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Abstract

The paper proposes designs of interconnection networks (graphs) which can tolerate link failures. The net-
works under study belong to a subclass of Cayley graphs whose generators are subsets of all possible transposi-
tions. We specifically focus on star and bubble-sort networks. Our approach is to augment existing dimensions
(or generators) with one or more dimensions. If the added dimension is capable of replacing any arbitrary failed
dimension, it is called a wildcard dimension. It is shown that, up to isomorphism among digits used in label-
ing the vertices, the generators of the star graph are unique. The minimum number of extra dimensions needed
to acquire i wildcard dimensions is derived for the star and bubble-sort networks. Interestingly, the optimally
augmented star network coincides with the Transposition network, Tn. Transposition networks are studied rig-
orously. These networks are shown to be optimally fault-tolerant. Tn is also shown to possess wide containers
with short length. Fault-diameter ofTn is shown to ben. While the Tn can efficiently embed star and bubble-sort
graphs, it can also lend itself to an efficient embedding of meshes and hypercubes.

Key Words: Bubble-Sort graph, Cayley Graph, Embedding, Fault Diameter, Fault Tolerance, Genera-
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1 Introduction

In this paper we address the problem of augmenting interconnection network topologies with extra links such that

resulting network can tolerate a given number of arbitrary link failures in the sense that the remaining (surviving)

network still has the original topology as a subgraph. Several researchers [Lat91, BCH93] have considered adding

extra dimensions to networks for tolerating link failures. In [LEA89], an architecture called folded hypercube or

FHC was analyzed which is basically a hypercube augmented by a single dimension and it was shown that this extra

dimension can replace any existing dimension of the network to form a new hypercube of the same size making the

network tolerant of any single link failure. In [BCH93], the authors have investigated the idea of adding wildcard

dimensions to meshes and tori, and they have constructed dimensionally-augmented meshes and tori.

Cayley graphs in general and star graphs in particular have received much attention since their introduction in

1987 [AK87b]. Vertex and edge symmetry, hierarchy, sublogarithmic diameter and degree of the vertex, and high

resilience all contribute to the popularity of the star graph as an attractive alternative to hypercubes for large inter-

connection networks [DT94, QMA92]. Star graphs accommodate more vertices with less interconnection hardware

and less communication delay and many parallel algorithms can be efficiently mapped on star graphs [MS90, FA91,

MS92]. Our purpose here is to develop a method to add wildcard dimensions to these star networks. We show that

for n > 4, (2n� 4) extra generators are necessary to have a single wildcard generator in the augmented star graph.

This result is generalized to obtain the optimal number of extra generators required to obtain a star graph Sn with

some k wildcard generators, for any k, k � dn=2e. Interestingly, for the maximum number of wildcard genera-

tors, the augmented star graph is found to coincide with the Transposition Network, mentioned in [Lei90]. We then

show that this new Transposition network can also be efficiently used to provide maximum number of wildcard

dimensions to Bubble-sort graphs [AK89], another class of interesting Cayley graphs. It appears that the different

properties like low diameter, strong resilience (vertex and link fault tolerance) enjoyed by the Cayley graphs are

dictated by the intrinsic properties of their respective generator sets. The basic nature of the “transposition” oper-

ation plays an important role towards contributing to the richness of the star graphs and other families of graphs

that use transpositions as their generators. So, in the second part of the paper, we investigate in detail the algebraic

properties of this transposition graph (where the generator set includes all possible transpositions). We show that

these transposition graphs are maximally fault tolerant and have wide containers of very short lengths and hence

they compare favorably with those reported in [MP88].

2 Background

A Cayley graph is a vertex-symmetric graph often with n! vertices, each vertex denoting a distinct permutation of

the set f1; 2; : : : ; ng. The adjacency among the vertices is defined based on a set of permutations referred to as

generators; the neighbors of a vertex are obtained by composing the generators with the label of the vertex. The
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set of generators defined for a Cayley graph are generally closed under the inverse operation to guarantee that the

graph is undirected. Furthermore, the set of generators together with the identity permutation must produce all n!

elements of the permutation group�n, or a subgroup of�n when the generators are repeatedly applied to the already

generated vertices. The action of a generator on a permutation label may take various forms. A generator may swap

two digits in positions i and j in the label; this action is commonly called a transposition and the corresponding

generator is designated by g(i; j). The focus of this paper is the graphs whose generators are transpositions; the

popular networks with this property are: star graphs and bubble-sort graphs.

Definition 2.1 A Star graph Sn of dimension n is a Cayley graph with n! vertices, each labeled with a distinct

permutation of the set of integers f1; : : : ; ng. The set G of generators in Sn is defined as: G = fg(i; j); j =

1; 2; : : : ; (i� 1); (i+ 1); : : : ; ng. Without loss of generality, it is assumed i = 1.

The topological properties of the star graph have been derived and discussed elsewhere [AK87b, AK87a, DT91,

Kav93, Lat93, SS92, SS91]. Briefly, Sn is both vertex and edge transitive. It contains n!(n � 1)=2 links with a

diameter of d3(n� 1)=2e.

Definition 2.2 A Bubble sort graph Bn of dimension n is a Cayley graph with n! vertices, each labeled with a

distinct permutation of the set of integers f1; : : : ; ng. The set G of generators in Bn is defined as: G = fg(i; i+

1); i = 1; 2; : : :(n � 1)g.

The topological properties of bubble sort graphs can be found in [AK89, Knu73]. Briefly, Bn is vertex and edge

transitive, is regular with vertex degree (n � 1), and has n!(n� 1)=2 links with a diameter of n(n� 1)=2.

