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Abstract

The paper proposes designs of interconnection networks (graphs) which can tolerate link failures. The net-
works under study belong to a subclass of Cayley graphs whose generators are subsets of all possibletransposi-
tions. We specifically focus on star and bubble-sort networks. Our approach is to augment existing dimensions
(or generators) with one or more dimensions. If the added dimension is capabl e of replacing any arbitrary failed
dimension, it is caled awildcard dimension. It is shown that, up to isomorphism among digits used in label-
ing the vertices, the generators of the star graph are unique. The minimum number of extra dimensions needed
to acquire ¢ wildcard dimensions is derived for the star and bubble-sort networks. Interestingly, the optimally
augmented star network coincides with the Transposition network, 7;,. Transposition networks are studied rig-
oroudly. These networks are shown to be optimally fault-tolerant. 7, isaso shown to possess wide containers
with short length. Fault-diameter of 7, isshowntobern. Whilethe7;, can efficiently embed star and bubble-sort
graphs, it can aso lend itself to an efficient embedding of meshes and hypercubes.

Key Words: Bubble-Sort graph, Cayley Graph, Embedding, Fault Diameter, Fault Tolerance, Genera-
tor, Permutation, Star Graph, Transposition.



1 Introduction

In this paper we address the problem of augmenting interconnection network topologies with extralinks such that
resulting network can tolerate a given number of arbitrary link failures in the sense that the remaining (surviving)
network still has the original topol ogy as a subgraph. Several researchers [Lat91, BCH93] have considered adding
extra dimensions to networks for tolerating link failures. In [LEA89], an architecture called folded hypercube or
FHC was analyzed whichisbasically a hypercube augmented by asingledimension and it was shown that thisextra
dimension can replace any existing dimension of the network to form anew hypercube of the same size making the
network tolerant of any singlelink failure. In [BCH93], the authors have investigated the idea of adding wildcard
dimensions to meshes and tori, and they have constructed dimensional ly-augmented meshes and tori.

Cayley graphsin general and star graphs in particular have received much attention since their introductionin
1987 [AK87h]. Vertex and edge symmetry, hierarchy, sublogarithmic diameter and degree of the vertex, and high
resilience all contribute to the popularity of the star graph as an attractive aternative to hypercubes for large inter-
connection networks[DT94, QMA92]. Star graphs accommodate more verticeswith lessinterconnectionhardware
and lesscommuni cation delay and many parallel agorithmscan be efficiently mapped on star graphs[M S90, FA91,
MS92]. Our purpose hereisto develop a method to add wildcard dimensionsto these star networks. We show that
forn > 4, (2n — 4) extragenerators are necessary to have a singlewildcard generator in the augmented star graph.
Thisresult is generalized to obtain the optimal number of extra generators required to obtain a star graph S,, with
some & wildcard generators, for any k, £ < [n/2]. Interestingly, for the maximum number of wildcard genera-
tors, the augmented star graph is found to coincide with the Transposition Network, mentioned in[Lei90]. We then
show that this new Transposition network can also be efficiently used to provide maximum number of wildcard
dimensionsto Bubble-sort graphs [AK89], another class of interesting Cayley graphs. It appears that the different
properties like low diameter, strong resilience (vertex and link fault tolerance) enjoyed by the Cayley graphs are
dictated by the intrinsic properties of their respective generator sets. The basic nature of the “transposition” oper-
ation plays an important role towards contributing to the richness of the star graphs and other families of graphs
that use transpositionsas their generators. So, in the second part of the paper, we investigatein detail the algebraic
properties of this transposition graph (where the generator set includes al possible transpositions). We show that
these transposition graphs are maximally fault tolerant and have wide containers of very short lengths and hence

they compare favorably with those reported in [MP88].

