
Computer Science
Technical Report

Combinatorial Analysis of Star Graph
Networks

Yordan Rouskov�, Shahram Latifiy and Pradip K Srimaniz

Technical Report CS-95-101

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (303) 491-5792 Fax: (303) 491-2466
WWW: http://www.cs.colostate.edu

�Department of Computer Science, Colorado State University, Ft. Collins, CO 80523
yDepartment of Electrical Engineering, University of Nevada, Las Vegas, NV 89154
zDepartment of Computer Science, Colorado State University, Ft. Collins, CO 80523

Combinatorial Analysis of Star Graph Networks

Yordan Rouskov�, Shahram Latifiy and Pradip K Srimaniz

Abstract

It is well known that star graphs are strongly resilient like the n cubes in the sense that they are optimally fault tolerant
and the fault diameter is increased only by one in the presence of maximum number of allowable faults [Lat93b, RS93]. We
investigate star graphs under the conditions of forbidden faulty sets [Esf89] where all the neighbors of any node cannot be faulty
simultaneously; we show that under these conditions star graphs can tolerate upto (2n�5) faulty nodes and the fault diameter is
increased only by 2 in the worst case in presence of maximum number of faults. Thus, star graphs enjoy the similar property of
strong resilience under forbidden faulty sets like the n-cubes [Lat93a]. We have developedalgorithms to trace the vertex disjoint
paths under different conditions.

1 Introduction

The underlying topology of any multiple processor system is, in general, modeled as an undirected graph where the nodes rep-

resent the processing elements and the arcs (edges) represent the bidirectional communication channels. Design features for an

efficient interconnection topology include properties like low degree, regularity, small diameter, high connectivity, efficient rout-

ing algorithms, high fault-tolerance, low fault diameter etc. Since more and more processors must work concurrently these days

in a multiple processor environment, the criterion of high fault tolerance and strong resilience has become increasingly important.

One of the most efficient interconnection network has been the well known binary n-cubes or hypercubes; they have been used

to design various commercial multiprocessor machines [Sei85] and they have been extensively studied. Very recently another

family of regular graphs, called the star graphs [AK89, AK87], are being extensively studied; star graphs seem to enjoy most of

the desirable properties [QMA92, NSK90, QMA91, DT94] of the hypercubes at considerably less cost; they accommodate more

nodes with less interconnection hardware and less communication delay. It has also been shown [QAM93, MS90, FA91, MS92]

that many parallel algorithms can be efficiently mapped on these star graphs.

The focus of this paper is on fault tolerance of these star graph networks. The fault tolerance of an interconnection network

is usually measured by the vertex connectivity of the underlying graph as well as the fault diameter. Vertex connectivity of an

n-cube (which is a n-regular graph) is n and the corresponding fault diameter is n + 1 (the fault-free diameter is n) [SS88].

Vertex connectivity of a star graph Sn of dimension n (which is a (n�1) regular graph) is n�1 [AK89] and the corresponding

fault diameter is b3(n � 1)=2c+ 1 [Lat93b, RS93] (the fault-free diameter is b3(n � 1)=2c). Star graphs thus are comparable

to hypercubes also in the sense that the fault diameter is increased only by one over the fault free diameter.

Although the measure of vertex connectivity correctly reflects the fault tolerance of systems with few processors, it under-

estimates the resilience of large networks. Esfahanian [Esf89] has emphasized and elaborated on the second point with respect

to the n-cubes. Let us illustrate the point with respect to the star graphs. Note that each minimum cut in Sn is of size n� 1 and

also the fact that a subset of (n� 1) vertices can be a cut when, and only when, these vertices represent the entire adjacency set

�Department of Computer Science, Colorado State University, Ft. Collins, CO 80523
yDepartment of Electrical Engineering, University of Nevada, Las Vegas, NV 89154
zDepartment of Computer Science, Colorado State University, Ft. Collins, CO 80523

1

of any vertex in Sn. Thus, out of all possible
�
n!
n�1

�
vertex subsets of size n � 1, only n! are minimum cuts of the star graph

Sn. Assuming that every fault set is equally probable, the probability that an arbitrary fault set of size n � 1 will disconnect

the remaining network is very small and gets smaller as n grows large. This motivates one to define the restricted connectivity

or connectivity under forbidden faulty sets [Esf89]. In particular, for the n-cube, Esfahanian has defined each forbidden faulty

set to be all n neighbors of one processor (thus there are 2n forbidden faulty sets in an n-cube, each containing n processors).

Esfahanian has shown that an n-cube, under the forbidden sets, can tolerate up to (2n � 3) processor failures without being

disconnected; Latifi [Lat93a] has shown that the fault diameter of n-cube under forbidden faulty sets is n + 2, i.e., the fault

diameter is increased only by 2 over the fault free diameter.

In this paper, our purpose is to investigate the star graphs under forbidden faulty sets and to show that a star graph, under the

forbidden sets, can tolerate up to (2n�5) processor failures without being disconnected and that the fault diameter is increased

only by 2 over the fault free diameter. Thus we show that the star graphs also enjoy the same strong resilience properties like

n-cubes and hence are strong competitors of n-cubes for large multiprocessor design. We also design algorithms to trace vertex

disjoint paths in star graphs under the forbidden faulty sets. The rest of the paper is organized as follows. In section 2 we in-

troduce the notations and terminologies. Section 3 treats the restricted vertex connectivity of star graphs and its fault diameter.

Section 4 concludes the paper.

2 Basic Concepts

In this section we briefly introduce the basic terminology about star graphs and identify certain structural properties of these

graphs. Graph theoretic terms not defined here can be found in [Har72]. A detailed treatment of star graphs can be found in

[AK89, AK87] and more details about forbidden faulty sets can be found in [Esf89].

2.1 Star Graphs

A star graph Sn, of order n, is defined to be a symmetric graphG = (V;E) where V is the set of n! vertices, each representing a

distinct permutation of n elements and E is the set of symmetric edges such that two permutations (nodes) are connected by an

edge iff one can be reached from the other by interchanging its first symbol with any other symbol. For example, in S3, the node

representing permutation ABC have edges to two other permutations (nodes) BAC and CBA. Throughout our discussion we

denote the nodes by permutations of English alphabets. For example, the identity permutation is denoted by I = (ABCD:::Z)

(Z is the last symbol, not necessarily the 26th).

Remarks:

� These star graphs are members of the family of Cayley group graphs. For a star graph Sn of dimension n, there are n� 1

generators, g2; g3; � � � ; gn, where gi swaps the first symbol with the i-th symbol of any permutation. Each generator is

its own inverse, i.e., the star graph is symmetric. Also, the star graph Sn is a (n � 1)-regular graph with n! nodes and

n!(n� 1)=2 edges.

� Since star graphs are vertex symmetric [AK89], we can always view the distance between any two arbitrary nodes as

the distance between the source node and the identity permutation by suitably renaming the symbols representing the

permutations. For example, let BDECA be the source node and ECDAB be the destination node. We can map the

destination node to the identity node by renaming the symbols as E 7! A, C 7! B, D 7! C, A 7! D, and B 7! E.

Under this mapping the source node becomesECABD. Then the paths between the original source and destination nodes

become isomorphic to the paths between the nodeECABD and the identity nodeABCDE in the renamed graph. Hence,

in our subsequent discussion about a path from a source node to a destination node, the destination node is always assumed

to be the identity node I without any loss of generality. Also, we use distance of a node (permutation) to indicate its

distance to the identity node.

2

� It is easy to see that any permutation of n elements can also be specified in terms of its cycle structure with respect to the

identity permutation I. For example, CDEBAF = (ACE)(BD)(F). The maximum number of cycles in a permutation

of n elements is n and the minimum number is 1. When a cycle has only one symbol, that symbol is in its correct position

in the permutation with respect to the identitypermutation. The singleton cycles may be omitted in the cycle representation

of a permutation if the number of symbols in the permutation is understood from the context.

We use following notations throughout the paper:

n: Order of the star graph Sn.

N: Number of nodes in Sn, N = n!.

�n: Diameter of Sn, �n = b3(n� 1)=2c.

u: An arbitrary permutation.

symbolu(i): The i-th symbol in the permutation of the node u, 1 � i � n (the symbols are numbered 1 through n from left

to right).

positionu(�): An integer denoting the position of the symbol � in the permutation of the node u.

D(u): Distance of the node u (from the identity permutation).

�(u): Cycle representation of the node (permutation) u, � = f�1; �2; � � � ; �kg. We omit all singleton cycles in the

representation except the one containing the symbol A (if any) and �1 is the cycle containing A and all other

cycles are in any arbitrary order. Furthermore, each cycle �i is represented as a sequence of symbols, �i =

(�1i ; �
2
i ; � � � ; �

j�ij
i); �1 is always represented as (�11; �

2
1; � � � ; A), while other cycles may be represented in any

arbitrary order. Thus, CDEBAF is represented as (CEA)(BD). Hence the symbol �11 of any permutation is

the first symbol of that permutation.

�(u): Number of cycles of length at least 2 in any permutation u.

m(u): Total number of symbols in these � cycles of the permutation u.

n�m(u) Total number of invariant symbols in a permutation u, i.e., the number of singleton cycles in u.

It has been shown in [AK89] that the distance D(u) for a given node (permutation) u is given by:

D(u) =

(
� +m when A is the first symbol

� +m � 2 when A is not the first symbol

Lemma 1 [RS93] For oddn, a node (permutation)u inSn is at the maximum distance b3(n�1)=2c from I, iff its cycle structure

satisfies the following: (i) A is the first symbol in u (i.e. A forms a 1-cycle) (ii) All other cycles are 2-cycles.