3 Wildcard Dimensions in Sn and Bn

Both star graphs and bubble-sort graphs belong to the class of hierarchical networks whose sets of links can be par-

titioned to dimensions. Examples of other such networks include meshes, tori and hypercubes. For such networks,

any wildcard dimension can be utilized to replace any of the original dimensions such that the faulty graph (with link

failures) still contain the original graph; this is different from the fault tolerance of the original graphs. In [BCH93],

the authors have investigated the idea of adding wildcard dimensions to -dimensional meshes and tori. Our purpose

is to add wildcard to star graphs and bubble-sort graphs.

3.1 Augmentation of the Star graph

In order to find a solution to an optimal augmentation of dimensions in star graph, we first show that the generators

of this graph are unique upto isomorphism among digits used.
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generator cycle representation generator cycle representation

1234 null 3124 (123)

1243 (34) 3142 (1243)

1324 (23) 3214 (13)

1342 (243) 3241 (143)

1423 (234) 3412 (13)(24)

1432 (24) 3421 (1423)

2134 (12) 4123 (1234)

2143 (12)(34) 4132 (124)

2314 (132) 4213 (134)

2341 (1432) 4231 (14)

2413 (1342) 4312 (1324)

2431 (142) 4321 (14)(23)

Table 1: Possible Generators for S4

Lemma 3.1 Let g(i; j) and g(i; k) be two generators of a Cayley graph S 0 (with N = n! vertices), where 1 � i 6=

j 6= k � n and n > 3. For S 0 to be isomorphic toSn it is necessary and sufficient that all the remaining generators

of S 0 be of the form g(i;m)where 1 � m � n, and m 6= i; j; k.

Proof : The proof is by induction. The claim is certainly true for S4. Suppose it is true for Sn�1. Since S 0 is

isomorphic to Sn, it must include n Sn�1’s as its subsets. Thus at least (n� 2) of the generators of S 0 must be of

the form g(i; x). In that case the last generator must also be of the form g(i; x), otherwise S 0 cannot be isomorphic

to Sn. 2

Lemma 3.1 provides a basis for proving that the generators of any graph isomorphic to Sn must necessarily be

of form g(i; x). To see this, the special case of S4 is studied first. All the possible permutations that can be defined

as generator candidates for a graph S 0 isomorphic to S4 are shown in Table 1.

The permutations in Table 1 can be classified into 4 conjugacy classes depending on the structure of their cycle

representations.

Class I (a single 2-cycle): (12); (13); (14); (23); (24); (34)

Class II ( a single 3-cycle): (123); (132); (234); (243); (124); (134); (142); (143)

Class III (a single 4-cycle): (1234); (1243); (1324); (1342); (1423); (1432)

Class IV (two 2-cycles): (12)(34); (13)(24); (14)(23)

From edge-transitivity of the star graph, it follows immediately that the set of generators of S 0 must belong to the

same class. Consider Class I. It is impossible to pick 3 generators in this class for S 0 such that the condition specified
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in Lemma 3.1 is not met. The generators cannot be picked from Classes II and III simply because for any subset

(of order 3) of these classes the closure condition with respect to inverse operation cannot be held. For example

in Class II, if (123) is selected as a generator, then (123)�1 = (132) must also be included.1 But to complete this

set, there is no other distinct generator in Class II which is self-inverse. In Class IV, it can be easily shown that the

existing 3 generators cannot produce a graph isomorphic to S4 (for instance, try to from a ring of length 6 using an

alternate sequence of two generators). We summarize this in the next theorem.

Theorem 3.1 Let S 0 be a graph isomorphic to Sn. Then its set of generators must be of the form g(i; x) where

1 � i � n, and x 2 f1; 2; : : : ; ng � fig.

Suppose it is desirable to construct a network based onSn which can tolerate any i link failures with no degrada-

tion in performance. This is equivalent to supporting the network with iwildcard dimensions. One direct approach

is to increase the number of links in every dimension by a multiplicative factor of (i + 1) (replication). Consider

the Sn with the set of generators: g(1; 2); g(1; 3) : : : g(1; n). To produce one (i = 1) wildcard generator, one has

to add only transpositions or 2-cycles to the above set (by Theorem 3.1). The optimal set of generators required is:

� g(1; 2) g(1; 3) : : : g(1; n)

g(2; 1) � g(2; 3) : : : g(2; n)

g(3; 1) g(3; 2) � : : : g(3; n)

Any row in the above corresponds to the set of generators which can produce Sn and any link failure can damage

at most two of the above 3 rows ( when g(1; 2) or g(1; 3) fails). Thus any single link-failure can be tolerated. The

number of generators required can be easily obtained as : (3n� 6). The direct approach (doubling each dimension

or replication) requires a total of (2n� 2) generators which is better than the above method for n > 4. This result

is summarized in the following.

Remark 3.1 Unlike the hypercube, the star graph cannot achieve the single-wildcard feature by adding only one

dimension.

1Another argument to rule out Class II is that its generators cannot change the parity of the starting vertex.
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dimension no: of wildcards i ReplicationMethod Proposed Method

n = 2k (k � 1) k(2k � 1) k(2k � 1)

n = 2k + 1 k 2k(k + 1) k(2k + 1)

Table 2: Comparison of Two Methods

For i > 1, one needs to add two rows to the existing rows for each extra wildcard since the failure of one

generator can affect 2 rows. As the number of rows increases, the number of required generators for new rows

drops since some of these generators have already been included in the generator set. The total number of generators

needed to obtain iwildcards 1 � i � (dn
2
e�1) is (i+1)(n�1)usingReplicationMethod and is (2i+1)(n�i+1)

using the Proposed Method.2 It follows that for i > dn�2
2
e the proposed method proves slightly advantageous;

see Table 2. Note that to provide maximum number of wildcards the number of generators for even n is the same

for both cases and for odd n saving in generators using the proposed method is k. However, routing doesn’t change

with replication.

