
Computer Science
Technical Report

New Methods for plan selection and
refinement in a partial-order planner

Raghavan Srinivasan Adele E. Howe

July 25, 1995

Technical Report CS-95-103

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

New Methods for plan selection and re�nement in a

partial-order planner
�

Raghavan Srinivasan Adele E. Howe

Computer Science Department

601 S. Howes Street

Colorado State University

Fort Collins, CO 80523

Net: fsrinivas,howeg@cs.colostate.edu

Telephone: (303) 491-7589, Fax: (303) 491-2466

Abstract

Partial order planners are very e�ective in solving simple problems. However, the

search space in planning grows quickly with the number of subgoals and initial con-

ditions, as well as less countable factors such as operator ordering and subgoal inter-

actions. There are certain inherent features of these planners like aw selection and

threat resolution that causes this search space explosion. For partial-order planners

to solve more than simple problems, the expansion of the search space will need to be

controlled. This paper presents four new approaches to controlling search space expan-

sion by exploiting commonalities in emerging plans and by e�ective threat resolution.

These approaches are described in terms of their algorithms, their e�ect on the com-

pleteness and correctness of the underlying planner and their expected performance.

The four new and two existing approaches are compared on several metrics of search

space and planning overhead.

�
This research was supported by a National Science Foundation Research Initiation Award #RIA IRI-

9308573 and ARPA-AFOSR contract F30602-93-C-0100. The US Government is authorized to reproduce

and distribute reprints for governmental purposes notwithstanding any copyright notation hereof

0

1 Improving Search E�ciency in Planners

Partial order planning is becoming a commonmethod of planning. Unfortunately, but hardly

unexpectedly, the search space in partial order planning expands quickly as the problem size

increases. Unfortunately, but less expectedly, search space expansion is dependent on a

variety of factors, some of which are di�cult to predict. A problem that was solved in short

order may be made impossible to solve in reasonable time simply by adding an innocuous

looking new goal, by changing the ordering of goals or even by adding a few more objects to

the problem initial state.

The goal of this project was to determine why it could be so hard to design e�cient

problem descriptions for UCPOP, a partial order planner. We found that what seemed like

trivial problems could not be solved in reasonable time. Indeed, minor variations on the
same problem led to UCPOP's being unable to solve the new problem. Using a variety of
analysis methods, (described in section 5.1) we determined that the fault lay in UCPOP's
selection of aws to repair and additions to the plan to repair the aws. As a consequence,
we focused on the search strategies employed for these phases of plan generation.

We used UCPOP because it is an easily available, domain independent partial order
planner [6]. UCPOP plans by iteratively selecting and repairing aws in the current plan.
A aw is repaired by adding steps and constraints to the plan. The search control strategy
decides which partial plan to select for expansion. In general, UCPOP gives good results
on small domains and problems in which subgoals are independent. For problems with

interrelated subgoals or those requiring arithmetic, UCPOP often does not �nd a solution
even with very large search limits.

The Least Cost Flaw Repair (LCFR) strategy [4] improved search control in UCPOP by
selecting the aw with the minimum repair cost. The repair cost of a aw is de�ned as the
number of plans generated to repair it. Open conditions and threats are treated alike. The

main drawback of LCFR is the overhead incurred for aw selection. The total time spent
in planning with LCFR can be more than that for UCPOP, even though UCPOP examines
far more plans than LCFR. However, LCFR reduces the search space more than other aw
selection strategies [7].

A variant on LCFR, QLCFR [4], assumes the cost of un-repaired aws to be constant

over time; it caches the results of estimating aw repair costs and uses the cached cost as

the estimate in subsequent aw selection. QLCFR reduced the overhead of LCFR, but at a

cost of solving fewer problems.
More graceful degradation of performance can be achieved by identifying aspects of the

planner most susceptible to the problem changes and developing methods to ameliorate the
search space expansion. This paper presents four new approaches for improving e�ciency

in a partial order planner by exploiting commonalities between proposed plans during two

phases of planning: aw selection and plan re�nement. These approaches are described in
terms of their algorithms, their e�ect on the completeness and correctness of the underlying

planner and their expected performance when compared to two existing approaches. In

addition for each modi�ed approach its correctness and completeness are formally proven.

1

Finally, the new and existing approaches are compared on several metrics of search space

and planning overhead.

2 Approach 1: Similar Flaws and LCFR (Templates)

LCFR is expensive because it estimates separately the cost of repair for every aw in every

potential extension to the current plan. However, in most problems, aws can be similar;

they involve the same type of condition and are amenable to repair by the same �x. For

example, aws in the Blocks World domain are commonly of the form (on ?x ?y) or

(clear ?x). The resolution of any aw of these forms is likely to be the same (e.g., add

an action to move the indicated block); hence, we can expect the cost of aw repair to be

roughly the same for aws with similar forms.
Consequently, we exploit the similarity in aws to reduce the number of repair cost

estimates to be made. In particular, we assume that at a particular stage of plan re�nement,
the repair cost is the same for all similar aws. Other than this approximation, repair cost
is computed similar to LCFR scheme.