Lemma 2 [RS93] For even n, any permutation u has the maximum distance �n iff its cycle structure satisfies one of the fol-

lowing two: (i) A is the first symbol in u (i.e., A forms a 1-cycle), three other symbols form a 3-cycle and the rest form 2-cycles,

(ii) A is not in the first position in u, and all cycles are of length 2 (n=2 of them).

Remark 1 [AK89] For an arbitrary node u in Sn if D(u) � �n� 3, the node (permutation)u can have at most two invariant

symbols and if D(u) � �n � 2 then the node (permutation) u can have at most one invariant symbol.

3

Shortest Routing in Star Graph
Given an arbitrary node u = f�1; �2; � � � ; �kg, the algorithm to find the shortest path to the destination node (the identity permu-

tation) is described in [AK87]; it has also been shown that in general this shortest path is not unique, i.e., there may be multiple

shortest paths to the destination from a given nodeu. In order to generate a path fromu to I, generators are applied in a particular

sequence. In order that the path is minimal in length, the moves (generating the next vertex in the sequence) must be restricted

to two possible choices : for any node u = f�1; �2; � � � ; �kg, either (1) exchange �11 with �21 thereby reducing the length of the

cycle �1 by 1, or (2) exchange �11 with �`j (where 2 � j � k and 1 � ` � j�jj thereby merging the two cycles �1 and �j into

one cycle (�`j; �
`+1
j ; � � � ; �

j�jj

j ; �1j ; � � � ; �
`�1

j ; �11; � � � ; A)). When a path from a node u to the destination is said to follow the

shortest routing scheme if the moves are restricted to these two types. We make the following observations about this shortest

routing scheme:

� For any node u at least one of these moves is always possible until the node I is reached.

� The path generated by using only these two moves from a node u to the destination node I has a length D(u).

� Any other move leads to a non minimal path. More specifically, if a node u0 is reached from u by any other move, then

D(u0) = D(u) + 1. Also, if we go to a node u00 from u0 by a non-minimal move, then D(u00) = D(u0)+ 1 = D(u) + 2.

2.2 Forbidden Faulty Sets

The set A(v) (A(v) denotes the adjacency set of any vertex v) of any vertex v is named as the forbidden faulty set; it implies

that all the neighbors of any vertex in Sn cannot be faulty simultaneously. The restricted vertex connectivity �R(Sn) of the star

graph Sn is defined as the minimum cardinality jY j of vertices such that the subgraphSn�G is disconnected and Y is restricted

to the set of vertices R = fZ � Snj8v 2 Sn; A(v) 62 Zg. Thus, star graph can tolerate up to �R(Sn) � 1 processor failures

provided that for any node in the graph all of its adjacent nodes do not fail simultaneously. We use �R
n to denote the diameter

of the star graph in presence of an arbitrary set of �R(Sn) � 1 node failures. Our purpose in the next section is to prove that

�R(Sn) = 2n� 4 and that �R
n = �n + 2. We present two quick lemmas to establish the upper bounds.

Lemma 3 �R(Sn) is upper bounded by 2n� 4.

Proof : Consider any arbitrary edge (u; v) of Sn. jA(u; v)j = 2n � 4 since Sn doesn’t have a cycle of length less than 6. If

these 2n� 4 nodes fail, the particular edge (u; v) will be disconnected from the remaining graph. 2

Lemma 4 �
R
n is lower bounded by �n + 2.

Proof : Consider the scenario in Figure 1; nodeu has a single fault free neighbor v, node v has just one more fault free neighbor

w such that D(w) = �n. Total number of faulty nodes is 2n � 5 and the fault set does not contain any forbidden faulty set.

Distance of the node u from the identity node is �n + 2. 2

3 Fault Diameter with Forbidden Faulty Sets

3.1 Nodes for which j�1j = 1

Here we consider the nodes where the symbol A forms a singleton cycle and A is the first symbol of the permutation denoting

the arbitrary node u. Let Sin�1 denote the subgraph of the star graph Sn consisting of nodes (permutations) having the symbol

A in their i-th positions, 2 � i � n; each of these subgraphs is a star graph of dimension n � 1 with (n � 1)! nodes. The

subgraph S1n�1 is a set of (n�1)! nodes (each withA as its first symbol) and no edges. Consider then�1 vertex disjoint paths

(as computed in [RS93]) from a node u (with j�1j = 1) to the identity node I; it is easy to observe that u; I 2 S1n�1 and each

4

n-2 faulty
 neighbors

n-3 faulty
 neighbors

u

v

w
I

Figure 1: Lower bound for �R
n

of the n� 1 vertex disjoint paths is contained exclusively in one subgraph Sin�1, 2 � i � n. Let ui and Ii denote the adjacent

nodes of u and I respectively with the symbol A in the i-th position.

Remark 2 Since both u and I have A as first symbol, ui and Ii are defined for all i, 2 � i � n; also, ui; Ii 2 Sin�1 for 2 �

i � n.

Remark 3 Since not all neighbors of a node are allowed to be faulty simultaneously, there exists at least one non faulty neighbor

ui of node u and one non faulty neighbor Ij of node I; but i and j may not be equal, in general. In other words, the nodes u

and I may not have non faulty neighbors in the same subgraph Sin�1, in general.

Our objective is to show that in presence of (2n�5)maximum faults, there exists a path from u to I and establish its length.

Obviously, if any of the substars Sin�1 does not have any faulty node, we are done since there exists a path from u to I via that

subgraph [RS93]. We make the following observation:

Remark 4 If any substar Sin�1 has � n� 2 faulty nodes, there exists at least one other substar Sjn�1, j 6= i, that has no faulty

nodes (since total number of faulty nodes cannot exceed 2n� 5 and number of substars is n� 1).

So, we assume that each substarSin�1 has no more than (n�3) faulty nodes. Let �i denote the symbol that is exchanged with

the symbol A to go from u to ui and �i denote the symbol that is exchanged with the symbol A to go from I to Ii respectively

for all i, 2 � i � n. We consider two cases:

Case 1: There exists an i such that both ui and Ii are non faulty
Here, we go from the node u to ui (by exchanging the symbol �i with A), trace a path from ui to Ii in Sin�1, and go from

Ii to I (by exchanging the symbol �i with A). We show there are (n � 2) vertex disjoint paths in Sin�1 between the nodes ui
and Ii.

Subcase A: �i 6= �i. In this case, the symbol �i is contained in a cycle of length � 2 of the node u, i.e., the move

from u to ui belongs to the shortest routing scheme. By similar reasons, the move from Ii to I also belongs to the

shortest routing scheme. Hence D(ui; Ii) = D(u) � 2. The subgraph Sin�1 is a star graph of dimension n � 1

and hence there are n � 2 vertex disjoint paths between two arbitrary nodes ui and Ii each of which has a length

� D(ui; Ii)+ 4. Hence, in presence of a maximum number of n� 3 faulty nodes in Sin�1, there exists a path from

node u to I (via nodes of Sin�1) of maximum length D(u) + 4.

Subcase B: �i = �i. In this case, the symbol �i is invariant in node u (i.e., is in its correct position) and hence the

move from u to ui does not belong to the shortest routing scheme. Hence, D(ui; Ii) = D(u). Now, Sin�1 is a star

graph of dimension n� 1 and the source node ui and destination node Ii have the same first symbol (�i = �i) and

hence there are n � 2 vertex disjoint paths between ui and Ii each of which has a length � D(ui; Ii) + 2. Hence

again, in presence of a maximum number of n � 3 faulty nodes in Sin�1, there exists a path from node u to I (via

nodes of Sin�1) of maximum length D(u) + 4.

5

u = AEBCDGF = (A)(BCDE)(FG) I = ABCDEFG

u
5 I

5

I =EBCDAFG=(EA)
5

Substar of dimension 5 with A
fixed in the 5th position

u
5
=BCDEAGF=(BCDEA)(FG)

Figure 2: Case 1, Subcase A with � = A and � = E

I = ABCDEFG

u

I

I

6
6

6
u =FEBCDAG=(FA)(BCDE)
6

u=AEBCDFG=(BCDE)

Substar of dimension 6 with A
fixed at 6th position

=FBCDEAG=(FA)

Figure 3: Case 1, Subcase B with � = F and � = E

Lemma 5 For case 1, in presence of maximum (2n � 5) faulty nodes, there exists a path from node u to node I whose length

is at most �n + 2.

Proof : IfD(u) � �n�2, the claim easily follows from the above discussion of two subcases. IfD(u) � �n�1, node u has

at most one invariant symbol (by Remark 1). In subcase A, each of the n� 2 vertex disjoint paths in the subgraph has a length

ofD(ui; Ii)+2 (case of single invariant symbol, theorem 5 of [RS93]). In subcase B, the node ui is reached by exchanging the

only invariant �i, nodes ui and Ii have the same first symbol, and hence each of the n� 2 vertex disjoint paths in the subgraph

has a length of D(ui; Ii) (algorithm A in [RS93]). Hence the claim follows. 2

Example 1: Figure 2 and Figure 3 illustrate the two subcases with example nodes.

