2, A)(..). Here 3 = ¢ and all pathsfrom ' (generated by Procedure A2) need at
most one non-optimal move; (2) « isexchanged with A. We reach thenode v’ = (A)(5, «, #1)(..). Here 5 = x5 and using the
aternativerouting, described in the previous Lemma 24, the paths, generated from «’ do not require non-optimal moves. 2

Lemma26 Let 7} = (a, 21,22, A) (Since |7} | = 4, all other cycles of « are of length 2). Then, if v’ = ug,, € ®, then there
exist n-2 paths of optimal length from «’ to all target nodes. Thisistrueif n > 8.

Proof : Wehave v = (8, «)(z2, A)(..) and inthiscase D(v') < A, by Lemma2and Lemmal. If n > 6, there exist
(n — 1) vertex digoint shortest paths [use agorithm D of [RS93]] from «’ to I. Consider the substar (of dimension n — 1)
S’ with g fixed at positiony(«); next consider consider the substar (of dimension »” = n — 2) S, S C ', with « fixed
a positiony(3). Obvioudy, ' € S”;therearen’” — 1 = n — 3 vertex digoint paths from «’ to the node I = (3, «)
within S”, assuming n > 8. For al symbolsy; ¢ {7, «, 2} thereis a(distinct) path with a node (3, «)(v:, A) (just prior
to the node I'). Applying gz from that node we resch the target (5, v, v;, A). If v = 2, then use the following path: ' =

(8, 0) (a2, 4)(..) EXChangefadws (5 4, 4)(.) MEGLAIOYEES (54 1) A) [Terget Node]. All nodesin this
path are in S’, but not in .S” since 3 is exchanged in the first move; hence it is vertex digoint with al other paths. Finaly
we show the path to (3, «, 4). Among the n — 3 paths generated in 5", there is one that contains (3, «)(x2, 4). Applying
consecutively g4 and g we reach the target. 2

Theorem 3 There exist a path from« to I that requires at most 1 non-optimal move for thecase D(u) > A, —1and|r1| > 1.

Proof :  For the most part the proof is compl ete by the preceding lemmas. In particular it was shown that if =) = 3 or 7 = 4
we can generate k1 x ko — min(kq, k2) pahsthat require at most one non-optimal move. Case (1): k; = 1 or k2 = 1: Usethe
results from Remark 6; Case (2): k1 = k2 = 2: Here, (n — 6) faults have been identified among the neighbors of « and 7. If
more than 2 paths are generated between ® and €2, we are done since only one path may need more than one non-optimal move.
Theworst caseisthat two paths are generated between ¢ and €2, and the path with two non-optimal moves survives. Inthat case
it should betruethat ug,, € ® and (z3, A) € ©, since the path requiring 2 non-optima moves s between these nodes. Further,
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it should betruethat (x4, A) € Q because there is no path generated between ug,, and (x4, 4). Findly ug,, € ®, sincethere
isno path between ug,, and (z3, A). Hence, ® = {ugy,, ugy, r and Q@ = {(x3, 4), (x4, A)}. We add another path from ug,,
to (z3, 4) inthesame way wedidin thepreviouscase (k; > 1, ks = 1). That path isvertex disjoint with the path from ug,,, to
(24, A) inthe same substar (see Procedure A2, Case 3). Now there are total of 3 paths generated and at most one of them can be
disconnected and hence there exists a path that requires just one non-optima move; Case (3): k1 > 2 or ks > 2: The number
of surviving paths generated by the algorithmsislarger than one and since there can be only one path requiring 2 non-optimal
moves, there always exists a path with at most one non-optimal move. 2

322 Part?2

Inthispart, for agiven node u (i.e., given symbol «), the node (o, A) isfaulty and for every other symbol v (# « or A) either
the node (v, A) isfaulty or the node («, v, A) isfaulty or both are faulty. Thisisaredatively specific situation; at least (n — 1)
faults are aready located. By the assumption of forbidden faulty sets, the node I has at least one non faulty neighbor, say I’.
Our approach is to show the existence of (n — 3) vertex-digoint paths from the source node « to I’; thus, in the presence of at
most (2n — 5) faults, the nodes v and I will remain connected.

Let I' = (o, A) be the good neighbor of 7. Then, thenodes («, o, A) and («, A) are faulty and for every other symbol +;
(# « or A) either thenode (v;, A) or thenode («, v;, A) isfaulty; thusat least (n — 1) faulty nodes are identified. Consider the
(n — 1) vertex digoint paths from the node u to thenode I’ (each of length at most A,, + 1 [RS93]); each of these pathsreach I’
viaadifferent neighbor of I’; disregard the two pathsthat reach I’ viathe node ¢ and the node («, o, A); none of the rest of the
(n — 3) vertex digoint paths can go through any of the already identified faulty nodes, since thereisno cycle in star graphs of
length lessthan 6. Under the assumption of forbidden faulty sets, the maximum number of faultsis2n —5 (< (n— 1)+ (n—3))
and hence at least one path (of length at most A,, + 1) survives between the node « and I’ and thus there survives a path from
uto [ of lengtha most A, + 2.
All these results and discussionsin this subsection 3.2 lead to the following theorem.