QLCFR also approximated the repair cost of aws by estimating once and re-using the
estimate. The di�erence between our approach and QLCFR is that QLCFR cached the
estimate and re-used it in subsequent plan re�nements rather than applying it to similar aws
at the same point in plan re�nement. Our approach allows recently acquired information to
be incorporated in estimating cost.

The �rst step in UCPOP towards deciding how to change a developing plan is to identify
and group together identical open conditions in the plan. Two open conditions are said to
be similar if they have the same predicate. For example, (pred1 ?x) and (pred1 ?y) are
similar. A set of similar open conditions with predicate p are said to form a template p. All
of the open conditions in a plan can be grouped into a set of templates.

We assume that when open conditions are similar, the order in which they are selected
for repair does not matter. Thus, the repair cost of a template is estimated by �nding the

repair cost of the �rst member of the template.

This approach approximates only the cost of open conditions. Threats are not easily
grouped because they do not involve variable bindings. Thus, similar threats often do not
have similar resolutions and are often resolved as a side e�ect of repairing some other aws.

Consequently, a uniform repair cost would not be a reasonable approximation of the actual

costs.
Open conditions are considered only if a plan does not have any threats. If a plan has

threats, the one with the minimum repair cost is selected; otherwise, the �rst member of the
template with the minimum repair cost is selected.

2.1 Expected Performance

We expected that the average number of plans examined before �nding a solution in this

scheme should be comparable to that of LCFR, while the overhead should be much less

2

than that of LCFR. Overhead is de�ned as the number of extra plans created in service of

estimating aw cost. Since only a subset of the open conditions are evaluated in the tem-

plating approach, on the average, its overhead should be less than that of LCFR. However,

in the worst case, the templating approach can incur more overhead than LCFR when the

estimate for one member of the template does not generalize to the rest; potentially causing

additional backtracking. Empirical performance is reported in Section 6.

2.2 Correctness and Completeness

Because only aw selection is modi�ed, the correctness and completeness of UCPOP is

maintained by the templating approach.

3 Approach 2: Templates with Repair Reuse

With Templates, open conditions are grouped to estimate repair cost. We extend this idea
to the next step: selecting (or reusing) similar actions to add to repair similar aws. Con-

sequently, given that an action is added to the plan to repair a aw of a particular type,
another instance of the same action can be added, at the same time, to repair another aw
of the same type. This sense of reuse is much more limited and local than what is typically
meant by plan reuse (e.g., [5]); it is constrained to reusing the occasional step within a plan
being developed.

Consider a plan P with a set of aws F . F can be grouped into a set of templates
T = fT1; T2; : : : Tmg. Each Ti consists of a set of similar aws. Let Tmin (1 � min � m) be
the template with the minimum repair cost. The �rst aw in the Tmin set, fmin;1, is selected
for repair, and a set of new plans P 0 are generated. Let P 0

s be a subset of P 0 such that each
plan in P 0

s includes a new plan step for repairing fmin;1. For each plan in P 0

s, a set of new

plans are generated in which some of the aws of type Tmin are repaired by adding another
instance of an action added for fmin;1.

The plan re�nement returns two values, the set of plans in which all aws of type Tmin

are repaired by adding the same type of action, and the set of plans in which some but not
all aws are repaired this way. We require the second value to facilitate backtracking. As
with the basic templating scheme, not all aws of a similar type require the same cost or

action for repair (e.g., some might be satis�ed by initial conditions). Consequently, the �rst

set of plans are added to the search queue and the second set is stored in the event of later
backtracking.

3.1 Expected Performance

Two opposing factors were expected to a�ect the performance as measured by plans examined

and overhead. If reuse is successful most of the time, then both plans examined and overhead
will be less; however, if new threats are introduced due to reuse, repairing them will cost

more in terms of plans examined as well as overhead. The worst case will occur when an early

3

attempt to reuse is inappropriate, leading to considerable backtracking. As a consequence,

we expected the success of this approach to be highly problem/domain dependent.

3.2 Correctness and Completeness

Any newly added plan step may introduce threats; for each of the aws in template Tmin,

a set of new threats could be introduced. However, all of these introduced threats will be

detected. Thus, the �nal solution will still be correct. In addition, the backtracking facility

insures that if a solution exists, it will eventually be found. Consequently, completeness and

correctness are maintained.

4 Approach 3: Probabilistic Reuse

Templating and Reuse can be viewed as approaches in which plan repair reuse is applied
with probability 0 and 1 respectively. Because we suspect that plan repair reuse is not always
the best strategy (and cannot currently recognize when it is and is not the best strategy),

we can de�ne an approach in which reuse is applied with some probability p, 0 < p < 1.
Intuitively, some p exists for which the performance will be better than that of Templating
or Reuse. This value can be determined empirically. Obviously, the value of p depends both
on the problem and domain. We hypothesize that p should be small non-zero value, and so
determined it empirically. For all tests, the same value of p, 0:2, was used.