Case 2: There does not exist an i such that both ui and Ii are non faulty
In this case, a total ofn�1 faults have already been located among the neighbors of u and I. By the presumption of forbidden

faulty sets, there exist at least one good neighbor of u, say u0 and one good neighbor of I, say I 0. Let � be the symbol that is

exchanged with the symbol A to make the move u �! u0; if � is not an invariant in u, then D(u0) = D(u)�1 and D(u0; I0) is

at most D(u); otherwise, f � is an invariant in u, then D(u0) = D(u) + 1 and D(u0; I0) is at most D(u) + 2. There are (n� 1)

vertex-disjoint paths between the nodes u0 and I 0 in the star graph Sn; consider those (n� 3) of them that does not go through

the nodes u or I; none of these paths can go through any immediate neighbor of the nodes u and I (since Sn does not have any

cycle of length less than 6; see [RS93] or [Lat93b]). Since n� 1 faults have already been located among the neighbors of u and

I and the maximum number of faults is (2n�5), all of these (n�3) paths between u0 and I 0 cannot be disconnected and hence

the nodes u and I remain connected in presence of maximum number of faults.

Remark 5 Each of those (n � 3) paths between u0 and I 0 has a length of at most �n + 1 [RS93]; hence the length of the

surviving path between nodes u and I is upper bounded by �n + 3.

Remark 6 An interesting special case is when either u or I (or both) has only one good neighbor. Suppose u0 is the only good

neighbor of u. Then there are n�2 vertex disjoint paths from u0 to I (not to some I 0) that do not contain any of the other (faulty)

neighbors of u and hence at least 1 cannot be disconnected. The same arguments apply if the only good neighbor of I is some

I0. There are n � 2 paths from u (not from u0) to I 0 do not contain any other neighbor of I and at least 1 is guaranteed to be

good. Also, the length of the surviving path(s) is upper bounded by �n + 2.

Lemma 6 The surviving path between u and I has a length of at most D(u) + 8.

6

Proof : The distance between u0 and I 0 is at most D(u) + 2. Any of the n � 3 vertex disjoint paths can require at most 2

non-optimal moves [RS93]; thus each of these paths has a length of at most D(u) + 6. Hence the surviving path between u and

I has a length of at most D(u) + 8. 2

Lemma 7 For Case 2, at least one path survives between u and I of length not more than �n + 2.

Proof : We need to consider several cases separately.

� If D(u) � �n � 6, then the claim follows from Lemma 6

� �n � 5 � D(u) < �n � 3. Here, the node (permutation) u can have at most 3 invariant symbols, say �; �; !. The

distance D(u0; I 0) can be D(u) + 2 iff one of the invariants (say �) is exchanged to reach u0 from u and another one (say

�) is exchanged to reach I 0 from I. Then the nodesu0 and I 0 are of the forms: u0 = (�; A)(�)(!)(:::) and I 0 = (�;A). Any

vertex disjoint path from u0 to I 0 requires at most one non-optimal move [see [RS93]]; hence any surviving path between

u0 and I 0 is of length at most D(u) + 4 and the overall path between u and I is of length at most D(u) + 6 � �n + 2.

� �n� 3 � D(u) < �n� 1. Node u can have at most 2 invariant symbols (say, � and �) and all other cycles of u contain

2 symbols, except possibly one that has 3. Then u = (A)(�)(�)(�; �; !)(:::). In order that a path between u and I has a

length� �n+2, or equivalentlyD(u)+4, either (1)D(u0; I0) = D(u)�2, or (2)D(u0; I0) = D(u) and the path between

u0 and I 0 requires at most one non-optimal move. By Remark 6, both nodes u and I have at least two good neighbors,

i.e., u must have a good neighbor ugX where X is a symbol such that X 62 f�; �g. Without loss of generality assume

ug� = u0 = (�; �; !;A)(�)(�)(:::) is a good neighbor if u. Since condition (1) is not satisfied, possible good neighbors

of I are Ig!, Ig� , Ig�, Ig� . Since condition (2) is not satisfied, Ig� or Ig� cannot be good neighbors of I. So the only

possible good neighbors of I are Ig!, or Ig� . Now, u has at least one other good neighbor. If ugX is a good neighbor of

u and X 2 f�; �g (note that X cannot be ! or �), condition (1) is satisfied and if X 2 f�; �g, condition (2) is satisfied.

Thus the surviving path between u and I has a length of at most �n+2. If u has less than 2 invariant symbols, the claim

follows using similar arguments.

� �n�1 � D(u) � �n. Node u has a specific cycle structure: it has one invariant symbol and other symbols are contained

in doubleton cycles, or it has no invariant symbol with at most one cycle of length 3 or 4 or 5. In order that a path between

u and I has a length � �n + 2, , either (1) D(u0; I0) = D(u) � 2 and each of the paths between u0 and I 0 requires at

most one non-optimal move, or (2) D(u0; I0) = D(u) and none of the paths between u0 and I 0 requires any non-optimal

move. Proceeding along similar lines as above and treating the two cases of presence and absence of the invariant symbol

separately, it is easy to show that the surviving path between u and I has a length of at most �n + 2.

2

Theorem 1 In presence of up to 2n�5 faults (subject to the restriction of the forbidden faulty sets) the distance of an arbitrary

node u in Sn with j�1j = 1 is � �n + 2.

Proof : The proof readily follows from Lemma 5 and Lemma 7. 2

3.2 Nodes for which j�1j > 1

Here we consider the nodes where the symbolA does not form a singleton cycle, i.e., A is not the first symbol of the permutation

denoting an arbitrary node u. Let � be the first symbol of the permutation denoting node u. Also, let Si, 2 � i � n, denote the

substar of (n � 1)! nodes each of which has the symbol � fixed at position i.

Remark 7 The substars Si for each i are mutually disjoint and the given node u has exactly one neighbor in each substar Si,

2 � i � n.

7

Now, consider the neighbors of the node I; each has the cycle structure Ig
 = (
;A) where
 is any symbol other thanA. Also,

each of these I-neighbors has (n�2) neighbors of the form Ig
g
0 = (
0;
; A),
 6=
0 (also, neither
 nor
0 is the symbolA).

By the assumption of forbidden faulty sets, there exists at least one good (non faulty) neighbor of node u and one good neighbor

of node I. We need to consider 2 different cases:

Part 1: For a given node u (i.e., given symbol �), either the node (�;A) is non faulty or there exists at least one symbol

 (
 is neither � nor A) such that the node (
;A) and node (�;
;A) are non faulty.

Part 2: For a given node u (i.e., given symbol �), the node (�;A) is faulty and for every other symbol
 (6= � orA) either

the node (
;A) is faulty or the node (�;
;A) is faulty or both are faulty.

3.2.1 Part 1

Notation: Let � be the set of good neighbors of the node u and
 denote the set of good neighbors of node I of the form (�;A)

or of the form (
;A) such that the node (�;
;A) is also fault-free. By assumption of the present case, j
j � 1 and by the nature

of forbidden faulty sets, j�j � 1. Let j�j = k1, j
j = k2 and k = min(k1; k2). Also, Let �i be the symbol whose correct

position (i.e., in node I) is i, 2 � i � n (�i 6= �). Consider an arbitrary substar Si for some i, such that �i 6= �; call this �i
simply �, and this Si simply S0 (there are (n� 2) such substars S0). The node u has exactly one neighbor in each S0; call this

neighbor u0.

Remark 8 For any such choice of substar S0, the symbol � (determined by the original source node u) is fixed for all nodes in

S0 at the position of the symbol � (determined by the choice of S0).

Remark 9

� All nodes in� and
 are fault free (good) by the conditions of this subsection and so are the nodes (�;
;A) for each node

(
;A) 2
 (
 6= �).

� The move from node (�;
;A) to the node (
;A) belongs to the shortest routing scheme.

Definition 1 There are (n � 3) nodes in S0 (call this subset of nodes of S0 to be X[S0]) each with cycle structure (�; �;
; A)

(for (n� 3) different symbols
), and one node with cycle structure (�; �;A) (call this node to be Y [S0]).

Remark 10 Each of these nodes in X[S0] or Y [S0] can reach, by application of the generator g�, a node of the form (�;
;A)

or (
;A) and by hypothesis of this case (subsection 3.2.1) at least one of these nodes can reach the node I by at most two moves.

Thus, for each choice of S0 (and u0) there are exactly (n � 3) nodes in X[S0] and one node in Y [S0]. We design algorithms to

trace (n� 2) vertex disjoint paths from the node u0 to these (n� 2) nodes in X[S0][Y [S0].

Algorithm A:

Input: A node u0 = ug� = f�01; �
0
2; � � � ; �

0
kg in S0; the symbol � is fixed in the correct position of the symbol � for all nodes

in S0. There are (n� 3) other symbols in our symbol set; call any one of them
.

Output: (n � 3) different paths from the node u0 to the nodes in the set X[S0], i.e., one path each for each choice of
 from

node u0 to the node (�; �;
; A).

Note: Name an arbitrary symbol from a cycle 6= �01 to be �. The proposed algorithm is in fact a collection of three procedures:

each one is used in a particular scenario as follows (see appendix for the details of the procedures):

If the cycle �01 of the node u0 contains symbols �, � and A and � is the first symbol of �01
then call Procedure A1;

8

else if the cycle �01 of the node u0 contains symbols �, �, but � is not the first symbol of �01
then call Procedure A2;

else if � and � are in some cycle �0` (of node u0) not containing the symbol A

then call Procedure A3.

Remark 11

� When procedure A1 is invoked, the move from node u to node u0 does not belong to shortest routing scheme (invariant

symbol � is exchanged with �).

� When procedure A2 is invoked, the move from node u to node u0 belongs to shortest routing scheme (� was a symbol from

another cycle).

� When procedure A3 is invoked, the move from node u to node u0 does not belong to shortest routing scheme (the cycle

containingA is split).