Now, if we consider the generators of the augmented star with (dn=2e � 1) wildcard dimensions, the augmented

graph obtained as such provides all the possible transpositions on n available dimensions (i.e. defined by n(n�1)

2

generators). This graph was introduced in [Lei90] and briefly mentioned in [LJD93] as the Transposition graph,

Tn.

Definition 3.1 A Transposition graph Tn, of dimension n, is a Cayley graph with n! vertices each assigned a dis-

tinct permutation of the first n positive integers. The set of generators is: fg(i; j); 1� i; j � n; i 6= jg.

Example: Figure 1 shows transposition graphs of dimensions 2 and 3 and Figure 2 shows a transposition graph of

dimension 4. Note that Tn is a regular vertex symmetric undirected graph with vertex degree n(n�1)

2
, has n! vertices

and n(n � 1)n!=4 edges.

2The maximum value for i is dictated by the fact that all the generators will be used up for imax and any further improvement must come

from replication of already used generators.
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Figure 1: Transposition Graphs of Dimensions 2 and 3

3.2 Augmentation of the Bubble-Sort graph

In this section we investigate the possibility of adding wildcard generators to the bubble sort graph Bn and show

that for addition of maximum number of wildcard generators the augmented graph is again the transportation graph

Tn, as obtained for star graphs.

Lemma 3.2 It is possible to add one generator to the set of generators of Bn which can play the role of a wildcard

generator.

Proof : The proof is by construction. Let the set of generators in Bn be: fg(i1; i2); g(i2; i3); � � � ; g(in�1; in)g.

The added generator will be: g(in; i1). So the augmented set of generators will be: fg(i1; i2); g(i2; i3); � � � ; g(in�1;

in); g(in; i1)g. It can be seen that through the newly added wrap around generator, failure of any single generator

can be tolerated (note that Bn is edge-transitive [AK89]). 2

Since the Bubble-sort graph is edge-transitive, the generators can be arranged arbitrarily with respect to digits.

The transportation graph Tn contains all possible transposition generators and hence Tn contains many Bn’s. How

many distinctBn’s are contained in a Tn? One can easily establish a one-to-one correspondence between the set of

generators of a Bn with a specific permutation of n digits. Let � = (i1; i2 : : : in) correspond to the set of genera-

tors (for a Bn): fg(i1; i2); g(i2; i3) : : :g(in�1; in)g. We have n! distinct permutations of n digits; but any permuta-

tion corresponds to the same set of generators as its reflection would. For instance permutations: (i1; i2 � � � in) and

(in � � � i2; i1) correspond to the same set of generators. We state the following theorem.
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Figure 2: Transposition Graph of Dimension 4

Theorem 3.2 The set of generators of Tn contains n!=2 generator subsets of cardinality (n�1), each subset spec-

ifying uniquely a Bn.

Remark 3.2 These Bn’s are distinct, but not necessarily mutually edge-disjoint.

The next important question to be answered is: how many wildcard generators are contained in a Tn if it is to be

used as a fault tolerant Bubble-sort graph, i.e., how many link failures can a Tn tolerate and can still contain a Bn?

We introduce the simple concept of a model graphHn corresponding to any graph (say, Tn orBn) whose generators

are transpositions in the following way: Hn has n vertices, each labeled with the digits 1 throughn and two vertices
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i and j are connected by an undirected edge if and only if the generator g(i; j) is included in the generator set of

the graph Hn is modeling. Thus, the model graph of Tn is a complete graph of n vertices, and that of Bn is a line

graph of n vertices. When any link fails in a Tn, we can model the situation by deleting an edge (i; j) in the model

graph (the generator g(i; j) corresponding the failed link in Tn). Thus, as long as we can find a Hamiltonian path

in the remaining model graph of Tn (corresponding to any fault scenario), a complete bubble sort graph can be

constructed from the remaining fault free links of the transposition graph Tn. In case of arbitrary failure of links in

Tn, the model graph is an arbitrary graph of n vertices and the problem reduces to finding a Hamiltonian path in

the model graph. Computing a Hamiltonian path in an arbitrary graph is NP-complete in general [GJ79]; so is the

problem of locating a Bn (if any) from an arbitrarily injured Tn. Nevertheless for special cases when the number

of failures is restricted, one may be able to obtain a valid set of generators in linear time.

Theorem 3.3 Tn has at most (n� 2) wildcard generators as a fault tolerant Bn.

Proof : If generators of any row in the transposition matrix fail (there are (n� 1) of such generators), no Bn can

be constructed by the remaining generators. This is so since in the model graph H , all links incident to a vertex

would be missing, isolating this vertex from the rest of H . 2

Theorem 3.4 Failure of any arbitrary set of at most (n� 2) generators cannot destroy all the eligible candidates

for the set of generators of Bn.

The number of disjoint generator sets of Tn which can be used for construction of a Bn is equivalent to the

number of link-disjoint Hamiltonian paths in Kn (a fully-connected n-vertex graph). This number can be at most

bn=2c.

4 Properties of the Transposition Graph Tn

The transposition graph Tn, for any n � 1, is a Cayley graph and hence is vertex symmetric [AK89]. So, in Tn,

we can always view the distance between any two arbitrary vertices as the distance between the source node and

the identity permutation by suitably renaming the symbols representing the permutations. Hence, in our subsequent
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discussion about a path from a source vertex to a destination node, the destination vertex is always assumed to be

the identity vertex I without any loss of generality. Also, we use distance of a vertex (permutation) to indicate its

distance to the identity vertex.