Theorem 4 In presence of up to 2n — 5 faults(subject to the restriction of the forbidden faulty sets) the distance of an arbitrary
nodew in .S, with 7| > 1is< A, + 2.

Theorem 5 k% (S,) = 2n —4and A% = A, + 2.

Proof :  The proof readily followsfrom Theorems 1 and 4. 2

4 Conclusion

We have established the restricted vertex connectivity and the fault diameter of the star graphs under the condition of forbidden
faulty sets. It has been shown that thefault diameter of star graphsisincreased only by 2 over itsfault free diameter just like the
n-cubes under similar conditions. Thus, the results add to the attractiveness of the star graphs as compared to n-cubes. Finaly,
it should be noted that the concept of forbidden faulty sets can be generalized where at most p (p > 1) neighbors of any node
can fail; details can be found in [LhNP94] where the generalized concept has been applied to the n-cubes. 1t’'d be interesting
toinvestigate star graphsin thisgeneralized setting. The derivation of the fualt-diameter may be generalized to account for any
number of faultsin the star graph. Let Y bethe set of faulty verticesin S,, suchthat |Y| = 5(n — 3) + 1 and the distribution of
faultsissuch that the star remains connected. Consider two nodes« and 7 suchthat D(u) = A, — 5 (1 < 5 < A, —2). Now
choose a fault distribution which leaves a unique path according to the shortest routing scheme between « and another node v’
such that D(u,w') = 3 and D(u') = A, (Imagine one of the paths going from «' to I having visited « after 5 hops). What
we are doing here is force the only possible path from « to I through «’ and thus creating a fault-diamter of A,, 4 5. It takes
B(n—3)+1 faultstoforcethispath as mentioned and it can be stated that: The fault-diamter of .S,, with 5(n—3)+1 faulty nodes
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canbeat most A, + 5 forn > 6. Weconjecturethat thisvalueisindeed the exact value of thefault-diamter. Notethat the special
casesof 7 = 2 and 7 = 1 have been treated in this paper and previous work respectively. One implication of this conjectureis
that in a connected S, , the diamter can at most be 2A,, — 2, if the number of faultsiskept below: (A, — 2)(n — 3) + 1.
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Procedure Al

Casel: 7 = (4, a, A) [i.e, 7} does not have any other symbol]

Subcasea: v #£ o
Excahnge v with 5

(8, @, A)(...) [Nodeu'] S

(v, By, A)(.0)

Excahnge y with A
Step 2
Merge & Resolve cycles other than (v, ..., 5, «)
Step 3
Exchange the symbol following~ with A
Step 4

Resolveif necessary
Step 5

(A)(7, ..., B,0)(...) [NodeXX]

(A7, B a)

("'aﬁa aa7aA)

(8,7, A) [Target Node]

Subcaseb: vy = o
Exchange & with A
Step 1
Exchange A with symbolx x (positionr(y))
Step 2
Execute cycle (.., v, A) until (v, A)
Step 3
Exchange v with Merge other cycles
g€ v 3 (ﬁ,a,'y,A)(...) ¢} cy
Step 4 and Resolve

(8, @, 4)(...) [Nodeu'] (A)(B,a)(...) [NodeXX]

(-7, A, @)(-.)

(7, A)(B, @)(...)

(8,7, A) [Target Node]

Case2: 7 = (#,a,6,A) [i.e, w} containsexactly one other symbol]

Subcasea: v =4
(B, a,v,A)(...) [Nodew' =Node X X]
Merge cyclesfirst by exchanging 3 with o

o, v, A) [Target Node
Resolvethelast cycle (B,a,v,4) [Tag ]

Subcaseb: v # 6
If v = o then

(B, e, 6, A)(...) [Node ]

Exchange & with 6
Step 1

Exchange 6 with 4

(6,A)(8,a)(...) [NodeXX]

Exchange A with symbolx x (positions (7))

o2 (A)(B,a)(...) Son3 (-7, A)(B, @)(-..)
Merge cycles except (5, «) Exchange v
Resolvethecycle (. A)B, ) ~ withg (A,a,7,4) [Target Node]
Else[y # o]
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(8,a,6,A)(...) [Nodeu]

Exchange 3 with v Exchange vy with é

.. 8, A)(... 6, A .. ...) [Node XX

Sep 1 (7, By 0,6, A)(...) Sep 2 (6, 4)(7, ., 8,a)(...) [Node XX]

Merge cycles and resolve (A, B, a) Exchange A with symbolx x (positionr(v)) (B, A)
Except the cycle of v

Resolvethe cycle

(8,7, A) [Target Node]

Case3: 7 = (f,a,8,w,..,0,A)[i.e, 7} contains ¢ and at |east two other symbolsin additionto 5, & and A].