Remark 12 The following paths from from u0 to X[S0] require at most one move that does not belong to shortest routing

scheme:

Procedure A1: Case 1 subcaste b, Case 2 subcaste a, Case 3 sub cases b, and c

Procedure A2: Case 2, Case 3

Procedure A3 : Case 1, Case 2, Case 4

Remark 13 All other paths require at most two moves that do not belong to shortest routing scheme; however, for the following

cases there is exactly one such move:

Procedure A1 Case 1 sub case a and Case 3 sub case d,

Procedure A3 Case 3

Procedure A2 Case 5

when
 is not an invariant in u0.

Procedure A2 Case 1 if Step 1 happens to be an optimal move,

Procedure A2 Case 4 if positionu0 (A) = positionI (
)

Algorithm B:

Input: A node u0 = ug� = f�01; �
0
2; � � � ; �

0
kg in S0; the symbol � is fixed in the correct position of the symbol � for all nodes

in S0.

Output: A path from the node u0 to the node Y [S0] = (�; �;A).

Case 1: �; �;A are all in the cycle �01

Sub case a: � is the first symbol of u0

If �01 contains at least one other symbol, say �, than �; �;A then

(�; �; �; ::; A)(:::) [Node u0] Exchange A with �����������������!Step 1 (A)(�; �; �; ::)(:::)

Exchange A with �����������������!Step 2 (::�; �;A)(:::) [Node XX]

Merge all cycles and����������������!Resolve the last cycle (�; �;A) [target node]

Else(�; �;A)(:::) [Node u0, also Node XX] Merge all cycles start by exchanging �����������������������������������!Resolve the last cycle
(�; �;A) [target node]

9

Sub case b: � is not the first symbol of u0

If �01 contains at least one symbol, say �, between � and A then

(::; �; �; �; ::; A)(:::) [Node u0] Bring symbol A to first position��������������������!Step 1 (A)(::; �; �; �)(:::)

Exchange A with �����������������!Step 2 (�; ::; �; �;A)(:::) [Node XX]

Merge all cycles and����������������!Resolve the last cycle (�; �;A) [target node]

Else
(!; ::; �; �;A)(:::) [Node u0] Excahnge � with !����������������!Step 1 (�; �;A)(:::) [Node XX]

Exchange � with symbol����������������!other than !
Merge all cycles and����������������!Resolve the last cycle (�; �;A) [target node]

Case 2: �; � are in some cycle �0` not containing A

(:::)(::; �; �;�) [Node u0] Bring A to first position��������������������!Step 1 (A)(::; �; �; �)(:::)

Excahnge A with �����������������!Step 2 (�; ::; �; �;A)(:::) [Node XX]

Merge all cycles and����������������!Resolve the last cycle (�; �;A) [target node]

Remark 14 In Algorithm B, (a) for Case 1, sub case a, � has to be an invariant symbol in the original source node u; (b) for

Case 1, sub case b, the move from node u to u0 belongs to the shortest routing scheme. (c) in case 2, the Step 1 may be a null

move.

Example 2: Let u = BCDAFEG = (BCDA)(EF) with � = B. (1) if � = G, algorithm B (case 1 subcase a) generates

path from u0 = (GBCDA)(EF) to the node (GBA)

Remark 15 For a given node u, algorithms A and B trace (n� 2)
2 paths to the identity node I.

Lemma 8 For each choice of a neighbor u0 of node u as done here, the different paths from u0 to the nodes inX[S0] and Y [S0]

(generated by algorithms A and B) are mutually vertex disjoint.

Proof : Each node labeled XX in the executions of the routing algorithms has the property that a different symbol (for dif-

ferent paths) is fixed at positionI (�). That is true for all permutations on the paths until the target is reached. Also, the node

(permutation)XX is reached in at most two moves from u0 and the the starting move for all paths is different. This proves the

vertex disjointness of the paths generated within the same S0. 2

Lemma 9 The paths generated for different choices of u0 are vertex disjoint.

Proof : For each choice of u0, all the (n� 2) paths are entirely contained in the substar S0. Since each S0 is mutually disjoint

from any other S0, the claim follows. 2

Remark 16 While routing from node u to the node I, there can be at most three moves that does not belong to the shortest

routing scheme. One of these can be the move to reach u0 from u and the other two are in the paths from u0 to the designated

nodes inside S0. Therefore the maximum length of any of these paths is D(u) + 6

Lemma 10 There are at least k1 � k2 � k paths from nodes in � to the nodes in
.

10

u

u

u

I

I

I 1

1 2

2
(HBCA)

(CBHA) =(HA)

=(CA)

Figure 4: k1k2 � k paths between 	 and

u

u

u

I

I

I 1

1 2

2

=(GA)

=(BA)
(HBA)

(CBA)

(BGA)(CBGA)

(HBGA)

Figure 5: k1k2 paths between 	 and

Proof : Consider the node u0 in an arbitrary substar S0, where positionu0 (�) = positionI (�). There is only one possible

node in
, namely (�;A) (if indeed the node (�;A) belongs to
) to which a path may not be generated within S0. So there

are at least k2 � 1 nodes to which paths are generated. The same is true for each u0 in �. Thus the number of paths that are

generated by the algorithms A and B between the nodes u and I is � k1 � k2 �min(k1; k2). 2

Example 3: Consider the source node u = BCDAFEHG = (BCDA)(EF)(GH) (here, � = B). Let u has two good

neighbors: u1 = (DA)(BC)(EF)(GH) (here � = C), and u2 = (GHBCDA)(EF) (here � = H). Let the identity node I

also has two good neighbors: I1 = (CA) (here
 = C) and I2 = (HA) (here
 = H). Thus, k1 = k2 = k = 2. No path will be

generated from node u1 to I1 (since � =
) and similarly no path will be generated between u2 and I2. Thus, only k1k2�k = 2

paths will be generated, as shown in Figure 4. Now, for the same choice of u, u1 and u2, let the node I has two good neighbors

as I1 = (BA) (here
 = B), and I2 = (GA) (here
 = G). In this case, all k1k2 paths will be generated, as shown in Figure 5.

Remark 17 The only nodes that can be common in any two of the paths mentioned in Lemma 10 are those in �, or in
, or are

of the cycle structure (�;
;A) which are all fault-free (see Remark 9).

Theorem 2 Under the conditions of this subsection, the nodeu remains connected to the node I when the number of faults does

not exceed 2n� 5 in the forbidden fault model; the surviving path(s) can have a maximum length of D(u) + 6.

Proof : It is clear from Lemma 10 and the Remark 17 that in order to disconnect the nodes u and I we need at least (k1k2�k)

additional faults (in addition to the 2n � 2� j�j � j
j = 2n � 2� (k1 + k2) faults already identified). So, the total number

of faults needed to disconnect the nodes u and I is 2n� 2 � (k1 + k2) + (k1k2 � k). Now, for any arbitrary nonzero positive

integers k1 and k2, it is true that (k1k2 � k) � k1 + k2 � 2 where k = min(k1; k2). Thus, total number of faults needed to

disconnect the nodes u and I � 2n � 4, which is a contradiction. Hence the connectivity follows. The claim about the length

of the surviving paths directly follows from Remark 16. 2

Remark 18 For the previous theorem and the path generation algorithms we assumed � 6= �. If it is the case that the neighbor

of u which is reached by exchanging � with symbolu(positionI (�)) is good,then � = �. Then we can generate paths to the

nodes (
;A) (
 6= �) inside the substar S� as described in [RS93]. Again n� 2 paths are generated to all neighbors of I, but

(�;A). Since any of these paths cannot be longer than �n�1 + 1 the total path between u and I is of length at most �n + 2.

Next, we want to prove that the node u remains connected to the node I by a path of length� �n+2 when the number of faults

does not exceed 2n� 5.

Remark 19 When D(u) < �n � 3, the claim readily follows from the previous theorem.

11

Thus, we need to consider the scenarios when D(u) � �n � 3. We consider two distinct scenarios:

Scenario 1: �n � 3 � D(u) � �n � 2.

We investigate the case D(u) = �n � 3. All results are directly applicable to the case D(u) = �n � 2.

Remark 20 If D(u) = �n � 3, then one of the following must be true for the permutation u:

(A) There are two invariant symbols in u, say � and �. All other symbols form doubleton cycles, i.e., u = (�)(�)(�;A)(:::)

(B) There is one invariant symbol in u, say � and j�0
1
j � 5, i.e., u = (�)(�; x1; x2; x3; A)(:::)

(C) There are no invariant symbols in u.

Our approach is to consider these three cases separately and to show that in each scenario there always exist at least one path

between the nodes u and I of length � �n + 2, i.e., a path that requires at most two moves that do not belong to the shortest

routing scheme. Note that in certain cases this particular path may not be generated by the algorithms A and B; we indicate

alternate procedures for those situations.

Scenario 1A: There are two invariant symbols in u, i.e. u = (�)(�)(�;A)(:::).

Lemma 11 If there are 2 invariant symbols in u and all other symbols form doubleton cycles, then exactly two out of k1k2� k

paths (Lemma 10) are of length D(u) + 6 (3 non-optimal moves required).

Proof : The only non-optimal moves that can be made from node u are the ones exchanging � or � with �. Suppose � is

exchanged with �. Then, u Exchange � with ��������������! (�)(�; �;A)(:::) [Node u0]. Routing from u0 (to destination node I) is de-

scribed in procedure A1 of algorithm A (� = �). The only path that requires two more non-optimal moves is when
 = � (see

Remarks 9, 12 and 13). Same holds true for the symbol �. 2

Corollary 1 In order that a path is of lengthD(u)+ 6, the set
 must contain either the node (�; A) or the node (�;A) or both

and the set � must contain ug� or ug� or both.