2 Background

A Cayley graph is avertex-symmetric graph often with »! vertices, each vertex denoting a distinct permutation of
the set {1,2,...,n}. The adjacency among the vertices is defined based on a set of permutations referred to as

generators, the neighbors of a vertex are obtained by composing the generators with the label of the vertex. The



set of generators defined for a Cayley graph are generally closed under the inverse operation to guarantee that the
graph is undirected. Furthermore, the set of generators together with the identity permutation must produce al »!
elementsof the permutationgroup I1,,, or asubgroup of 1I,, when thegeneratorsare repeatedly appliedtothea ready
generated vertices. Theaction of agenerator on a permutation|abel may takevariousforms. A generator may swap
two digitsin positions: and j in the label; this action is commonly called a transposition and the corresponding
generator is designated by ¢(7, j). The focus of this paper is the graphs whose generators are transpositions; the
popular networks with this property are: star graphs and bubble-sort graphs.

Definition 2.1 A Sar graph 5,, of dimension » is a Cayley graph with n! vertices, each labeled with a distinct
permutation of the set of integers{1,...,n}. The set G of generatorsin 5, isdefinedas: G = {g(¢,7),j =
1,2,...,(i—1),(¢41),...,n}. Without loss of generality, it isassumed ¢ = 1.

Thetopological propertiesof the star graph have been derived and discussed el sewhere [AK87b, AK87a, DT91,
Kav93, Lat93, SS92, SS91]. Briefly, S, is both vertex and edge transitive. It contains n!(n — 1)/2 links with a
diameter of [3(n — 1)/2].

Definition 2.2 A Bubble sort graph B,, of dimension n is a Cayley graph with n! vertices, each labeled with a
distinct permutation of the set of integers{1,...,n}. The set G of generatorsin B,, isdefined as: G = {g(7,i +
1),i=1,2,...(n = 1)}.

The topological properties of bubble sort graphs can be found in [AK89, Knu73]. Briefly, B,, isvertex and edge

transitive, is regular with vertex degree (n — 1), and has n!(n — 1)/2 linkswith adiameter of n(n — 1)/2.

3 Wildcard Dimensionsin S,, and B,,

Both star graphs and bubble-sort graphs belong to the class of hierarchical networkswhose sets of links can be par-
titioned to dimensions. Examples of other such networksinclude meshes, tori and hypercubes. For such networks,
any wildcard dimension can be utilized to replace any of the original dimensionssuch that thefaulty graph (withlink
failures) still containthe original graph; thisisdifferent from the fault tolerance of the original graphs. In[BCH93],
the authors haveinvestigated the idea of adding wildcard dimensionsto -dimensiona meshes and tori. Our purpose

isto add wildcard to star graphs and bubble-sort graphs.

3.1 Augmentation of the Star graph

In order to find asolution to an optimal augmentation of dimensionsin star graph, we first show that the generators

of this graph are unique upto isomorphism among digits used.



generator | cycle representation | generator ‘ cycle representation ‘

1234 null 3124 (123)
1243 (34) 3142 (1243)
1324 (23) 3214 (13)
1342 (243) 3241 (143)
1423 (234) 3412 (13)(24)
1432 (24) 3421 (1423)
2134 (12) 4123 (1234)
2143 (12)(34) 4132 (124)
2314 (132) 4213 (134)
2341 (1432) 4231 (14)
2413 (1342) 4312 (1324)
2431 (142) 4321 (14)(23)

Table 1: Possible Generatorsfor S,

Lemma3.1 Let g(7, j)and ¢(¢, k) betwo generators of a Cayley graph S’ (with N = n! vertices), where 1 < i #
j# k <nandn > 3. For S’ tobeisomorphicto S, itisnecessary and sufficient that all the remaining generators

of 5" be of theformg(i, m)wherel < m < n,andm # ¢, j, k.

Proof : The proof is by induction. The claim is certainly true for S,. Supposeit istruefor S,_;. Since S’ is
isomorphicto S, it must includen S,,_;’sasits subsets. Thusat least (n — 2) of the generators of .S” must be of
theform g(¢, ). In that case the last generator must also be of the form ¢(7, « ), otherwise S’ cannot be isomorphic
to .5,. O

Lemma 3.1 provides abasisfor proving that the generators of any graph isomorphicto 5,, must necessarily be
of form ¢(¢, z). To seethis, the special case of 5, isstudied first. All the possible permutationsthat can be defined

as generator candidates for a graph S’ isomorphicto 54 are shownin Table 1.
The permutationsin Table 1 can be classified into 4 conjugacy classes depending on the structure of their cycle

representations.