5 Approach 4: Adding a New Construct to the Plan

Language (Bang-UCPOP)

The previous approaches all altered the control of plan expansion within the planner only.
One alternative is to make the plan language more expressive of constraints known by the
user. A simple constraint is that multiple inclusions of the same operator within a single plan

should be instantiated to di�erent objects within the environment. This hard constraint is

a simple form of the resource reasoning included in more sophisticated planning systems [8].

We developed this approach to address problems discovered when analyzing the behavior

of UCPOP in Truckworld [2] (a simulator of trucks moving cargo between di�erent des-
tinations). UCPOP fails (i.e., could not �nd a plan even given a large search space) on

apparently simple conjunctive subgoal problems in Truckworld. A typical example is \Bring
4 fuel drums from outside the truck and �ll the fuel tank." Because the size of the search

space increased dramatically with the order and number of identical subgoals, we hypothe-

sized that the number of identical fuel drums needed and available might lead the planner
to search unnecessarily for the right binding of fuel drums in the right order.

4

(defclip gf-openc (f plan)

(

:output-file "gf-openc.clasp"

:trigger-event (UCPOP::handle-open :before)

:components (current-plan flaws)

)

(values (gf-refines plan) f))

Figure 1: clip for collecting plans created for repairing an open-condition

5.1 Experiments on Sub-goal Interactions

We studied the behavior of UCPOP in Truckworld by collecting execution traces of UCPOP
working on Truckworld problems with similar conjunctive sub-goals. Using CLIP [1] (an
instrumentation tool for de�ning and running data collection routines in a simulated en-
vironment), we collected data on what plans were generated, how certain open conditions

were repaired, what threats were considered, and what variable bindings were used. From
the initial experiments we made the following observations.

1. Number of plans examined depends on the size of problem inits. For instance, if the

goal is to bring 3 identical fuel drums, and the world has several such drums. Then
the number of plans examined increases greatly with increase in number of available
fuel drums. For the same number of sub-goals and ordering the search space increased
linearly with increase in number of fuel drums.

2. Reordering sub-goals a�ects the number of plans examined. For certain orderings,
plans examined is minimum and for another arrangement it is maximum.

3. Increasing numbers of identical subgoals, lead to a non-linear increase in plans ex-
amined before reaching a solution Consider problems with goals to bring in 2, 3 and

4 fuel drums respectively. The increase in number of plans examined from 3 to 4 is

much more than that from 2 to 3. The di�erence in increase is on the order of tens of

thousands.

5.1.1 Execution Traces

The next step was to collect execution traces of UCPOP to analyze what plans are generated
by UCPOP, how it repairs certain open conditions, what are the threats considered, and what

are the variable bindings used. We wrote several clips to collect traces. Some of the clips we

used are shown in �gure 1 and �gure 2.

We analyzed the data with a variety of methods, from simple eyeballing through depen-

dency detection [3], and determined that, in e�ect, UCPOP was searching in circles: trying

5

(defclip gf-unsafe (f plan)

(

:output-file "gf-unsafe.clasp"

:trigger-event (UCPOP::handle-unsafe :before)

:components (current-plan flaws)

)

(values (gf-refines plan) f))

Figure 2: clip for collecting new plans created by repairing an unsafe condition

(1 NIL A 0 ((GETFUELDRUM-FROM-OUTSIDE 5 16 ARM-2 5 0 50 40)

(GETFUELDRUM-FROM-OUTSIDE 5 ?POS3 ARM-1 ?BIG3 1 ?CPT3 ?NCPT3)

(ARM-MOVE-OUTSIDE ARM-2))

#<UNSAFE link#<LINK 0 (AMOUNT-HELD FUEL-DRUM ?POS1 ?STORED-AMT1) 1> step3>)

(1 NIL A 0 ((GETFUELDRUM-FROM-OUTSIDE 5 ?POS3 ARM-1 ?BIG3 1 ?CPT3 ?NCPT3)

(GETFUELDRUM-FROM-OUTSIDE 5 16 ARM-2 5 0 50 40)

(ARM-MOVE-OUTSIDE ARM-2))

#<OPEN (AMOUNT-HELD FUEL-DRUM ?POS3 ?STORED-AMT3) step3>

Figure 3: trying to repair the open condition causes a bogus threat

the same variable bindings over and over again. For example, consider the problem of picking
up two identical fuel drums from a world which has �ve such drums. To repair the �rst open
condition (i.e., picking up the �rst drum), a set of �ve possible plans are generated. For the
second drum, a similar set of plans is generated, with one of them trying to reuse the �rst
step to get the �rst drum. This results in a threat, which UCPOP tries to resolve by binding
a new value for the �rst aw. It continues to try pairs of identical bindings before it �nds two

unique binding values that can repair both the open conditions. Most of the search time is

wasted in trying the same values for variables that require di�erent values. A fragment trace
that depicts the above case is shown in �gure 3. When UCPOP adds the second instance

of \GETFUELDRUM-FROM-OUTSIDE" to the plan to repair an open condition it sees
that causal link it added for the previous step i.e (AMOUNT-HELD FUEL-DRUM ?POS1

?STORED-AMT1) is threatened. This is indicated by marking \ UNSAFE link".