Example 4: Consider the node u = BACDFEGH = (BA)(EF)(GH) where � = B, � = D and � = C. Hence, the two

neighborsof nodeu (which would generate paths of lengthD(u)+6) areu1 = (DBA)(EF)(GH) andu2 = (CBA)(EF)(GH);

also,
 = f((CA); (DA)g. The paths are shown in Figure 6.

Lemma 12 If k1 = 1 or k2 = 1, there exists a path from u to I of length at most �n + 1 in presence of maximum number of

faults.

Proof : Same as Remark 6. 2

Lemma 13 Suppose both k1; k2 > 1. If k1 = k2 = 3 or k2 > 3 or k1 > 3, then at least one path survives of length � �n + 1

between nodes u and I in presence of maximum number of faults.

Proof : In the light of Lemma 11 we need only to prove that at least 3 out of k1k2� k paths survive. Similar to the arguments

in the proof of Theorem 2, total number of faults needed to have less than 3 paths between u and I is 2n � 2 � (k1 + k2) +

(k1k2 � k � 2). For the given values of k1 and k2, (k1k2 � k � 2) � 2n� 4, which is a contradiction. Hence, at least 3 paths

survive between u and I and by Lemma 11 at least one of them has a length � �n + 1 (note D(u) = �n � 3). 2

Lemma 14 If k2 = 2 and k1 � 3 or k1 = 2 and k2 � 3 and there does not exist a surviving path of length D(u) + 6, then

there exists a symbol �, such that the node (�; A) is not in
, and � 62 f�; �; �g.

12

Proof : We assume n > 6. At least one of the nodes (�; A) or (�;A) must belong to
 (Corollary 1).

Suppose k2 = 2. Thus, there is at most one node in
 other than (�; A) and (�;A) (k2 = 2). Since n > 4, there exists at least

one other symbol � such that the node (�; A) does not belong to the set
.

Suppose k2 = 3 and k1 = 2. If one of (�; A) or (�;A) belong to
 then there are at most two other nodes in
 left, which

establishes the existence of � if n > 6. 2

Lemma 15 If k1 = k2 = 2, algorithm A can be slightly modified such that a good path always survives with less than 3 non-

optimal moves from some node in � to some node in
 in presence of maximum number of faults.

Proof : Consider application of algorithm A in some arbitrary substar S0 in which positionu0 (�) = positionI (�). Note that

no path was generated from node u0 to the neighbor (�;A) of node I; (n� 3) vertex disjoint paths are generated from u0 to all

other neighbors of I. In the present scenario, some neighbors of node I are known to be faulty and our approach is to replace a

path to one such faulty neighbor with a path to the node (�;A). Let � be a symbol such that (�; A) 62
 and � 6= � and � 6= �;

in the present scenario, � belongs to some doubleton cycle, say, (�; �1). The path from u0 to (�; A) is generated by Algorithm

A, Procedure A1, Case 1, sub case a (for simplicity assume � is a symbol different from the one marked as � in the algorithm).

Consider the following path:

(�; �;A)(:::) [Node u0]
Exchange � and ���������������!Step 1 (�; �1; �; �;A)(:::)

Exchange A and ���������������!Step 2 (�; �1; �; �)(A)(:::) [Node XX]

Merge & Resolve all cycles��������������������!except the first cycle (�; �1; �; �)(A) [Node YY]

Exchange A and ��������������! (�; �; �1; �; A)

Apply g�; g�1����������!and g�
(�;A) [Target Node]

This path is vertex disjoint to all others. The rout to the node marked Y Y is the same as for the path to (�; �; �; A) (which is

not generated). The nodes on the path from Y Y to the target (�;A) lie entirely in the substar for which � = � and therefore is

vertex disjoint with the paths in all other substars. Finally all such newly generated paths are vertex disjoint because A is fixed

at positionI (�) after the node Y Y and for different paths �’s are different.

Thus, with the said modifications in algorithm A, we generate k1 � k2 paths (the term min(k1; k2) is gone, since paths are

generated to every permutation of
 from each node in �). For k1; k2 = 2 it is true that k1 � k2 > k1 + k2, and total number

of faults needed to disconnect all the paths is k1k2+(2n� 2)� (k1+ k2) � 2n� 2. Thus in presence of at most 2n� 5 faults,

at least three paths survive and at least one of them needs less than 3 non optimal moves (Lemma 11). 2

Example 5: Consider the previous example where u = BACDFEGH = (BA)(EF)(GH), � = f(DBA)(EF)(GH);

(CBA)(EF)(GH)g, and
 = f(CA); (DA)g. Here, k1 = k2 = 2 and Algorithm A will generate only two paths from � to

which are shown in Figure 6. Now, by Lemma 14 there exists a symbol � = G and the alternate procedure given in Lemma 15

generates two more vertex disjoint paths which are shown in Figure 7.

Scenario 1(B): There is one invariant symbol in u, i.e. u = (�)(�; x1; x2; x3; A)(:::).

Lemma 16 In scenario 1(B), there can be at most 3 possible paths out of possible k1k2 � k paths (Lemma 10) are of length

D(u) + 6 (3 non-optimal moves required).

13

u I

(CBDA) (DA)

(DBCA) (CA)

u

u
1

2

Figure 6: Example for Lemma 11

u I

(CBDA)
(DA)

(DBCA) (CA)

u

u
1

2

(GHDBA)(EF) (GHDB)

(GHCBA)(EF) (GHCB)

Figure 7: Example for Lemma 15

Proof : For any path from node u to node I requiring 3 non optimal moves, it must be true that the node u0 is reached from

u by exchanging � with a symbol in the set f�; x2; x3; Ag. The corresponding u0 is routed to node I using Procedure A1 of

Algorithm A (if � is exchanged with � as a first move) or Procedure A3 in Algorithm A (if any of the other listed symbols is

exchanged with �). Further examination of the the paths reveal that the three paths that require 3 non-optimal moves are:

u �! u0(ug�)
� = � and
 = x2������������!Path 1 (�; �; x2; A) �! (x2; A) �! node I

u �! u0(ugx2)
� = x1 and
 = �������������!Path 2 (x1; �; �; A) �! (�; A) �! node I

u �! u0(ugx3)
� = x2 and
 = �������������!Path 3 (x2; �; �; A) �! (�; A) �! node I

2

Remark 21 Path 1 of Lemma 16 is generated by Procedure A1, Case 3, Sub case 1; Path 2 and Path 3 of Lemma 16 is generated

by Procedure A3, Case 3.

Corollary 2 In scenario 1(B), no paths of length D(u)+ 6 from node u to node I can go via either the neighbor (x3; A) or the

neighbor (�;A) of I. In order that any of the paths of Lemma 16 is generated,
must have a node other than (x3; A) or (�;A).

Lemma 17 If k1 = 1 or k2 = 1, there exists a path from u to I of length at most � + 1 in presence of maximum number of

faults.

Proof : Same as the proof of Lemma 12. 2

Lemma 18 If k � 3 and max(k1; k2) � 4 or k � 2 and max(k1; k2) > 4, at least one path generated by the proposed

algorithm survives in presence of maximum number of faults that needs less than 3 non-optimal moves.

Proof : For these values of k1 and k2 it is true that k1�k2�k > k1+k2. Thus, the total number of faults needed to disconnect

nodes u and I is k1k2� k+ (2n� 2)+ (k1+ k2) > 2n� 2. Hence, at least 4 of the generated paths are not disconnected. The

claim follows from Lemma 16. 2

Lemma 19 If the values of k1 and k2 do not satisfy the conditions of the previous lemma, but
 includes both the nodes (x3; A),

and (�;A), then a good path always exists that requires less than 3 non-optimal moves.

14

Proof : The proof is based on Corollary 2. If k2 = 2, no path requiring 3 non-optimal moves is generated.

Ifk2 = 3, thenk1 must be 2; at most two paths requiring3 non-optimalmoves can be generated. Then,Number of paths(u; I) =

k1 � k2 = 6, since for each generated path of length D(u) + 6 there are two generated paths of length D(u) + 4 to the nodes

(x3; A) and (�;A). Or, k1+k2 < Number of paths(u; I) and hence, at least 4 of the generated paths cannot be disconnected.

Only 2 of the surviving paths require 3 non-optimal moves and hence the claim follows.

If k1 = 3 and k2 = 3, the proof is identical to that of Lemma 13 since there are at most two paths requiring 3 non-optimal

moves.

If k2 = 4 and k1 = 2, again there are at most two paths requiring 3 non-optimal moves, since there are 2 nodes in � and

each possible path requiring 3 non-optimal moves must start with different nodes of �. Then use the same arguments as in the

proof of Lemma 13. 2

Remark 22 We need to consider the cases where
 does not contain either of the nodes (x3; A) or (�;A) or both. Our approach

is to modify parts of algorithm A to exploit the fact that either (x3; A) or (�;A) or both are faulty.

Lemma 20 If (�;A) 62
, then 2 of the three paths of Lemma 16, requiring 3 non-optimal moves can be replaced by paths,

requiring just 2 non-optimal moves. Similarly if (x3; A) 62
, then the third path requiring 3 non-optimal moves can also be

replaced by one with just two.

Proof : For each path that requires 3 non-optimal moves we show alternative paths that require just 2 such moves. These

alternative paths start by exchanging at the first step the symbol A or the symbol x3.