Subcasea: y € 7jandy # § andy # o.
(Bya,6,w,..,0,A)(...) [Nodew’]
Exchange 5 with v and then exchange v with é

(6,.,8,a,7,..,A)(...) [NodeXX]

Step 1
Exchange é with symbolx x (positionr(v))
LA,
Step 2 (-, A0, By, )
Merge cycle & Resolve Exchange A with é
A) (6, .. b, .. A
except the last cycle (AN, By a,) Step 4 (8, 8,07, 4)

Resolvethe cycle
_

,a,v, A) [Target Node
Sens (8,27, 4) [Targ ]

Subcaseb: v = o.
(Bya,8,w,..,v,A)...) [Nodeu']

e Y (. ) )(0,0) [NodeXX]
Merge cycles except (5, «) Exchange v with 3
A A) [Target Nod
StepZ (7a )(6a OZ) Step3 (6’0[’7’ ) [ arg o e]

Subcasec: v = é.
(B, a,v,w,..,0,4)(...) [Nodew', dsoNode XX]

Exchange 5 with o Exchange ¢ with A
A)(... .. A)(... ..
Sep 1 (o, A)( DB, o, 7,w, ) Se2 (A8 y,w, )
Excahnge A withw Merge cycles
A () —— == A) [Target Node
Sep3 (B 0,7, A, () % Resolve (B,0,7,A) [Tag ]

Subcased: v ¢ .
(Bya,6,w,..,0,A)(...) [Nodew’]
Exchange 5 with Exchange v with 6
ge § 7 (v, By, 6w, .., 0, A)(...) g€y
Step 1 Step 2
Merge Cycles & Resolve (A)( 3, a) Exchange A with symbolx x (positionr(y))
Except the last T Step 4

Resolvethe cycle
Step 5

("aﬁa aa7aA)

(8,7, A) [Target Node]
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Procedure A2

Casel: v follows« in 7} and thereisat least one other symbol between v and A.

(., B,0,7,6,..,0,4)(...) [Nodew', asonodeXX]
Step 5 to thefirst position
o, AN
Stepl (6aaa7a aUa )( )
Follow the routing of Procedure A1, Case 3, Subcase ¢

Case 2: v istheonly symbol between o and 4 in 7.

Exchangew with 3

o Boa, v, A)(...) [Nodew ,aso node XX
(@, By0,7,4)() | u ] S 1

(B, oy, A)(w, . )(...)

Exchange 2 with any symbol other than w
Merge cycles & Resolve

(8,7, A) [Target Node]

Case 3: v isthefirst symbol in 7.

(v, ., By, w, .., A)(...) [Nodew']

aChm§§p71W'th“ (@, A)(.)(7, -, B,a) [NodeXX]
Merge cycles except thelast & Resolve (A)( 3, a) Exchange A with the symbol following v
ng P)/"" bl gmg
(o By, a) eRlvetheqyde 5 5 4) [Target Node]

Step 4
Case4: v isasymbol between o and A4 inin .
(w, ., 00,6, ..,7,..,A)(...) [Nodeu']
Exchange w with v and then exchange v with é

Step 1
if A # symbolxx (positionr(v))

(6,..,8,a,7,.., A)(...) [Node XX]

Put A at first position

A)(...
andthenExchangeitwithsymbolXX(positionI(y))( Bya,y, A)(.)

Merge all cycles and Resolve (B,a,v,A) [Target Node]

Else XX = (6,..,3,a,7v,4)(...)

Merge All Cycles
And Resolve

(8,7, A) [Target Node]

Case5: v isany other symbol.

Bring v to thefirst position and then follow the routing of Case 3.
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Procedure A3

Letm; = (.., 0, a,8)and 7} = (w, .., A)

Casel v =w

Exchange y with 6
A 8)(... de v’
(s Ao B0, [node] e
If positionxx(A) = positiony(y)

Merge and Resolve

(6,..,8,e,7,.., A)(..) [Node XX]

(8,7, A) [Target Node]

Else
Exchange é with bol i1
g symbolx x (positions (7)) 6, B, 7)oy AY()
Step 2
Merge & Resolve dl cycles but the thefirst
= o (A)(S, - B, )
Step 3
Exchange A with é and Resolve
A) [Target Nod
Step4 (6aaa7a ) [ arg Oe]
Case2:v=¢

(w,..,4)(.., B, ,v) [Nodeu' dsoNode XX]
Put & at first position

.., A) Node X
Stepl (6aaa7a ) )

Exchange A with /5
and then A with symbolx (positionr(y))

If A # symbolx (positionr(y)) then

Merge and Resolve

(.0, 0,7, A)(...) (B, a,v, A) [Target Node]
Case3: v ¢ 7
[Nodew] — EXagey adw (. 4y 6 a,5)

Step 1
Route as descibed in Case 1

Cased: yemjandy # 6

(w, .y A)(., 7, -, By, 6.)(...) [Nodeu']
Exchange y and w (¥, oes By 0, 6, ., A)

Step 1
Exchange y and 6
.. 8,..,A)(...) [Node XX
Sepz (B A | ]
Merge & Resolveal cycles but the thefirst

(A)(,..,8,a) [NodeX]

Step 3
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Exchange A with symbolx (positions (7))

M ’a”)/’A
o (v By, 74)

Resolve

, v, A) [Target Node
Seps (B,a,v,A) [Tag ]
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