Thus, the plan language needs a construct to indicate to UCPOP that it should use
di�erent variable bindings for certain variables, so that it can converge on the solution much

faster.

6

(define (operator pick-drum)

:parameters (?amt ?!pos ?arm)

:precondition (and (outside ?arm)

(drum-at ?!pos ?amt))

:effect (and (not (drum-at ?!pos ?amt))

(amount-in-arm ?arm ?amt)))

Figure 4: UCPOP operator for Truck World that illustrates the use of a Bang variable,

?!pos

5.2 Scheme Description

For this scheme, we introduce a new language construct that creates a \special variable".
Bindings of such a variable are treated di�erently; in particular, the planner will ensure that

if a binding value is needed for the special variable it will di�er from that used in all previous
instances of this operator in the current plan. Moreover, if more than one of such bindings
are possible, only one plan using exactly one value is created; plans for other possible unique
values are saved in the event of backtracking.

A special variable is denoted by the pre�x `?!' (hence, the name Bang-UCPOP for this

approach). Bang variables are treated di�erently only during binding. Currently, only one
such variable per plan operator is allowed, in order to minimize the complexity of resolving
which variable binding resulted in a threat. Another restriction is that two operators that
clobber each other should not use the same type (as de�ned by the plan domain) of special
variable.

Special variables have a curious but useful side e�ect on repairing threats. They cause
the planner to ignore bogus threats. For example, given two instances Osi;1 and Osi;2 of
the same operator Osi and let ps be the special variable parameter in its operator, then the
new scheme ensures that unique values will be used for ps in Osi;1 and Osi;2. Under the

normal planning process, an unsafe link may be introduced due to Osi;2, but now there is no

threat. Hence, the planner marks this threat as bogus and removes it. This saves time that

otherwise would be wasted on resolving such threats.

Figure 4 shows an example of an operator which uses a bang variable. The operator
comes from the Truckworld domain and is one of the operators needed to refuel a truck. The

bang variable, ?!pos, indicates the position at which the fuel drum is stored. Multiple fuel
drums are typically required to refuel a truck; thus, a plan may include multiple instances of

this operator, each referring to a di�erent fuel drum in a di�erent location. A Bang variable
is ideal for this situation because we do not wish to attempt to pick up the same fuel drum

repeatedly during refueling; we can only gainfully empty it once. A general operator with

special variables is shown in �gure 5, where ps is the special variable, PCs;i is the ith
precondition using the special variable, es;i is the i th e�ect using the special variable.

Unlike the other approaches, this approach required considerable change to the algorithm

7

Operator: Os

Parameters: p1; p2; :::ps; :::

Preconditions: PC1; PC2; :::PCs;i; :::

E�ect: e1; e2; :::; es;i; :::

Figure 5: General Operator using Bang variable, ps

for linking in new actions to plans. To expedite backtracking, the algorithm caches alter-

native unique variable bindings and search control maintains two search queues. When a

planning failure occurs, it moves a plan from the most recent backup list into the primary

search queue and continues. The modi�ed plan linking algorithm is shown in Figure 6. The
parameters to the function represent the open condition to be repaired, the step to be added

to repair it, and the current plan. In case no special variable is involved the new plans are
added to plan-list. Otherwise, only one plan is added to plan-list and the rest to more-plan.

Plan language constructs for restricting search space are available in some hierarchical
planners. For example, O-Plan2 [8] uses condition types, which allow the domain writer to
restrict selection of actions as well as to bind variables. The `only use for query' condition

type of O-Plan2 resembles the Bang scheme, but di�ers in the situations for which it is
the best approach. The Bang scheme is most e�ective when the number of binding values
is large and no one is preferred. Only use for query cannot be applied in speci�c actions
and does not look for previous bindings used in other instances of the current action. An
over-indulging O-Plan2 condition type can result in the planner throwing away valid plans,
whereas Bang stores all plans for later backtracking. The Bang scheme can be modi�ed to

selectively recognize bang variables at the problem level. In O-Plan2, the condition type
information is built into the domain speci�cation.

5.3 Expected Performance

Best case performance, in terms of the number of plans examined, occurs when problems
have identical conjunctive subgoals and when the �rst variable bindings do not need to be
retracted later. The worst case performance occurs when the unique values selected early

do not satisfy all the subgoals, thus requiring backtracking. This approach is expected to

do much better than other approaches for domains with many possible bindings to the same

variables, as in the motivating Truckworld example. In other cases, this approach may incur

additional backtracking and thus additional computation because the new constraint does
not help.

The major drawback of this approach is that it requires user intervention. The user must
know when to use bang variables in a domain description (e.g., when it is expected that

problems will contain multiple conjunctive sub-goals involving the same types of objects).

8

PLAN-LINKING(open-cond, step, current)

plan-list := NULL

more-plans := NULL
; let V be the variable in open-cond to be bound.