Alternative to Path 1:
ug�

Exchange � and A��������������!Step 1 (A)(�; �; x1; x2; x3)(:::)

Exchange A and x3��������������!Step 2 (x3; �; �; x1; x2; A)(:::) [Node XX]

Merge all cycles���������������!and resolve (�; �; x1; x2; A) [Node YY]

Apply g�; gx1; gx2���������������!Final Moves (x2; A)

Alternative to Path 2:
ugx3 = (�)(x2; �; x1)(x3; A)(:::)

Exchange A and x3��������������!Step 1 (�)(x2; �; x1)(x3)(A)(:::)

Exchange A and ���������������!Step 2 (�; A)(x2; �; x1)(x3)(:::) [Node XX]

Exchange x1 and ��������������!Step 3 (x1; x2; �; �; A)(:::)

Merge & Resolve������������! (x2; �; �; A) [Target Node]

The first move of these two paths is the same as the first move of the paths to (�;A), but since that node is assumed to be

faulty and the paths to (�;A) are not generated, we can use the same first move to generate other paths. The node marked with

XX has the property that the symbol A is fixed at positionI (
) (
 is x2 and � for the two paths) and therefore from that point

these paths are disjoint with all the others. The first alternative path reaches a node labeled Y Y which is different from the target

node in the original path. (x2; A) is reached with 3 moves from Y Y going through one permutation in which� is at first position

and one in which � is at its correct position. Both of these permutations cannot be found on any other path.

Alternative to Path 3:

ugx2 = (�)(x1; �)(x2; x3; A)(:::)
Apply gx3 ; gA���������!Step 1 (A)(�)(x1; �)(:::)

Exchange A and ��������������!Step 2 (�; A)(x1; �)(:::)[Node XX]

15

Apply gx1���������! (x1; �; �; A)(:::)

Merge & Resolve������������!all cycles (x1; �; �; A)[Target Node]

To generate that path we have borrowed the first move of the path to (�; �; x3; A). If (x3; A) is faulty we can reuse that move

to generate that path of. The generated path is vertex disjoint with all other paths that could be generated inside that substar

(assuming a path to (�; �; x3; A) is not generated). To prove that it is enough to observe that the first move is different and the

third move reaches a permutation in which A is fixed at positionI (�), which is not the case for any other path. Further, the

symbol A stays at that position throughout the path. 2

Lemma 21 If (�;A) 62
, then there exists a good path from u to I that requires less than 3 non-optimal moves in the presence

of maximum number of faults.

Proof : By the previous lemma, if (�;A) 62
, then at most one path (Path 1 of Lemma 16) is generated that requires 3

non-optimal moves. The only scenario, when only this path survives, is k1 = k2 = 2 and � = fugx2; ug�g and
 =

f(�; A); (x1; A)g (in all other cases more than one path will survive). But since (x3; A) 62
, we can replace the path with

3 non optimal moves with one with two non optimal moves using similar techniques as used for the alternate to Path 3 in the

previous lemma. 2

Lemma 22 If (A;�) 2
 and (x3; A) 62
, then there exists a good path from u to I that requires less than 3 non-optimal

moves in the presence of maximum number of faults.

Proof : Only one of the 3 paths (Lemma 16), requiring 3 non-optimal moves can be replaced with a path that requires just 2.

Also, a path is generated from each node in � to (�;A) (more precisely to (�; �;A) from which (�;A) is reached with one

move).

If k1 = k2 = 3 the result from lemma 13 applies since there are just 2 possible paths of length D(u) + 6.

If k1 = k2 = 2 there are at least 3 path generated and at most one of these is of length D(u) + 6. There is one other

permutation other than (�;A) in
. The only permutation that is the final node of 2 paths of length D(u) + 6 is (�; A). But

one of these paths is replaced by a path of length D(u) + 4, since (x3; A) is known to be faulty. In that case at least 2 of the 3

generated paths cannot be disconnected and therefore there exist one good path of lengthD(u) + 4. If k1 = 3; k2 = 2 the same

arguments apply.

If k1 = 2; k2 = 3 then there are 2 possible paths of length D(u) + 6. The worst case is when only these two paths

are not disconnected. That can happen when Number of paths(u; I) = 4 = k1 � k2 � k1 and two paths requiring 3

non-optimal moves are among the four generated paths. For that specific case it should be true that � = fug�; ugx3g and

 = f(x2; A)(�; A)(�;A)g. In that case there are four paths generated only, namely: ug� ! (x2; A),ugx3 ! (�; A), ug� !

(�;A),ugx3 ! (�;A). The first two are the two non-optimal paths. So there could be up to 2 faults outside the nodes in the set

� and
 and it is possible that the two remaining paths (of length D(u) + 4) are disconnected. It is enough to show one more

path, which is vertex disjoint with the two paths of length D(u) + 4. We show the path ug� ! (�; A). Originally this path is

not generated since positionu0 (�) = positionI (�) and there is no path to (�; A) inside that substar. However, for this specific

case consider the path: u0 = (�; �; x1; x2; x3; A)(:::)
Apply gx1�������!Step 1 (�; �)(x1; x2; x3; A) [Node XX]

Resolve all cycles���������������!except (�; �) (A)(�; �) [Node YY]

Exchange A and ����������������! (�; �; A) Apply g�������! (�; A) [Target Node]

Note that until the node Y Y is reached the path is the same as the path to (x3; A) (Procedure A1, Case 3, Sub case b). Since

(x3; A) 62
 (see Lemma 21) we can reuse that path. The target (�; A) is reached from Y Y in two moves thru the node (�; �; A),

16

which is not on any other path. Having generated that path now there are 5 paths, 3 of which are of length D(u) + 4 and it is

not possible to disconnect them with the 2 remaining faults. 2

Scenario 1(C): There is no invariant symbol in u, i.e. u == (�; x1; x2; x3; x3; x4; A)(:::).

In this case, if the move from node u to u0 belong to shortest routing, no path generated by the algorithms will need 3 non

optimal moves. If the move from node u to u0 is obtained by exchanging � with xi 2 �
0

1
, the move does not belong to shortest

routing, but the nodeu0 will be of the form: u0 = (:::�; �)(:::A)(:::). Path generation fromu0 ton�2 nodes insideS0 is described

in Procedure A3 of Algorithm A; None of them requires more than one non optimal move and consequently any surviving path

in presence of maximum number of faults between nodes u and I has a length � D(u) + 4.

Scenario 2: �n � 1 � D(u) � �n

In this scenario, the node (permutation) u has no invariant symbol. We assume D(u) = �n � 1 for brevity; the analysis and

the results are directly applicable when D(u) = �n. We need to show that there exists at least one good path between u and I

that requires at most one non-optimal move.

Remark 23 If D(u) = �n � 1 and A is not an invariant, then u has no invariant symbol, and the maximum cycle length in u

is 4.

Lemma 23 If j�
0

1j = 2, all paths generated by the proposed scheme require at most one non-optimal move, except one (which

may need more than one non optimal move).

Proof : Let u = (�;A)(:::). The maximum cycle length is 4 and the first move is always optimal (merging 2 cycles). Suppose

there is a cycle �` with 4 symbols, �` = (x1; x2; x3; x4). If a symbol (say x1) is exchanged with � as the first move, we get

to the node u gx1����!� = x4
(x1; x2; x3; �; �;A)(:::) [Node u0]. The paths, originating from u0 are described in Procedure A2. The

only path that requires more than one non-optimal move is the one, for which
 = x3. If there is no cycle of length 4, then no

path is generated with more than one non-optimal move. 2

Example6: Consider the nodeu = (BA)(CDEF)(GH)(IJ)(KL). Here �` = (CDEF) and hence u0 = (CDEFBA)(GH)(IJ)(K

and the path from u0 to the node (EA) (neighbor of I) makes two non-optimal moves (note x3 = E).

Lemma 24 If j�
0

1j = 3, then there exist k1 � k2 � k paths from u to I each of which requires at most one non-optimal move

(some of these paths need be generated by the alternate procedure described in the proof).

Proof : Let u = (�; �; A)(:::). In that case there is at most one cycle of length more than two, say�l = (x1; x2; x3) Ifu0 6= ug�,

then the first move is optimal. Suppose a symbol from �l is exchanged: u gx1����!� = x3
(x1; x2; �; �; �; A)(::) [Node u0]. There

are no paths that require more than 1 non-optimal move, originating from u0 (see Procedure A2).

Now suppose u0 = ug�: u gx1����!� = �
(�; �)(A)(:::) [Node u0]

We use a modified routing scheme for this u0. First consider a path from u0 to a node (�; �;
; A). Since
 6= �, it must be true

that
 belongs to some cycle of length 2, say �l = (
; �)

u0 = (A)(�; �)(
; �)(:::) Exchange A and ����������������!Step 1 (�;
;A)(�; �)(:::) [Node XX]

Apply g
 and g��������������!Step 2 (�; �;
; A)(:::)

Merge All Cycles��������������!and Resolve (�; �;
; A) [Target Node] 2

17

(GHA)(CB)(DEF)

(HGA)(CB)(DEF)

(GA)(CB)(DEF)

(HA)(CB)(DEF) (BCHA)(DEF)

(BCGA)(DEF)

(BCHA)

(BCGA)

(BHA)

(BGA) (GA)

(HA)

I

u u’

Path 1

Path 2

Figure 8: Example for Lemma 24

Example 7: Consider the node u = (CBA)(DEF)(GH) and u0 = (CB)(DEF)(GH). Here, � = C; � = � = B.

Figure 8 shows two paths from node u0 to I generated by the alternate procedure suggested in the above proof (note that
 = H

for Path 1 and
 = G for Path 2.

Lemma 25 Let �01 = (�; x1; x2; A) (since j�01j = 4, all other cycles of u are of length 2). Then, if ugx2 62 �, the generated

paths from u to I require at most 1 non-optimal move.