It is easy to see that any permutation of n elements can also be specified in terms of its cycle structure with

respect to the identity permutation I . For example, 345216 = (135)(24)(6). The maximum number of cycles in

a permutation of n elements is n and the minimum number is 1. When a cycle has only one digit, that digit is in

its correct position in the permutation with respect to the identity permutation: we call such a digit an invariant

digit. The singleton cycles may be omitted in the cycle representation of a permutation if the number of digits in

the permutation is understood from the context. We use following notations throughout the rest of the paper: �n,

Diameter ofTn, u, An arbitrary permutation (vertex), (C1 � � �Ck), Cycle representation of the arbitrary vertex u;Cj
i

denotes j-th digit in the i-th cycle of vertex u, D(u), Distance of the vertex u (from the identity permutation), �(u),

Number of cycles of length at least 2 in any permutation u, �(u), Number of cycles of length 2 in any permutation

u, m(u), Total number of digits in these � cycles of the permutation u, and n�m(u), Number of invariant digits

in the permutation u.

4.1 Shortest Routing and Diameter

We want to reach the identity vertex I starting from an arbitrary vertex u in Tn. Consider the algorithm: “For each

digit in u not in correct position, put it in correct position by the appropriate generator.”

Remarks: (a) The algorithm is well-defined; for each vertex in Tn we have all possible n(n� 1)=2 transpositions

(generators). (b) Consider an arbitrary cycle Cs, jCsj � 2, in the vertex (permutation) u; we need exactly jCsj � 1

moves of the algorithm to execute the cycle completely (once jCsj � 1 digits of the cycle Cs are placed in correct

positions, the last one is automatically placed in its position). (c) For an arbitrary vertex u inTn, the algorithm makes

m(u)��(u)moves to reach the destination vertex I . (d) For an arbitrary vertex u inTn, at leastm(u)��(u)moves

are necessary to reach the vertex I since at most one out-of-place digit (belonging to a cycle of length > 2) can be

placed in its correct position in one move (for 2-cycles, when one out-of-place digit is put in its correct position,

the other is also automatically put in its correct position).
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Theorem 4.1 The distance of an arbitrary vertex u in Tn (from the identity vertex I) is given by D(u) = m(u)�

�(u) and the diameter of Tn is given by �n = n� 1.

Corollary 4.1 Each vertex in Tn has (n� 1)! antipodes, i.e., vertices at maximum distance from the vertex. For

example, for the identity vertex I , these vertices are those having the cycle representation of the form (1�)where �

is any arbitrary permutation on the integers of the set f2; 3 : : : ; ng.

4.2 Average Distance of Tn

The average number of cycles in a permutation ofn digits is known to beHn =
Pn

i=1 1=i, thenth harmonic number.

Thus the total number of cycles over all permutations is: n!Hn. On the other hand, the total number of m-cycles

is: n!=m, 1 � m � n. But the total number of cycles times the average length of a cycle `av should equal to the

sum of all m-cycles times their number. Therefore,

n!Hn � `av =
nX

m=1

n!

m
m ) `av =

n

Hn

The average number of cycles in a permutation is: Hn. Hence:

Average Distance in Tn =
�

n

Hn

� 1

�
�Hn = n �Hn

4.3 Fault Tolerance of Tn

Lemma 4.1 For an arbitrary vertex u in Tn there exist at least (m(u)� �(u)) vertex disjoint paths (to the identity

vertex I) of length D(u) = m(u)� �(u).

Proof : The minimal length is easily established by noting that any cycle of length k can be executed using (k�1)

transpositions. Let A = fi1i2 : : : i(m�2�)g be the set of out-of-place digits belonging to k-cycles, k > 2. In

addition, let B = fj1j2 : : : j(2��1)j(2�)g be the set of out-of-place digits belonging to 2-cycles. Disjoint paths

can be obtained by changing the order in which digits are corrected. Pick the initial order of correction as: � =

(i1i2 : : : i(m�2�)j1j2 : : : j(2��1)j(2�)). By cyclically shifting � to the left every time, a distinct disjoint path will be

obtained. The correction order corresponding to these paths are as follows: �1 = (i1i2 : : : i(m�2�)j1j2 : : : j(2��1)j2�),
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Correction orders: σ1 = [34512], σ2 = [41235], σ3 = [51234], σ4 = [12345]
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Figure 3: Vertex Disjoint Minimal Paths in T6

�2 = (i2i3 : : : i(m�2�)j1j2 : : : j2�i1), � � �,�(m�2�+1) = (j1j2 : : : j2�; i1i2 : : : i(m�2�)),�(m�2�+2) = (j3j4 : : : j(2�);

i1i2 : : : i(m�2�)j1j2), � � �, �(m��) = (j(2��1)j(2�) : : : j(2��3)j(2��2)).

Observe that starting from �(m�2�+1), the new correction orders are obtained by shifting two positions at a time

(because every pair of adjacent elements in B corresponds to a 2-cycle and correction of one element results in the

correction of the second one). 2

Example: Consider the vertex u = (12)(345)(6) in T6. Here, m = 5; � = 2; � = 1. Thus, there are 4 vertex

disjoint paths, each of length 3, from vertex u to the identity I . These paths, along with the correction order of

digits for each path, are shown in Figure 3.

For an arbitrary vertex u in Tn, we can apply any of the possible n(n� 1)=2 generators (transpositions); only

m(u)� �(u) of them lead to vertex disjoint minimal paths. In order to determine the vertex connectivity of Tn, we

need to explore also the non minimal vertex disjoint paths. First, we observe certain simple facts:

Remark 4.1 Any k-cycle (cycle of length k) in the cycle representation of any vertex in Tn can be written in k

different ways. For example, the cycle (2546) is the same as the cycles (5462), or (4625), or (6254).

Remark 4.2 Consider a k-cycle in any vertex u, say (i1i2 � � � ik). There exist
�
k
2

�
generators to break this cycle.