While binding-exists(V)
if (special-variable(V))

; �nd a binding not used in other instances

B := unique-binding(V)
; if a binding can be found, generate plans

if (B != NULL)
current := make-plan(B,open-cond,current)

else current := NULL
; add to plans for backtracking

if (plan-list !=NULL)

more-plans := add(current,more-plans)
current := NULL

else ; �nd a binding with normal methods

B := binding(V)
current := make-plan(B,open-cond,current)

if (current != NULL)

plan-list := add(current,plan-list)

; return current plan and list for backtracking

return plan-list, more-plans

Figure 6: Algorithm for linking in new plan actions under the Bang-UCPOP approach

9

5.4 Correctness and Completeness of Approach

To make sure that we have not violated the correctness and completeness of the underlying

planner, we need to prove that when special variable operators are used, every answer is a

correct solution to the planning problem and that if a solution exists it will eventually be

found.

The proof consists of three parts:

1. Even though the algorithm is limited to only one binding value for a special variable,

backtracking is still permitted and thus completeness is preserved.

2. When special variables are bound to values from goal terms, then correctness is pre-

served.

3. When special variables are bound to particular unique values, marking threats as bogus
when they are due to di�erent instances of the same special variable operator does not
a�ect correctness.

The correctness and completeness of UCPOP has already been proven [6], so we will show
that all these cases are reducible to UCPOP. If UCPOP cannot �nd a solution (e.g., if enough
unique values do not exist), then neither can our modi�cation.

5.4.1 Proof

To give a complete proof we need certain de�nitions.

De�nition 1: Special Variable A special variable directs the UCPOP to use exactly
one unique value and return other plans using other unique values as a backup list. A value
is unique if it has not been used in previous instances of the same operator.

De�nition 2: Special Variable Operator A special variable operator is one that uses

a special variable as a parameter. Only one special variable per operator is allowed.

De�nition 3: Same Special Variables Two special variables are same, or same type, if

they bind to same type of constant values like block, ferry, vehicle, position.

De�nition 4: Independence on Special Variable Two special variable operators using
same type of special variable are \independent on the special variable" if one does not clobber

the e�ect of other. This is a required criterion for Bang scheme.

10

Lemma 1: Using special variables does not a�ect backtracking.

Proof Let Fs be the search control function. Let Fd be the function that re�nes the current

plan (i.e, the adjacent states generator).

Let I be the current state, selected for expansion.

Fs maintains two search queues, Q1 and Q2.

Function Fd returns two values C1 and C2. If Plan-linking has to bind values for a special

variable Vs, in an open condition, Fd returns in C1 one plan using a unique value for Vs and

in C2 returns rest of plans using other unique binding values possible for Vs.

Fs adds C1 to Q1 and C2 to Q2. Fs removes a plan from Q1, generates children to it using
Fd and adds it to Q1 and Q2. If at a stage C1 and Q1 are NULL, Fs takes a plan from Q2 (if
Q2 also is not empty), adds it to Q1 and proceeds. We will show this enables backtracking
when required.

Let I be the state selected from Q1 by Fs. If Fd uses one of O1; :::Om for generating
next plans, it will return all possible plans in C1, and C2 will be null. In which case Q1

will have all possible plans possible using O1; :::Om, and hence when a current plan does
not reach goal state, backtracking to other plans using other operators or other bindings for
O1; :::Om is provided. In short, this is same as unmodi�ed UCPOP. If Fd uses Os1; :::Osn for

generating next states, only one plan will be added to Q1 each time. However the rest will
be in Q2. If a plan using one particular binding for one of Osj fails, and no more plans exist
in Q1, it indicates other plans in Q2 should be tried. That is a di�erent binding value for
Osj should be used. This is done by moving a `latest' generated state (plan) from Q2 to Q1

and proceeding. This essentially is back tracking.

Corollary 1.1: From the above proof we see that `Completeness of UCPOP ' is maintained.
That is if a solution exists UCPOP will �nd it.

Lemma 2: When special variables are bound to values from goal terms, the special variable
operator is used just like other operators.

Proof The algorithm Plan-Linking generates binding values for variables in a open con-

dition. If certain values are bound in goal term itself, it need not bind values for these
variables. Hence no `exception' is identi�ed and it is reduced to un-modi�ed Plan-Linking.

By the same reasoning, Handle-Unsafe procedure will not see the specialty since the

variable is not bound by Plan-Linking. All threats recognized will be handled in original

way and none is marked bogus. Hence this reduces to un-modi�ed Handle-Unsafe. Since

these are the two procedures which are modi�ed, from above discussion we see that modi�ed

UCPOP will behave the same as the unmodi�ed one for this case.

11

Corollary 2.1: The correctness of UCPOP is maintained when special variables are bound

to values from goal terms.

Proof: From lemma 2 this case is reducible to UCPOP not using special variable operators

at all, the correctness of which is already proved.

Lemma 3: When Plan-Linking function binds unique values for special variable in an

operator Osj then we can safely mark the threat posed by one instance of Osj on another

instance as bogus in Handle-Unsafe function and still maintain the correctness.

Proof: We will have to prove the correctness in two cases

� when no backtracking to saved plans occurs.

� when backtracking occurs.