Proof : There are two possible first moves from node u: (1) � is exchanged with some symbol � from a doubleton cycle, say

(�; �). We reach the node u0 = (�; �; �; x1; x2; A)(::). Here � = � and all paths from u0 (generated by Procedure A2) need at

most one non-optimal move; (2) � is exchanged with A. We reach the node u0 = (A)(�; �; x1)(::). Here � = x2 and using the

alternative routing, described in the previous Lemma 24, the paths, generated from u0 do not require non-optimal moves. 2

Lemma 26 Let �01 = (�; x1; x2; A) (since j�01j = 4, all other cycles of u are of length 2). Then, if u0 = ugx2 2 �, then there

exist n-2 paths of optimal length from u0 to all target nodes. This is true if n > 8.

Proof : We have u0 = (�; �)(x2; A)(::) and in this case D(u0) � �n by Lemma 2 and Lemma 1. If n > 6, there exist

(n � 1) vertex disjoint shortest paths [use algorithm D of [RS93]] from u0 to I. Consider the substar (of dimension n � 1)

S0 with � fixed at positionI (�); next consider consider the substar (of dimension n00 = n � 2) S00, S00 � S0, with � fixed

at positionI (�). Obviously, u0 2 S00; there are n00 � 1 = n � 3 vertex disjoint paths from u0 to the node I 00 = (�; �)

within S00, assuming n > 8. For all symbols
i 62 f�; �; x2g there is a (distinct) path with a node (�; �)(
i; A) (just prior

to the node I 00). Applying g� from that node we reach the target (�; �;
i; A). If
i = x2, then use the following path: u0 =

(�; �)(x2; A)(::)
Exchange � and x2���������������! (�; �; x2; A)(::)

Merge all cycles�����������!and resolve (�; �; x2; A) [Target Node]. All nodes in this

path are in S0, but not in S00 since � is exchanged in the first move; hence it is vertex disjoint with all other paths. Finally

we show the path to (�; �;A). Among the n � 3 paths generated in S00, there is one that contains (�; �)(x2; A). Applying

consecutively gA and g� we reach the target. 2

Theorem 3 There exist a path from u to I that requires at most 1 non-optimal move for the case D(u) � �n� 1 and j�1j > 1.

Proof : For the most part the proof is complete by the preceding lemmas. In particular it was shown that if �01 = 3 or �01 = 4

we can generate k1� k2�min(k1; k2) paths that require at most one non-optimal move. Case (1): k1 = 1 or k2 = 1: Use the

results from Remark 6; Case (2): k1 = k2 = 2: Here, (n � 6) faults have been identified among the neighbors of u and I. If

more than 2 paths are generated between � and
, we are done since only one path may need more than one non-optimal move.

The worst case is that two paths are generated between � and
, and the path with two non-optimal moves survives. In that case

it should be true that ugx1 2 � and (x3; A) 2
, since the path requiring 2 non-optimal moves is between these nodes. Further,

18

it should be true that (x4; A) 2
 because there is no path generated between ugx3 and (x4; A). Finally ugx4 2 �, since there

is no path between ugx4 and (x3; A). Hence, � = fugx1 ; ugx4g and
 = f(x3; A); (x4; A)g. We add another path from ugx4

to (x3; A) in the same way we did in the previous case (k1 > 1; k2 = 1). That path is vertex disjoint with the path from ugx4 to

(x4; A) in the same substar (see Procedure A2, Case 3). Now there are total of 3 paths generated and at most one of them can be

disconnected and hence there exists a path that requires just one non-optimal move; Case (3): k1 > 2 or k2 > 2: The number

of surviving paths generated by the algorithms is larger than one and since there can be only one path requiring 2 non-optimal

moves, there always exists a path with at most one non-optimal move. 2

3.2.2 Part 2

In this part, for a given node u (i.e., given symbol �), the node (�;A) is faulty and for every other symbol
 (6= � or A) either

the node (
;A) is faulty or the node (�;
;A) is faulty or both are faulty. This is a relatively specific situation; at least (n� 1)

faults are already located. By the assumption of forbidden faulty sets, the node I has at least one non faulty neighbor, say I 0.

Our approach is to show the existence of (n � 3) vertex-disjoint paths from the source node u to I 0; thus, in the presence of at

most (2n� 5) faults, the nodes u and I will remain connected.

Let I 0 = (�;A) be the good neighbor of I. Then, the nodes (�; �;A) and (�;A) are faulty and for every other symbol
i
(6= � or A) either the node (
i; A) or the node (�;
i; A) is faulty; thus at least (n� 1) faulty nodes are identified. Consider the

(n�1) vertex disjoint paths from the node u to the node I 0 (each of length at most �n+1 [RS93]); each of these paths reach I 0

via a different neighbor of I 0; disregard the two paths that reach I 0 via the node i and the node (�; �;A); none of the rest of the

(n� 3) vertex disjoint paths can go through any of the already identified faulty nodes, since there is no cycle in star graphs of

length less than 6. Under the assumption of forbidden faulty sets, the maximum number of faults is 2n�5 (< (n�1)+(n�3))

and hence at least one path (of length at most �n + 1) survives between the node u and I 0 and thus there survives a path from

u to I of length at most �n + 2.

All these results and discussions in this subsection 3.2 lead to the following theorem.

Theorem 4 In presence of up to 2n�5 faults (subject to the restriction of the forbidden faulty sets) the distance of an arbitrary

node u in Sn with j�1j > 1 is � �n + 2.

Theorem 5 �R(Sn) = 2n� 4 and �R
n = �n + 2.

Proof : The proof readily follows from Theorems 1 and 4. 2

4 Conclusion

We have established the restricted vertex connectivity and the fault diameter of the star graphs under the condition of forbidden

faulty sets. It has been shown that the fault diameter of star graphs is increased only by 2 over its fault free diameter just like the

n-cubes under similar conditions. Thus, the results add to the attractiveness of the star graphs as compared to n-cubes. Finally,

it should be noted that the concept of forbidden faulty sets can be generalized where at most p (p � 1) neighbors of any node

can fail; details can be found in [LhNP94] where the generalized concept has been applied to the n-cubes. It’d be interesting

to investigate star graphs in this generalized setting. The derivation of the fualt-diameter may be generalized to account for any

number of faults in the star graph. Let Y be the set of faulty vertices in Sn such that jY j = �(n� 3)+ 1 and the distribution of

faults is such that the star remains connected. Consider two nodes u and I such that D(u) = �n� � (1 � � � �n � 2). Now

choose a fault distribution which leaves a unique path according to the shortest routing scheme between u and another node u0

such that D(u; u0) = � and D(u0) = �n (Imagine one of the paths going from u0 to I having visited u after � hops). What

we are doing here is force the only possible path from u to I through u0 and thus creating a fault-diamter of �n + �. It takes

�(n�3)+1 faults to force this path as mentioned and it can be stated that: The fault-diamter of Sn with�(n�3)+1 faulty nodes

19

can be at most �n+� forn > 6. We conjecture that this value is indeed the exact value of the fault-diamter. Note that the special

cases of � = 2 and � = 1 have been treated in this paper and previous work respectively. One implication of this conjecture is

that in a connected Sn, the diamter can at most be 2�n � 2, if the number of faults is kept below: (�n � 2)(n� 3) + 1.

References

[AK87] S. B. Akers and B. Krishnamurthy. The star graph: an attractive alternative to n-cube. In Proceedings of International
Conference on Parallel Processing (ICPP-87), pages 393–400, St. Charles, Illinois, August 1987.

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection networks. IEEE Trans-
actions on Computers, 38(4):555–566, April 1989.

[DT94] K. Day and A. Tripathi. A comparative study of topological properties of hypercubes and star graphs. IEEE Trans-
actions on Parallel and Distributed Systems, 5(1):31–38, January 1994.

[Esf89] A. H. Esfahanian. Generalized measures of fault tolerance with applications to n-cube networks. IEEE Transactions
on Computers, 38(11):1586–1591, November 1989.

[FA91] P. Fragopoulou and S. G. Akl. Parallel algorithm for computing Fourier transforms on the star graph. In Proceedings
of the International Conference on Parallel Processing, volume III, pages 100–106, St. Charles, Illinois, 1991.

[Har72] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.

[Lat93a] S. Latifi. Combinatorial analysis of fault diameter of the n-cube. IEEE Transactions on Computers, 42(1):27–33,
January 1993.

[Lat93b] S. Latifi. On fault diameter of star graphs. Information Processing Letters, 46:143–150, June 1993.

[LhNP94] S. Latifi, M. hedge, and M. Naraghi-Pour. Conditional connectivity measures for large multiprocessor systems. IEEE
Transactions on Computers, 43(2):218–222, February 1994.

[MS90] A. Menn and A. K. Somani. An efficient sorting algorithm for the star graph interconnection network. In Proceedings
of the International Conference on Parallel Processing, volume III, pages 1–8, St. Charles, Illinois, 1990.

[MS92] V. E. Mendia and D. Sarkar. Optimal broadcasting on the star graph. IEEE Transactions on Parallel and Distributed
Systems, 3(4):389–396, July 1992.

[NSK90] M. Nigam, S. Sahni, and B. Krishnamurthy. Embedding Hamiltonians and hypercubes in star interconnectiongraphs.
In Proceedings of the International Conference on Parallel Processing, pages 340–343, August 1990.

[QAM93] K. Qiu, S. G. Akl, and H. Meijer. On some properties and algorithms for the star and pancake interconnection net-
works. Journal of Parallel and Distributed Computing, 1993.

[QMA91] K. Qiu, H. Meijer, and S. G. Akl. Decomposing a star graph into disjoint cycles. Information Processing Letters,
39(3):125–129, 1991.