Application of the generator g(ij; ij0), j < j0 (for brevity), breaks the cycle into two cycles (each of length at least

2): (i1i2 � � � ij�1ij0ij0+1 � � � ik) (ijij+1 � � � ij0�1).
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Remark 4.3 Consider an arbitraryvertex u inTn, u = (C1)(C2)(:::) = (C1
1 � � �C

k
1 )(C

1
2 � � �C

k0

2 )(:::). By applying

the generator g(C1
1; C

1
2) we reach the vertex (C1

1 � � �C
k
1C

1
2 � � �C

k0

2 )(:::) = (C2
2 � � �C

k0

2 C
1
1

� � �Ck
1C

1
2)(:::) (see Remark 4.1). Note that (...) indicates other cycles in the vertex, if any.

Lemma 4.2 Consider an arbitrary vertex u in Tn, u = (C1)(C2)(:::) = (C1
1 � � �C

k
1 )(C

1
2 � � �C

k0

2 )(:::). There are

k � k0 distinct neighbors of the vertex u each of the form (�xy)(:::) where x and y are arbitrary digits such that

x 2 C1 and y 2 C2 and � indicates some digit string.

Proof : The proof follows from the Remark 4.3 and the fact that jC1j = k and jC2j = k0. Note that for any choice

of x (say, x = Ci
1) and y, the generator needed to reach the neighbor is given by g(Ci+1

1 ; y). Distinctness follows

from the distinctness of the generators for different choices of x and y. 2

Lemma 4.3 Consider an arbitrary vertex u in Tn, u = (:::)(C1
sC

2
s � � �C

k
s ), such that k > 3 (Cs is an arbitrary

cycle of k digits). There exist
�
k
2

�
� k vertices each of the form (:::)(�Ci

sC
j
s), 1 � i � k � 2 and i + 2 � j � k

(the combination i = 1; j = k excluded), each at a distance 2 from the vertex u. Moreover, these vertices as well

as the vertices on the paths from u to these vertices are all distinct.

Proof : Each pair of digits Ci; Cj is distinct and the two required generators (transpositions) needed for each

choice of Ci; Cj are g(Ci; Cj) and g(Ci+1; Cj) (also see Remark 4.1). Note that none of these vertices involved

are on any minimal path from u to the identity vertex I . 2

Remark 4.4 Let (C1
1C

2
1 : : :C

k
1 ) be the cycle representation of an arbitrary vertex with a single cycle C1. Applying

the sequence of transpositions (C1
1C

2
1), (C

2
1C

3
1), : : : (C

k�1
1 Ck

1 ) to this vertex and in that order will map the vertex

to identity. Furthermore, at step j, digit Cj
1 is put in correct position as the result of transposition (Cj

1; C
j+1
1 ),

1 � j � k � 1. For a given cycle, this routing is referred to as the standard minimal routing for that cycle.

Lemma 4.4 Let u and v be a pair of vertices in Tn such that u has a cycle of the form (�xy) (possibly other cycles

as well) and v has a cycle of the form (�wz) (possibly other cycles as well), where x, y, z, and w are single digits

and � is a string of 1 or more digits. Let P be the set of shortest paths from u to the identity vertex I such that the

generator g(x; y) is applied last (standard minimal routing). Similarly, let Q be the set of shortest paths from v to

12



the identity vertex I such that the generator g(w; z) is applied last (standard minimal routing). Any path in P is

vertex disjoint from any path in Q iff fx; yg 6= fw; zg.

Proof : The digit y occupies the correct position of the digit x for each vertex along every path in P and each

path in P passes through the vertex (xy) before reaching the node I . Similarly, the digits z occupies the correct

position of the digit w for each vertex along every path in Q and each path in Q passes through the vertex (wz)

before reaching the node I . The claim readily follows. 2

Theorem 4.2 For any given vertex u in Tn, there exist n(n � 1)=2 vertex-disjoint paths (to the identity vertex I)

whose lengths are as follows:

No. of Paths Length

(m� �) D

�
n�m
2

�
+ (n�m)�m+

�
m
2

�
� (m� �) D + 2 (at most)

where m = m(u), � = �(u), and D = D(u).

Proof : Let the cycle representation of the vertex u be u = C1; C2; � � � ; C�, where � = �(u) and
P�

i=1 jCij = m.

Denote the set of vertex disjoint minimal paths by 	1. According to Lemma 4.1 j	1j = (m � �). Note that

none of the invariant digits in vertex u are ever moved in any of these minimal paths.

There are (n�m) invariant symbols in vertex u. Let (�) denote the cycle representation of the vertex u. Choose

any two arbitrary invariant digits, say digits i and j, apply the generator g(i; j) to the vertex u to reach the node

(�)(ij), then apply shortest routing to the (�) portion of the vertex and execute the cycle (ij) last. Call the set of

paths formed this way 	2, where j	2j =
�
n�m
2

�
. Each path in 	2 is vertex disjoint from any other in 	2 because

of the unique choice of pairs of invariant digits; also each path in 	2 is vertex disjoint from any path in in	1. Each

path in 	2 has a length of D + 2.

Choose an arbitrary invariant digit � (there are (n�m) choices) and an arbitrary digit � = C
j
i from any cycle

Ci (there are � choices for i and jCij choices for j); apply the generator g(�; �) to the vertex u to reach the node

C1; C2; � � � ; Ci�1; (C
j+1
i � � �C

jCij

i C1
i � � ���); Ci+1 � � �C� (Remark 4.3), apply shortest routing to reach the identity

vertex using the generator g(�; �) last. Let 	3 denote the set of paths generated according to this scheme. Each

13



path in 	3 has a length of D + 2 and j	3j =
P�

i=1(n �m)jCij = m(n �m). Paths in 	3 are mutually disjoint

by the unique choices of � and � for each path; they are also vertex disjoint from the paths in 	1 and 	2.