Handle-Unsafe identi�es one instance of an Osj the special variable operator that is a threat
to another instance of it. The threats may involve the bang variable that is bound by
Plan-Linking. A threat on the same bang variable in two di�erent special variable operators

won't occur since we assumed the operators are pairwise independent. By induction on the
number of instances of a special variable operator we can prove that Plan-Linking will ensure
all instances of any Os will use a unique binding value for the special variable and hence the
threats can be safely marked as bogus.

Basis For the �rst instance added it is trivially true.

Induction Hypothesis Let us assume that unique values are bound for �rst n instances
of Os.

Induction Step For n+1 th instance Plan-Linking will use a value not used in any of n
instances and hence the plan with n+1 instances will also have a unique value. If no unique

value exists for n+1 th instance it will not be added at all . Again all the instances will have

unique binding values. Note that this may be a plan failure but it will be reported even by

UCPOP. If another binding value is found we have the following sub cases.

Case i:
If Plan-Linking is able to �nd a unique value for a special variable for each instance of a Osj,
then each instance of Osj will be accommodated in the plan. In which case no instance will

be a threat to other. By the induction hypothesis, n values are unique and n+1st value is

guaranteed to be di�erent from all n values. Hence we can safely mark the threat by Or
si on

all O1

si; O
2

si; ::::O
l
si as bogus.

On the other hand if Plan-Linking is not able to �nd a unique binding value it returns nil,

in which case plan failure will be detected by Fs, and no need to go through Handle-Unsafe.

12

Case ii:

Plan-Linking generates a second list (backup list) of children. All the plans in this list also

have a unique value for the special variable. If backtracking to saved unique value plans

occurs then also the proof holds.

Now if backtracking by using a plan from Q2 is necessitated, the plan moved from Q2 to

Q1 will also have the uniqueness property due to Plan-Linking. Let us assume we backtracked

to a plan Ib with following instances for an Osj ,

O1

sj ; O
2

sj ; :::O
l
sj < 2 >. The < 2 > indicates using the second possible binding value in

Osj . Let Vsj be the special variable in a Osj . The current plan with O1

sj ; O
2

sj; :::; O
l
sj; :::O

k
sj

has no children and also the search queue is empty. This is why Ib is selected.

Ol
sj < 2 > in Ib indicates for the l th instance of Osj in Ib another possible unique value

for the special variable is used. So in Ib there is no instance of Osj that uses the �rst possible
value for Vsj . This value is now available for Plan-Linking for the generation of next instance
of Osj . Note that in plan I, l < 2 > could have been used in l+1 th instance of Osj . But
since we backtracked, l+1 th instance is generated anew and Plan-Linking maintains its
uniqueness. Hence we can still mark the threat as Bogus. In all the cases the new algorithm
is reducible to the old one. Hence the correctness and completeness of the UCPOP algorithm

is maintained.

6 Comparison of Approaches

In this paper, we have de�ned four extensions to two current approaches (vanilla UCPOP
and LCFR in UCPOP) for controlling plan search in a partial order planner. We expected
the new approaches to perform signi�cantly better than LCFR or UCPOP in some do-
mains/problems. The goal of the comparison was to determine which of the six approaches
works best in some common planning problems.

Three performance metrics were collected: number of plans examined before reaching
a solution, overhead incurred in terms of the number of plans created for aw selection,

and CPU time. On average, we expected that the four new approaches, templating, reuse,

probabilistic reuse and Bang-UCPOP, would compare favorably to LCFR on plans examined
but would have less overhead and so require less CPU time.

6.1 Experiment Design

The six approaches were tested on 40 problems in ten domains. The same set of problems
without any modi�cation is used for all versions. Most of the problems are from the example

domains provided with UCPOP and tested in Joslin and Pollack's research with LCFR. Four

of the problems are from the Truckworld domain [2], all of which require picking up fuel
drums; the four di�er in the number of subgoals and arm positions. In all the domains, some

of the operators were modi�ed to include a special variable parameter for Bang-UCPOP.

Because most of the domains are small in size, only one special variable operator was used.

13

Domains Total UCPOP LCFR App-1 App-2 Prob Reuse Bang

Blocks World 4 4 4 4 3 4 4

Truck World 4 3 4 4 4 4 4

Robot Domain 2 2 2 2 2 2 2
Monkey and Banana 3 2 2 2 2 2 2

Briefcase World 4 4 4 4 4 4 4

Russells Tire World 6 4 5 5 6 6 5
Fridge Domain 2 1 2 1 0 0 1

Strips World 2 0 1 0 1 1 0

O�ce Domain 7 7 7 7 7 7 7
Other Domains 6 3 6 6 6 6 6

TOTAL 40 30 37 35 35 36 35

Table 1: Number of problems solved by the search control strategies.

All trials were run on the same SPARC IPX workstation in the same version of Common
Lisp.

For all cases, the search limit was restricted to 10000 plans examined. A failure was
reported only when no possible plan could be found within that limit.