[QMA92] K. Qiu, H. Meijer, and S. G. Akl. On the cycle structure of star graphs. Technical Report 92-341, Department of
Computer Science, Queen’s University, Ontario, Canada, November 1992.

[RS93] Y. Rouskov and P. K. Srimani. Fault diameter of star graphs. InformationProcessing Letters, 48(5), December 1993.

[Sei85] C. L. Seitz. The cosmic cube. Communications ACM, 28(1):22–33, January 1985.

[SS88] Y. Saad and M. H. Shultz. Topological properties of hypercubes. IEEE Transactions on Computers, 37(7):867–872,
July 1988.

20

Procedure A1

Case 1: �0
1
= (�; �;A) [i.e., �0

1
does not have any other symbol]

Subcase a:
 6= �

(�; �;A)(:::) [Node u0]
Excahnge
 with �

����������������!
Step 1

(
; :::; �; �;A)(:::)

Excahnge
 with A
���������������!

Step 2
(A)(
; :::; �; �)(:::) [Node XX]

Merge & Resolve cycles other than (
; :::; �; �)
�������������������������!

Step 3
(A)(
; :::; �; �)

Exchange the symbol following
 with A
�������������������������!

Step 4
(:::; �; �;
; A)

Resolve if necessary
���������������!

Step 5
(�; �;
; A) [Target Node]

Subcase b:
 = �

(�; �;A)(:::) [Node u0]
Exchange � with A
���������������!

Step 1
(A)(�; �)(:::) [Node XX]

Exchange A with symbolXX (positionI (
))
�������������������������!

Step 2
(::;
; A)(�; �)(:::)

Execute cycle (::;
; A) until (
;A)
���������������������������!

Step 3
(
;A)(�; �)(:::)

Exchange
 with �
���������������!

Step 4
(�; �;
; A)(:::)

Merge other cycles
���������������!

and Resolve
(�; �;
; A) [Target Node]

Case 2: �01 = (�; �; �; A) [i.e., �01 contains exactly one other symbol]

Subcase a:
 = �

(�; �;
; A)(:::) [Node u0 = Node XX]

Merge cycles first by exchanging � with �
�����������������������������!

Resolve the last cycle
(�; �;
; A) [Target Node]

Subcase b:
 6= �

If
 = � then

(�; �; �; A)(:::) [Node u0]

Exchange � with �
���������������!

Step 1
(�; A)(�; �)(:::) [Node XX]

Exchange � with A
���������������!

Step 2
(A)(�; �)(:::)

Exchange A with symbolXX (positionI (
))
�������������������������!

Step 3
(::;
; A)(�; �)(:::)

Merge cycles except (�; �)
����������������!

Resolve the cycle
(
;A)(�; �)

Exchange

�����������!

with �
(�; �;
; A) [Target Node]

Else [
 6= �]

21

(�; �; �; A)(:::) [Node u0]

Exchange � with

���������������!

Step 1
(
; ::; �; �; �; A)(:::)

Exchange
 with �
���������������!

Step 2
(�; A)(
; ::; �; �)(:::) [Node XX]

Merge cycles and resolve
����������������!

Except the cycle of

(A)(
; ::; �; �)

Exchange A with symbolXX (positionI (
))
�������������������������! (::; �; �;
; A)

Resolve the cycle
�������������! (�; �;
; A) [Target Node]

Case 3: �01 = (�; �; �; !; ::; �; A) [i.e., �01 contains � and at least two other symbols in addition to �, � and A].

Subcase a:
 2 �01 and
 6= � and
 6= �.

(�; �; �; !; ::; �; A)(:::) [Node u0]

Exchange � with
 and then exchange
 with �
���������������������������������!

Step 1
(�; ::; �; �;
; ::; A)(:::) [Node XX]

Exchange � with symbolXX (positionI (
))
�����������������������������!

Step 2
(::; A)(:::)(�; ::; �; �;
)

Merge cycle & Resolve
������������������!

except the last cycle
(A)((�; ::; �; �;
)

Exchange A with �
���������������!

Step 4
(�; ::; �; �;
; A)

Resolve the cycle
�����������!

Step 5
(�; �;
; A) [Target Node]

Subcase b:
 = �.

(�; �; �; !; ::;
; A)(:::) [Node u0]

Exchange � with �
���������������!

Step 1
(�; ::;
; A)(:::)(�; �) [Node XX]

Merge cycles except (�; �)
����������������!

Step 2
(
;A)(�; �)

Exchange
 with �
���������������!

Step 3
(�; �;
; A) [Target Node]

Subcase c:
 = �.

(�; �;
; !; ::; �; A)(:::) [Node u0, also Node XX]

Exchange � with �
���������������!

Step 1
(�;A)(:::)(�; �;
; !; ::)

Exchange � with A
�������������!

Step 2
(A)(:::)(�; �;
; !; ::)

Excahnge A with !
���������������!

Step 3
(�; �;
; A; ::)(:::)

Merge cycles
���������!

& Resolve
(�; �;
; A) [Target Node]

Subcase d:
 62 �01.

(�; �; �; !; ::; �; A)(:::) [Node u0]

Exchange � with

���������������!

Step 1
(
; ::; �; �; �; !; ::; �;A)(:::)

Exchange
 with �
���������������!

Step 2
(�; ::; �; A)(:::)(
; ::; �; �) [Node XX]

Merge Cycles & Resolve
����������������!

Except the last
(A)(
; ::; �; �)

Exchange A with symbolXX (positionI (
))
���������������������������������!

Step 4
(::; �; �;
; A)

Resolve the cycle
�������������!

Step 5
(�; �;
; A) [Target Node]

22

Procedure A2

Case 1:
 follows � in �01 and there is at least one other symbol between
 and A.

(::; �; �;
; �; ::; �; A)(:::) [Node u0, also node XX]

Step � to the first position
�������������������������!

Step 1
(�; �;
; ::; �; A)(:::)

Follow the routing of Procedure A1, Case 3, Subcase c

Case 2:
 is the only symbol between � and A in �01.

(!; ::; �; �;
; A)(:::) [Node u0,also node XX]
Exchange ! with �

���������������!
Step 1

(�; �;
; A)(!; ::)(:::)

Exchange � with any symbol other than !
���������������������������������!

Merge cycles & Resolve
(�; �;
; A) [Target Node]

Case 3:
 is the first symbol in �01.

(
; ::; �; �; !; ::; A)(:::) [Node u0]

Exchange
 with !
���������������!

Step 1
(!; ::; A)(:::)(
; ::; �; �) [Node XX]

Merge cycles except the last & Resolve
����������������������!

Step 2
(A)(
; ::; �; �)

Exchange A with the symbol following

���������������������������!

Step 3

(::; �; �;
; A)
Resolve the cycle
�������������!

Step 4
(�; �;
; A) [Target Node]

Case 4:
 is a symbol between � and A in in �01.

(!; ::; �; �; �; ::;
; ::;A)(:::) [Nodeu0]

Exchange ! with
 and then exchange
 with �
���������������������������������!

Step 1
(�; ::; �; �;
; ::; A)(:::) [Node XX]

if A 6= symbolXX (positionI (
))

Put A at first position
����������������������������������!

and then Exchange it with symbolXX (positionI (
))
(:::�; �;
; A)(:::)

Merge all cycles and Resolve
���������������! (�; �;
; A) [Target Node]

Else XX = (�; ::; �; �;
; A)(:::)

Merge All Cycles
���������������!

And Resolve
(�; �;
; A) [Target Node]

Case 5:
 is any other symbol.

Bring
 to the first position and then follow the routing of Case 3.

23

Procedure A3

Let �0l = (::; �; �; �) and �0
1
= (!; ::; A)

Case 1:
 = !

(
; ::; A)(::; �; �; �)(:::) [node u0]
Exchange
 with �

����������������!
Step 1

(�; ::; �; �;
; ::; A)(::) [Node XX]

If positionXX (A) = positionI (
)

Merge and Resolve
����������������! (�; �;
; A) [Target Node]

Else

Exchange � with symbolXX (positionI (
))
�������������������������������!

Step 2
(�; ::; �; �;
)(::; A)(::)

Merge & Resolve all cycles but the the first
�������������������������������!

Step 3
(A)(�; ::; �; �;
)

Exchange A with � and Resolve
������������������������!

Step 4
(�; �;
; A) [Target Node]

Case 2:
 = �

(!; ::; A)(::; �; �;
) [Node u0 also Node XX]

Put � at first position
����������������!

Step 1
(�; �;
; ::; A) Node X

If A 6= symbolX (positionI (
)) then
Exchange A with �

���������������������������!
and then A with symbolX (positionI (
))

;

(:::�; �;
; A)(:::)
Merge and Resolve

����������������! (�; �;
; A) [Target Node]

Case 3:
 62 �0l

[Node u0]
Exchange
 and !

����������������!
Step 1

(
; ::; A)(::; �; �; �)

Route as descibed in Case 1

Case 4:
 2 �0l and
 6= �

(!; ::; A)(::;
; ::; �; �; �::)(:::) [Node u’]

Exchange
 and !
����������������!

Step 1
(
; ::; �; �; �; ::; A)

Exchange
 and �
�������������!

Step 2
(
; ::; �; �)(�; ::; A)(:::) [Node XX]

Merge & Resolve all cycles but the the first
����������������������������������!

Step 3
(A)(
; ::; �; �) [Node X]

24

Exchange A with symbolX (positionI (
))
�������������������������������!

Step 4
(:::; �; �;
; A)

Resolve
������!

Step 5
(�; �;
; A) [Target Node]

25