Class| (asingle 2-cycle): 12),(13),(14),(23),(24),(34)

(
Classll (asingle3-cycle):  (123),(132),(234),(243),(124),(134),(142),(143)
Classlll (asingle4-cycle): (1234),(1243),(1324),(1342),(1423),(1432)
(

12)(34), (13)(24), (14)(23)

From edge-transitivity of thestar graph, it followsimmediately that the set of generatorsof 5" must belongto the

Class |V (two 2-cycles):

sameclass. Consider Classl. It isimpossibleto pick 3 generatorsinthisclassfor S’ such that the condition specified



in Lemma 3.1 is not met. The generators cannot be picked from Classes |1 and I11 simply because for any subset
(of order 3) of these classes the closure condition with respect to inverse operation cannot be held. For example
inClass|I, if (123) is selected as a generator, then (123)~! = (132) must also beincluded.! But to complete this
set, thereis no other distinct generator in Class |1 which issalf-inverse. In Class 1V, it can be easily shown that the
existing 3 generators cannot produce a graph isomorphicto 54 (for instance, try to from aring of length 6 using an

aternate sequence of two generators). We summarize thisin the next theorem.

Theorem 3.1 Let S’ be a graph isomorphic to 5,,. Then its set of generators must be of the form ¢(7, «) where

1<i<mn,andz € {1,2,...,n} — {i}.

Supposeit isdesirableto construct anetwork based on S, which can tolerate any : link failureswith no degrada-
tion in performance. Thisisequivalent to supporting the network with ¢ wildcard dimensions. One direct approach
is to increase the number of linksin every dimension by a multiplicativefactor of (i + 1) (replication). Consider
the S,, with the set of generators: ¢(1,2), g(1,3) ... g(1,n). Toproduceone (: = 1) wildcard generator, one has

to add only transpositionsor 2-cyclesto the above set (by Theorem 3.1). The optimal set of generatorsrequired is:

- g9(1,2) ¢(1,3) ... g(1,n)
9(2,1) - 9(2,3) ... g(2,n)
9(3,1) ¢(3,2) - cooog(3,m)

Any row in the above corresponds to the set of generators which can produce S,, and any link failure can damage
at most two of the above 3 rows (when g(1,2) or g(1, 3) fails). Thusany singlelink-failure can be tolerated. The
number of generatorsrequired can be easily obtained as: (3n — 6). The direct approach (doubling each dimension
or replication) requires atotal of (2n — 2) generators which isbetter than the above method for n > 4. Thisresult

is summarized in the following.

Remark 3.1 Unlikethe hypercube, the star graph cannot achieve the single-wildcard feature by adding only one

dimension.

! Another argument to rule out Class |1 is that its generators cannot change the parity of the starting vertex.



dimenstion | no. of wildeardsi | Replication Method | Proposed Method

n = 2k (k- 1) k(2k — 1) k(2k — 1)

n=2k+1 k 2k(k+1) kE(2k 4+ 1)

Table 2: Comparison of Two Methods

For ¢ > 1, one needs to add two rows to the existing rows for each extra wildcard since the failure of one
generator can affect 2 rows. As the number of rows increases, the number of required generators for new rows
dropssince some of thesegenerators have aready been includedinthegenerator set. Thetotal number of generators
neededtoobtain: wildcards1 < 7 < ([§]—1)is(i+1)(n—1)using Replication Method andis(2i+1)(n—i+1)
using the Proposed Method.? It followsthat for i > [272] the proposed method proves slightly advantageous;
see Table 2. Notethat to provide maximum number of wildcardsthe number of generators for even n isthe same
for both cases and for odd » savingin generators using the proposed method is . However, routing doesn’t change
with replication.