There are � cycles of length 2 and �� � cycles of length> 2 in vertex u. We generate two sets of non minimal

paths. First, for each k-cycle, k > 2, we go to the
�k
2

�
� k distinct neighbors of u (each at a distance 2 from u) as

defined in Lemma 4.3 and from each of these vertices follow standard minimal routing to reach the identity vertex

I . Each path is of length at mostD+2 and they are mutually vertex disjoint (Lemma 4.4). Second, choose any pair

of cycles in u, generate distinct neighbors as in Lemma 4.2 and follow standard minimal routing from each neighbor

to reach the identity vertex I . Each path is of length D+2 and they are mutually vertex disjoint (Lemma 4.4). Let

	4 denote the set of paths generated according to these two schemes. Each path in 	4 has a length of at mostD+2

and j	4j =
�
m
2

�
� (m � 2�) � � =

�
m
2

�
�m + � (number of transpositions available involving all m digits in

all the cycles is
�m
2

�
; we need to exclude k transpositions for each k-cycle, k > 2, (total (m � 2�) transpositions)

corresponding to adjacent digits (leading to minimal paths) and � optimal transpositionscorresponding to 2-cycles).

Each path in 	4 is disjoint to any path in 	1 by Lemma 4.4 and is also disjoint from any path in 	2 or 	3 since no

invariant is involved.

Note that j	1j+ j	2j+ j	3j+ j	4j =
�
n
2

�
. 2

Corollary 4.2 Vertex connectivity of Tn is n(n � 1)=2.

Example: Consider the vertex (12)(345)(6) in T6. The minimal paths (i.e., paths in 	1) were shown in Figure 3.

The set 	2 is empty since there is only one invariant digit e.g. “6”. The set 	3 has five paths that are generated

by mixing the invariant digit with the 2-cycle and the 3-cycle; these paths are shown in Figure 4. There is no cycle

of length > 3; hence the paths in the set 	4 are generated by combining the 2-cycle and the 3-cycle in all possible

(six) ways; the paths are shown in Figure 5.

Theorem 4.3 The fault-diameter of Tn is at most (n+ 1).

Proof : According to Theorem 4.2 there are
�n
2

�
disjoint paths between any two vertices in Tn of length at most

D+2. In addition, the connectivity of Tn is
�n
2

�
. Therefore, removal of

�n
2

�
� 1 vertices from Tn will leave at least

14



(12)(345)

(16)

(26)

(36)

(46)

(56)

(261)(345) (261)(45)

(162)(345)

(12)(3456)

(12)(4536)

(12)(5346)

(34)

(45)

(12)

(12)

(12)

(162)(53)

(3456)

(4536)

(5346)

(45)

(53)

(45)

(53)

(34)

(261)

(162)

(563)

(364)

(465)

(16)

(26)

(36)

(46)

(56)

(26)

(16)

(56)

(36)

(46)

I

(16)

(26)

(36)

(46)

(56)

Figure 4: The set 	3 of paths for the vertex (12)(345)(6) in T6

(12)(345)

(13)

(14)

(15)

(23)

(24)

(25)

(23451)

(24531)

(25341)

(13452)

(14532)

(15342)

(13)

(14)

(15)

(23)

(24)

(25)

(3451)

(4531)

(5341)

(3452)

(4532)

(5342)

(34)

(45)

(53)

(34)

(45)

(53)

(451)

(531)

(341)

(452)

(532)

(342)

(45)

(53)

(34)

(45)

(53)

(34)

(51)

(31)

(41)

(52)

(32)

(42)

I

(51)

(31)

(41)

(52)

(32)

(42)

Figure 5: The set 	4 of paths for the vertex (12)(345)(6) in T6

one disjoint path between two vertices which is longer than the minimal path by an additive 2. The diameter of Tn

is (n� 1). So the fault-diameter df � (n� 1) + 2 = n + 1.

Let u and v be two vertices in Tn with respective cycle representations of (1)(23 : : :n) and (12 : : :n). Now

distribute the
�
n
2

�
�1 faults such that all neighbors of u are faulty except for v. Any path from u to identity must pass

through v which is an antipode of identity. The length of such a path is (n�1)+1 = n. It follows: n � df � n+1.

2

Theorem 4.4 The fault diameter of Tn is n.
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Proof : For brevity, we provide only a sketch of the proof which is established by construction. We have to con-

centrate on the vertices which are at a maximum distance from the identity vertex (i.e., at a distance of n�1). Note

that such vertices must have a single cycle containing all the n digits. For such vertices we give a formulation of

�n
2

�
vertex-disjoint minimal paths (of length n� 1) to the identity vertex.

Without loss of generality, let the cyclic representation of an antipode u with respect to I be: (123 : : :n). We

create an ordered set of all possible transpositions as follows: tSET = f(12); (13) : : :(1n); (23); (24); : : :(2n); : : :

(1n); (2n); : : :(n� 1; n)g. Each optimal disjoint path originates from u via a distinct transposition and terminates

at I through another distinct transposition. For any path, if ti 2 tSET is chosen to be the last transposition from

u to I , ti+1 2 tSET will be selected as the first transposition used along that path. For
�n
2

�
paths constructed this

way, all the neighbors of u and I will be distinct (because there are
�
n
2

�
ti’s in tSET ). Depending on ti, two cases

are distinguished:

Case(i): ti = (jn); 1 � j � n � 2. Clearly applying ti+1 = (j + 1; j + 2) automatically corrects digit j + 1. If

ti = (n� 1; n), then ti+1 = (12)which after being applied to u will correct digit 1. Thus, starting from digit j+1

(or 1), other digits (i.e. j + 2; j + 3; : : :) are corrected in a cyclic order leaving out digits j and n which will get

corrected in the last step. Case(ii): ti = (jk); j 6= k 6= n. Here ti+1 = (j; k + 1). We begin by correcting digit

k + 1 and the digit correction order will be (k + 1; k + 2; : : :j � 1; j + 1; : : : ; k � 2; k � 1). Digits j and k will

get corrected in the last step.