6.2 Results

The results are reported in Tables 1 thru 4. Table 1 presents the number of problems within
each domain that were solved by each approach. The domains were: Blocks World (A), Truck
World (B), Robot Domain (C), Monkey and Banana (D), Briefcase World (E), Russell's Tire
World (F), Fridge Domain (G), Strips World (H), O�ce Domain (I), and Others (J). Table 2
lists the minimum, average and maximum number of plans examined by each approach in

problems within each test domain; this corresponds to how much of the space was explored

during plan re�nement. Table 3 lists the average number of plans created for aw selection
(which included those created to estimate cost) for each approach in each problem domain;
UCPOP and Bang are not included because they do not create any plans for aw selection.

Finally, as a crude estimate of both factors incorporated in the previous two measures and

those not, average CPU time is provided in Table 4.
Table 1 shows that LCFR solves the largest number of problems. However, the four

new approaches solve all but one or two of those solved by LCFR. All approaches solve
considerably more problems than UCPOP.

In terms of number of plans examined, we expected the performance of the four new

approaches to be comparable on average to LCFR and better than UCPOP. In addition
the two reuse and the bang approaches are problem dependent, the worst case performance

for these three approaches are expected to be worse than LCFR and possibly even UCPOP
in particular problems. The data (in Table 2) shows that the average case performance is

comparable in about half the domains, with the \best" average (numbers in boldface) for

14

Domains UCPOP LCFR App-1 App-2 Prob Bang

Blocks World 24 16 21 32 21 31
854 69 1784 42 1346 2880

2969 160 6958 47 5169 5397
Truck World 93 43 148 68 148 42

1013 700 784 598 589 549

2488 2333 2520 1733 1733 1938
Robot Domain 21 22 26 26 26 20

4088 310 1096 201 68 321
8155 597 2165 375 110 612

Monkey Domain 26 27 40 40 40 67
274 197 270 270 270 180
521 366 500 500 500 293

Briefcase World 10 10 10 61 10 20

98 104 533 296 386 1919
248 196 1820 846 1229 7105

Russells Tire World 10 10 10 10 10 10

17 23 76 506 506 1050
23 44 310 2701 2701 2457

Fridge Domain 448 52 271 8952 - 208
- 63 - - - -

- 73 - - - -
Strips World - 761 - 583 928 -

- - - - - -
- - - - - -

O�ce Domain 32 8 8 8 8 9

285 32 63 64 64 1065

1099 66 193 193 193 5560

Other Domains 61 43 36 23 16 42
101 112 120 154 159 506

187 335 208 427 314 1063

Table 2: Number of Plans Examined. Successful Problems Only. Best, Ave and Worst Data.

15

Domains LCFR Approach-1 Approach-2 Prob UCPOP

Blocks World 1669 6566 6157 5265

Truck World 28772 11802 1872 2529

Robot Domain 8076 3535 1034 322
Monkey and Banana 105518 5558 5558 5558

Briefcase World 1645 847 563 647

Russells Tire 59008 11036 3760 2547
Fridge Domain 9754 15075 42466 42466

Strips Domain 258897 79230 48030 79230

O�ce Domain 459 257 267 267
Other Domains 78080 11697 11789 11625

Table 3: Average Overhead, number of plans created for all problems.

each domain distributed among the approaches. Similarly, the minimum(best) and maximum

(worst) cases appear highly domain dependent, with the four new approaches in general
having higher maximum values. In all but a few cases, LCFR and the four new cases o�er
either a comparable number of plans examined or a reduction over UCPOP.

While plans examined was expected to be comparable or worse than LCFR, we expected
the overhead to be signi�cantly lower for the new approaches. In fact, the overhead (Table 3)

and CPU time (Table 4) data suggest that LCFR is quite costly in comparison to the other
approaches. The di�erence in the overhead incurred is well illustrated in the �gure 7. For
problems with no solution, LCFR expends the most e�ort before reporting a failure. All other
approaches report failure as early as possible. This causes the LCFR to expend very high
CPU time as shown in �gure 8. Only in the Blocks World problems does LCFR out-perform

the other approaches.
In terms of overhead, the performance of the probabilistic reuse scheme is usually lower or

comparable to the approaches other than Bang. This implies that if proper criteria, mostly

likely domain and problem dependent, for reuse can be determined then the search space
can be reduced greatly.

Bang-UCPOP incurs no overhead; its CPU time is the minimum in all but three domains.
However, it appears to be problem dependent, rather than speci�cally domain dependent

and so should be applied based on the type of problem rather than applying it for every
problem in the domain. The primary cost of Bang-UCPOP is the storage of certain nodes

to allow back tracking. If the unsuitability of certain plans can be detected very early, the
search space explosion to support backtracking can be controlled.

Our template scheme assumes that the order in which similar open conditions are selected

for repair does not matter. We tested this assumption by running experiments in which aw
selection from a template is randomized. The results showed no signi�cant di�erence between

open conditions selected randomly versus simply taking the �rst aw from the template.