Now, if we consider the generators of the augmented star with ([n/2] — 1) wildcard dimensions, the augmented
graph obtained as such provides al the possible transpositionson » available dimensions (i.e. defined by @

generators). This graph was introduced in [Lei90] and briefly mentioned in [LJD93] as the Transposition graph,

T,.

Definition 3.1 A Transpositiongraph 7,,, of dimension n, is a Cayley graph with n! vertices each assigned a dis-

tinct permutation of the first » positiveintegers. The set of generatorsis: {¢(¢,7),1<14,j < n,i # j}.

Example: Figure 1 showstransposition graphs of dimensions2 and 3 and Figure 2 shows a transposition graph of
dimension4. Notethat T, isaregular vertex symmetric undirected graph with vertex degree @ hasn! vertices

and n(n — 1)n!/4 edges.

2The maximum valuefor i is dictated by the fact that all the generatorswill be used up for 4., and any further improvement must come

from replication of already used generators.
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Figure 1. Transposition Graphs of Dimensions 2 and 3
3.2 Augmentation of the Bubble-Sort graph

In this section we investigate the possibility of adding wildcard generators to the bubble sort graph B,, and show
that for addition of maximum number of wildcard generators the augmented graph is again the transportation graph

T,, asobtained for star graphs.

Lemma 3.2 Itispossibleto add one generator to the set of generatorsof B,, which can play therole of awildcard

generator.

Proof :  The proof is by construction. Let the set of generatorsin B,, be: {g(i1,2), g(i2,3), -+, 9(in-1,1n)}.
The added generator will be: ¢(i,,, ¢1). Sotheaugmented set of generatorswill be: {g(71,%2), g(i2,73), -+, g(in—1,
in), 9(in,11)}. It can be seen that through the newly added wrap around generator, failure of any single generator
can betolerated (notethat B, is edge-transitive[AK89)]). O

Since the Bubble-sort graph is edge-transitive, the generators can be arranged arbitrarily with respect to digits.
Thetransportation graph T,, containsall possibletransposition generators and hence T, containsmany B,,’s. How
many distinct B,,’sare containedin a7),,? One can easily establish aone-to-one correspondence between the set of
generators of a B,, with a specific permutation of » digits. Let ¢ = (1,42 . ..¢,) correspond to the set of genera-
tors(foraB,,): {g(i1,72), g(i2,t3) ... g(in_1,1,)}. Wehaven! distinct permutations of » digits; but any permuta-
tion correspondsto the same set of generators asits reflection would. For instance permutations: (i1, i3 - - - ,,) and

(i, - - -12,11) correspond to the same set of generators. We state the following theorem.
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Figure 2: Transposition Graph of Dimension 4

Theorem 3.2 The set of generatorsof 7;, containsn!/2 generator subsetsof cardinality (» — 1), each subset spec-

ifying uniquelya B,, .

Remark 3.2 These B,,’s are distinct, but not necessarily mutually edge-disjoint.

The next important question to be answered is: how many wildcard generatorsare containedina’, if itistobe

used as afault tolerant Bubble-sort graph, i.e., how many link failurescan a'T), tolerate and can still containa B,,?

Weintroducethe simple concept of amodel graph A, correspondingto any graph (say, T, or B,,) whose generators

aretranspositionsin thefollowingway: H,, hasn vertices, each labeled with thedigits1 through » and two vertices



i and j are connected by an undirected edge if and only if the generator ¢(7, j) isincluded in the generator set of
the graph H,, ismodeling. Thus, the model graph of T, isa complete graph of » vertices, and that of B,, isaline
graph of n vertices. When any link failsinaT’,, we can model the situation by deleting an edge (¢, 7) in the model
graph (the generator ¢(¢, j) corresponding the failed link in 7},). Thus, aslong as we can find a Hamiltonian path
in the remaining model graph of T,, (corresponding to any fault scenario), a complete bubble sort graph can be
constructed from the remaining fault free links of the transposition graph 7,,. In case of arbitrary failure of linksin
T,, themodel graph is an arbitrary graph of n vertices and the problem reduces to finding a Hamiltonian path in
the model graph. Computing a Hamiltonian path in an arbitrary graph is NP-complete in general [GJ79]; soisthe
problem of locating a B,, (if any) from an arbitrarily injured 7;,. Nevertheless for special cases when the number

of failuresis restricted, one may be able to obtain avalid set of generatorsin linear time.