We show the distinctness of the intermediate vertices along the paths constructed as described before by contra-

diction. Suppose two paths between u and I meet at an intermediate vertex q before reaching I . For this to happen,

the same set of digits would have to be corrected in the same number of steps in the above paths, no matter what

the correction order is. But this cannot happen due to the cyclic nature of the correction order used in construction

of each path and the uniqueness of the pair of digits which will get corrected in the last step along each path. 2

Example: Consider the vertex (123456) in T6. tSET = f(12); (13); (14); (15); (16); (23); (24);

(25); 26); (34); (35); (36); (45); (46); (56)g. All
�6
2

�
= 15 minimal paths, each of length 5, are shown in Figure 6.

Remark 4.5 Another very important consideration in designing robust interconnection networks is the existence

of wide containers of short lengths [MP88]. A container is a set of vertex disjoint paths between arbitrary pair of
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(12345)

(23456)

(13456)

(12456)

(12356)

(12346)

(12345)

(12)(3456)

(123)(456)

 (1234)(56)

(1456)(23)

(156)(234)

(16)(2345)

(1256)(34)

(126)(345)

(1236)(45)

(3456)

(1456)

(1256)

(1236)

(1234)

(2345)

(12)(346)

(13)(456)

(134)(56)

(156)(23)

(56)(234)

(16)(345)

(256)(34)

(26)(345)

(136)(45)

(456)

(145)

(126)

(123)

(234)

(345)

(13)(46)

(14)(56)

(156)

(24)(56)

(16)(35)

(52)(34)

(26)(45)

(36)(45)

(56)

(15)

(12)

(23)

(34)

(45)

(14)

(16)

(24)

(35)

(52)

(26)

(36)

I

(12)(46) (46)

(13)

Figure 6: Minimal Vertex Disjoint Paths from the vertex (123456) in T6

vertices. The existence of wide containers (a large number of vertex disjoint paths) is essential to establish virtual

links between vertices both when there are permanent regular faults (vertices just cease to exist) as well as when the

faults are Byzantine in nature (i.e., faulty vertices can behave maliciously by changing or misdirecting messages).

The details, protocols and algorithms to establish virtual links with the help of containers can be found in [MP88].

From the above theorems, it is apparent that all containers inTn are of lengthD+2 � n+1 and that each container

in Tn is of length at most diameter of the graph plus one. Thus these graphs compare very favorably with the set of

graphs with wide containers of short lengths presented in [MP88].

4.4 Embedding of Other Graphs in Tn

It is clear that the transposition graph Tn contains star graph Sn and bubble-sort graph Bn i.e. these graphs can be

optimally embedded in Tn (with dilation one and expansion one). In this section we explore embeddability of some

other networks like hypercubes and 2D meshes in Tn.

17



Theorem 4.5 Tn is bipartite; Tn does not contain any cycle of odd length.

Proof : The proof follows from the fact that the transpositions are odd permutations. Any Cayley graph based on

transpositions is bipartite. 2

Theorem 4.6 Tn (n > 2) contains all cycles of even length `, 4 � ` � n!.

Proof : It has been shown in [JLD91] that a star graph Sn contains all ` cycles for even ` and 6 � ` � n!. Since

Sn is a subgraph of Tn, the result readily follows. 2

Theorem 4.7 A Transposition graph Tn contains
�
n�1
k

��
n
k

�
k!n distinct Sk’s (Sk is a star graph of dimension k).

Theorem 4.8 In Tn, there are bn
2
c disjoint sets of generators for Bn.

Theorem 4.9 Consider aM1�M2 2-dimensional mesh such thatM1�M2 = n!. There is an optimal (expansion

= 1) embedding of this mesh in Tn.

Proof : It has been shown in [JLD91] that a M1 �M2 2-dimensional mesh such that M1 � M2 = n! can be

embedded in a star graph Sn with unit expansion and dilation 3 where edges with dilation 3 correspond to trans-

positions of the form (i; j), i; j 6= 1 which can be executed using three generators in Sn namely (1i); (1; j); (1; i).

But in Tn transpositions of the form (i; j) can be executed with only one generator (since all possible transposition

generators are present). Hence the result follows. 2

Example: Figure 7 shows the mapping of a 6�4mesh in T4. Note that all the vertices are not labeled and the edge

label (ij) indicates that the generator g(i; j) is used.

Next, we consider embedding of hypercubes in transposition networks. It is to be noted that the embedding of

hypercubes into star graph has been investigated before (see [NSK90] for instance). These embeddings generally

offer dilations of 3 or more. For Transposition networks, on the other hand, more efficient embedding is expected

to exist due to their robust structure.

Theorem 4.10 There is a dilation-1 embedding of hypercube Qn�1 into Tn.
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2)
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3)

(1
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(1
3)

(1
3)

(2
3)

(2
3)

(3
4)

(1
2)

(1
2)

(1
4)

(1
3)

(1
3)

(3
4)

42
13

(3
4)

(3
4)

(1
3)

24
13

Figure 7: Mapping of a 6� 4 mesh in T4

Proof : The proof is by induction. First we show a possible embedding of Q4 in T5 (induction base). Then we

show that given Qn�2 is embeddable in Tn�1, it is possible to embed Qn�1 in Tn. An embedding of Q4 in T5 is

depicted in Figure 8(a) where for simplicity only link labels are shown in terms of their corresponding generator

actions (i.e. traversal of a link with label (ij) swaps digits in positions i and j). Now suppose the embedding of

Qn�2 in Tn�1 is given. Then two copies of of Qn�2 can be joined (using two copies of Tn�1 which are contained

in Tn) via a bundle of links labeled as (1n) as shown in Figure 8(b). To find the link labels of the second Qn�1,

four possibilities are examined:

Case (i): 3 distinct digits i 6= j 6= k 6= 1 are used in labeling a 4-cycle in the first Qn�2. The labeling of the

corresponding 4-cycle in the second Qn�2 is shown in Figure 9(a).