16

LCFR Template Reuse Prob

0

50000

100000

150000

200000

250000

300000
Blocks

Truck

Robot

Monkey

Briefcase

Russells

Fridge

Strips

Office

Other

Figure 7: Di�erences in Overhead

Domains UCPOP LCFR App-1 App-2 Prob Bang

Blocks World 15.6 7.75 46.45 49.49 37.13 11.34
Truck World 33.58 106.76 48.12 11.93 13.00 1.89

Robot Domain 47.37 56.23 34.03 6.35 1.97 1.99

Monkey and Banana 81.79 2021.41 89.27 90.23 89.4 31.43
Briefcase World 0.85 8.78 8.06 4.90 6.37 14.45

Russell Tire 37.80 556.43 97.05 54.25 40.95 15.93

Fridge Domain 43.56 30.44 98.55 305.50 289.74 30.44

Strips World 181.17 2975.12 967.71 567.23 956.16 73. 54

O�ce Domain 2.94 2.22 1.61 2.22 1.57 1 0.69
Other Domains 43.60 363.45 58.85 75.36 56.65 1 4.65

Table 4: Average CPU time in seconds, all problems.

17

UCPOP LCFR Template Reuse Prob Bang

0

500

1000

1500

2000

2500

3000
Blocks

Truck

Robot

Monkey

Briefcase

Russells

Fridge

Strips

Office

Other

Figure 8: Di�erences in CPU time

18

7 Conclusion

Not too surprisingly, no one approach seems to be best, solving all possible problems as

e�ciently as possible. Each solution seems to have its pros and cons, favoring some domain

or problem within a domain. Though LCFR is able to solve many problems with far fewer

plans examined than UCPOP, the cost of doing so, in terms of overhead, can be quite

high. The four approaches described in this paper solved more problems than UCPOP,

almost as many problems as did LCFR, and usually incurred far less overhead than LCFR.

Additionally, the results of Bang-UCPOP suggest that aw selection alone is not adequate

for e�cient planning.

However, these approaches and this comparison are barely a �rst step. We need to model

why di�erent approaches work better in di�erent domains and problems. Such models will
help determine which approaches to apply in which situations and to design new methods.
For example, from the execution traces of UCPOP, we observed that reordering sub-goals
or operators in the domain strongly a�ects the amount of search required to solve problems;
in particular, some orderings lead quickly to a solution while others appear to cycle. A aw

selection strategy partly eliminates this problem, but at great expense. If we can identify
what plans or orderings will lead to cycles, then we can modify plan re�nement to prune
those plans early in the planning process.

The two limited reuse approaches performed well on problems with related sub-goals.
One simple improvement to probabilistic reuse could be to make the probability a function

of the number of aws in the plan with reused steps. For example, if the number of threats
introduced by applying reuse is more than that introduced by solving the minimum cost
aw, the probability of reuse should be reduced. A better way is to use more knowledge
about the domain and problem to decide on step reuse rather than applying reuse with some
probability. We should be able to identify long sequences (sub-plans) and solve similar aws

together rather then considering them separately. For example, in Truckworld, when the
truck tries to pick up fuel drums to �ll its fuel tank, it can pick up other objects it needs
since the sequence of steps are same.

Considering the time reported to solve even a simple problem, the problem of scaling up

to larger problems is daunting. Based on this small exploration of methods for improving

plan generation e�ciency, we need additional methods for constraining the search space in

partial order planning and language constructs to incorporate known constraints. Most im-

portantly, we need to know how domain dependent problem characteristics lead to ine�cient
exploration of the search space.

References

[1] Scott D. Anderson, Adam Carlson, David L. Westbrook, David M. Hart, and Paul R.

Cohen. CLASP/CLIP common lisp analytical statistics package/common lisp instrumen-

tation package. Technical Report TR 93-55, Computer Science Department, University

of Massachusetts, 1993.

19

[2] Steve Hanks, Dat Nguyen, and Chris Thomas. A beginner's guide to the truckworld

simulator. Dept of CS&E UW-CSE-TR 93-06-09, University of Washington, June 1993.

[3] Adele E. Howe and Paul R. Cohen. Detecting and explaining dependencies in execution

traces. In P. Cheeseman and R.W. Oldford, editors, Selecting Models from Data; Arti�cial

Intelligence and Statistics IV, volume 89 of Lecture Notes in Statistics, chapter 8, pages

71{78. Springer-Verlag, NY,NY, 1994.

[4] David Joslin and Martha Pollack. Least-cost aw repair: A plan re�nement strategy for

partial-order planning. In Proceedings of the Twelth National Conference on Arti�cial

Intelligence, pages 1004{1009, Seattle, WA, August 1994.

[5] Subbarao Kambhampati and James A. Hendler. A validation-structure-based theory of
plan modi�cation and reuse. Arti�cial Intelligence Journal, 55(2-3), 1992.

[6] J. Scott Penberthy and Daniel S. Weld. UCPOP: a sound, complete, partial order planner
for adl. In Proceedings of the Third International Conference on Knowledge Representa-

tion and Reasoning, pages 103{114, 1992.

[7] Mark A. Peot and David E. Smith. Threat-removal strategies for partial-order planning.
In Proceedings of the Eleventh National Conference on Arti�cial Intelligence, pages 492{
499, 1993.

[8] A. Tate, B.Drabble, and J.Dalton. The use of condition types to restrict search in an
ai planner. In Proceedings of the Twelth National Conference on Arti�cial Intelligence,
pages 1129{1134, Seattle, WA, 1994.

20