Theorem 3.3 T}, hasat most (n — 2) wildcard generatorsas a fault tolerant B,,.

Proof :  If generators of any row in the transposition matrix fail (thereare (n — 1) of such generators), no B,, can
be constructed by the remaining generators. Thisis so sincein the model graph A, al linksincident to a vertex

would be missing, isolating this vertex from therest of H. O

Theorem 3.4 Failureof any arbitrary set of at most (n — 2) generators cannot destroy all the eligible candidates

for the set of generatorsof B,,.

The number of digjoint generator sets of T, which can be used for construction of a B,, is equivaent to the

number of link-digjoint Hamiltonian pathsin K, (afully-connected n-vertex graph). This number can be at most

[n/2].

4 Propertiesof the Transposition Graph 7,

The transposition graph 7, for any » > 1, isa Cayley graph and hence is vertex symmetric [AK89]. So, in T},
we can always view the distance between any two arbitrary vertices as the distance between the source node and

theidentity permutation by suitably renaming the symbol srepresenting the permutations. Hence, in our subsequent



discussion about a path from a source vertex to a destination node, the destination vertex is always assumed to be
the identity vertex I without any loss of generality. Also, we use distance of avertex (permutation) to indicate its
distanceto theidentity vertex.

Itis easy to see that any permutation of » elements can also be specified in terms of its cycle structure with
respect to the identity permutation /. For example, 345216 = (135)(24)(6). The maximum number of cyclesin
a permutation of » elementsis n and the minimum number is 1. When a cycle has only one digit, that digitisin
its correct position in the permutation with respect to the identity permutation: we call such a digit an invariant
digit. The singleton cycles may be omitted in the cycle representation of a permutation if the number of digitsin
the permutation is understood from the context. We use following notations throughout the rest of the paper: A,,,
Diameter of 7', u, An arbitrary permutation (vertex), (Cy - - - C ), Cyclerepresentation of thearbitrary vertex u; C{
denotes j-thdigitin thei-th cycle of vertex u, D(u), Distanceof thevertex  (from theidentity permutation), (u),
Number of cyclesof length at least 2 in any permutation «, §( ), Number of cycles of length 2 in any permutation
u, m(u), Total number of digitsin these ;1 cycles of the permutation «, and n — m(u), Number of invariant digits

in the permutation .

4.1 Shortest Routing and Diameter

We want to reach theidentity vertex I starting from an arbitrary vertex « in T,,. Consider the algorithm: “For each
digitinu notin correct position, put it in correct position by the appropriate generator.”

Remarks: (a) Thealgorithmiswell-defined; for each vertex in 7, we have all possible n(n — 1)/2 transpositions
(generators). (b) Consider an arbitrary cycle Cs, |Cs| > 2, inthe vertex (permutation) «; we need exactly |Cs| — 1
moves of the algorithm to execute the cycle completely (once |Cs| — 1 digitsof the cycle C; are placed in correct
positions, thelast oneisautomatically placedinitsposition). (c) For an arbitrary vertex « inT},, thealgorithm makes
m(u)—p(u) movestoreach thedestinationvertex 1. (d) For anarbitrary vertex w inT},, at least m(u)— p(w) moves
are necessary to reach the vertex I since at most one out-of-place digit (belonging to a cycle of length > 2) can be
placed in its correct position in one move (for 2-cycles, when one out-of-place digit is put in its correct position,

the other is also automatically put in its correct position).



Theorem 4.1 The distanceof an arbitrary vertex « in 7}, (fromtheidentity vertex I') isgivenby D(u) = m(u) —

p(w) and the diameter of 7, isgivenby A, = n — 1.