Case (ii): 3 distinct digits i 6= j 6= k and i = 1 are used in labeling a 4-cycle. The labeling of the second 4-cycle

is shown in Figure 9(b).

Case (iii): 4 distinct digits i 6= j 6= k 6= ` 6= 1 are used in labeling a 4-cycle in the first Qn�2. The labeling of the

corresponding 4-cycle in the second Qn�2 is shown in Figure 9(c).

Case (iv): 4 distinct digits i 6= j 6= k 6= ` and i = 1 are used in labeling a 4-cycle. The labeling of the second

4-cycle is shown in Figure 9(d).
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(14)

(12)

(1
3)

(1
3)

(14)
(14)(14)

(23)

(23)

(24)

(3
4)

(3
4)

(3
4)

(3
4)(23)

(24)

(45)

(45)
(45)

(45)

(23)

(25)

(3
5)(3

5)

(15)

(15)

(15)

(15)

(15) (15)

(15)

(15)

(15) edges

(a)

(b)

Figure 8: Embedding of Q4 in T5

So, two copies of Qn�2 can be joined via links with the label (1n) to create aQn�1. Since dilation of the firstQn�2

was one, the dilation of the new Qn�1 will remain one as well. 2

Remark 4.6 The above embedding is in no way optimal; as a matter of fact embedded hypercubes have a very large

expansion and the expansion increases with the size of the hypercube. We pose the following question for further

investigation. What is the smallestn such that aQm can be embedded inTn? In addition, one may consider packing

more than one hypercube in Tn to improve the utilization of available vertices. For example, it can be readily seen

from Theorem 4.10 that up to bn=2c Qn�1’s can be embedded in Tn. This is because there exist bn=2c pairs of

Tn�1’s in Tn, and each pair of Tn�1’s contains a Qn�1.

As discussed previously, no two edge-disjoint Sn’s can be embedded in Tn. This can be readily seen from the

transposition matrix where each row specifies the set of generators for a given Sn. Since any two such rows, say

rows i and j, have the element g(i; j) in common, their correspondingSn’s cannot be edge-disjoint. Now consider a
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(ij)
(ij) (ij) (ij)

(ik)

(ik)

(jk)
(jk)

(1n)
(1n)

(1n)

(1n)

(1n)(1n)

(1n)

(1n)

(1n)

(1n)

(1n)

(1n)

(1n)(1n)

(1n)

(1n)

(1j) (jk)

(1k)

(1k)

(jn) (jk)

(nk)

(nk)

(ij) (ij)
(ij) (ij)

(km)

(km)
(km)

(km)

(1j) (1j)

(km)

(km) (km)

(km)

(nj) (nj)

(a) Case (i) (b) Case (ii)

(c) Case (iii) (d) Case (iv)

Figure 9: Four possibilities of embedding Qn�1 in Tn

transpositionnetwork in which the no. of links in each dimension (or the number of available generators) is doubled.

Call such a network a Doubly linked Transposition Network orDTn. A Tn in which half the available bandwidth for

each generator action is utilized may also be regarded as a DTn. RegardingDTn, the following can be established.

Theorem 4.11 The doubly-linked Transposition Network DTn contains n edge-disjoint Sn’s.

Proof : By construction. The generator set of each Sn is specified by one of the rows of the n � n generator

matrix. Since there are two links between two adjacent vertices, g(i; j) is distinct form g(j; i) for any two rows i

and j. 2

Corollary 4.3 DTn can similarly embed n edge-disjointBn’s.
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Remark 4.7 Observe that in embedding edge-disjoint Sn’s and Bn’s in DTn all the available links have been uti-

lized, and thus the embedding is optimal.

5 Conclusion

It was shown that the set of generators for any graph isomorphic to n-star is unique up to isomorphism among

digits. Furthermore, unlike the hypercube, the star graph was shown to be incapable of achieving a wildcard di-

mension through adding a single dimension to its existing ones. The Bubble-sort, however, can have one wildcard

with only one extra dimension. A systematic method was suggested to add generators in order to obtain a certain

number of wildcard generators. The minimum number of generators required for this purpose was derived. For

the star graph, the superiority of the proposed method over replication method was for the case of n = 2k + 1,

where obtaining k wildcard dimensions using the proposed method resulted in k fewer generators as compared to

the replication method. Based on the proposed method, a fault tolerant network, known as Transposition graph, was

developed which can reconfigure to an n-dimensional star graph despite the failure of up to
�
dn
2
e � 1

�
links and to

an n-dimensional bubble sort graph despite the failure of up to (n�2) links. It is to be noted that these transposition

graphs were briefly mentioned in [Lei90, LJD93].

It appears that the different properties like low diameter, strong resilience (vertex and link fault tolerance) en-

joyed by the Cayley graphs are dictated by the intrinsic properties of the respective generator sets. The basic nature

of the “transposition” operation plays an important role towards contributing to the richness of the star graphs and

other families of graphs that use transpositions as their generators. Our purpose in the second part of this paper has

been to investigate in details the topological properties of these Transposition Graphs, where the generator set in-

cludes all possible transpositions. The transposition graph Tn is regular, has sublogarithmic diameter and a simple

shortest routing algorithm and it is optimally fault tolerant (vertex connectivity is
�
n
2

�
); it is shown that Tn has wide

containers of short lengths (container length is increased only by one over the diameter of the graph). To compare

transposition networks with say, hypercubes, Tn has a lesser diameter and wider container; this comes with a price

– Tn has a larger node degree. We have also shown how Tn can efficiently embed popular existing architectures

like 2D meshes and hypercubes. Obviously, any other Cayley graph of dimension n that uses only transposition

22



type generators is included in Tn. It’d be interesting to study Tn as a simulator of those graphs under multiple link

failure.
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some aspects of fault tolerance of transposition networks.
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