Corollary 4.1 Eachvertexin1), has(n — 1)! antipodes, i.e., vertices at maximum distance fromthe vertex. For
example, for theidentity vertex /, these vertices are those having the cycle representation of the form (1) where

isany arbitrary permutation on the integersof theset {2,3...,n}.

4.2 AverageDistanceof 7,

Theaverage number of cyclesinapermutationof » digitsisknowntobe H,, = >""_, 1/, thenth harmonic number.
Thus the total number of cycles over al permutationsis: n!H,,. On the other hand, the total number of m-cycles
is: n!/m,1 < m < n. But the total number of cycles times the average length of acycle ¢,,, should equa to the

sum of al m-cycles times their number. Therefore,

n
n! n

n!HnXKav: Z Em :>£av: I7i
n

m=1

The average number of cyclesin apermutationis. H,,. Hence:

Average DistanceinT,, = (Hi — 1) xH,=n—-H,

n

4.3 Fault Toleranceof 7,

Lemma4.1l For anarbitraryvertex« in 7, thereexist at least (m(u) — 8(u)) vertex digoint paths (to the identity

vertex I) of length D(u) = m(u) — p(u).

Proof : Theminimal lengthisessily established by noting that any cycleof length & can beexecuted using (k—1)
transpositions. Let A = {i14...4(,,—26)} be the set of out-of-place digits belonging to k-cycles, & > 2. In
addition, let B = {jij2...J(26-1)J(26)} e the set of out-of-place digits belonging to 2-cycles. Disjoint paths
can be obtained by changing the order in which digits are corrected. Pick theinitial order of correctionas. ¢ =
(2122« i(m—20)J1J2 - - - J(260-1)J(26))- BY cyclicaly shifting o to theleft every time, adistinct digoint path will be

obtained. Thecorrectionorder correspondingtothesepathsareasfollows: oy = (iviz . . i(p_26)J1J2 - - - J(26-1)726);

10
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Correction orders: 01 =[34512], 02 = [41235], 03 = [51234], 04 = [12345]

Figure 3: Vertex Disjoint Minimal Pathsin 7§

0y = (1203 . - Um_2g) 12 - - - J2611) " O(mu—zo41) = (J1d2 -+ - J26, 1102+ - - U1m—26))s O(m—2042) = (J3Ja - - J(26)»
3. (m 29)]1]2) O (m—0) — (j(2€—1)j(26’) .- -j(20—3)j(2€—2))-

Observethat startingfrom o ,,, _2¢..1), the new correction orders are obtained by shiftingtwo positionsat atime
(because every pair of adjacent elementsin B correspondsto a 2-cycle and correction of one element resultsin the
correction of the second one). O
Example: Consider the vertex v = (12)(345)(6)in Ts. Here, m = 5,0 = 2,0 = 1. Thus, there are 4 vertex
disoint paths, each of length 3, from vertex « to the identity /. These paths, along with the correction order of
digitsfor each path, are shownin Figure 3.

For an arbitrary vertex « in 1), we can apply any of the possible n(n — 1)/2 generators (transpositions); only
m(u) — 6(u) of them lead to vertex disjoint minimal paths. In order to determine the vertex connectivity of 7;,, we

need to explore aso the non minimal vertex digjoint paths. First, we observe certain simple facts:

Remark 4.1 Any k-cycle (cycle of length £) in the cycle representation of any vertex in T,, can be writtenin %

different ways. For example, the cycle (2546 ) is the same asthe cycles (5462), or (4625), or (6254).

Remark 4.2 Consider a k-cycle in any vertex u, say (i17z - - - i ). There exist ( ) generatorsto break this cycle.

Application of the generator ¢(i;,4;/), j < j' (for brevity), breaks the cycle into two cycles (each of length at least

2): (intg - -ijoaijrijopn - ik) (G - ijioy).

11



Remark 4.3 Consider anarbitraryvertexwinT,, u = (C1)(Cy)(...) = (C1---CF)(CL---CE)(...). Byapplying
the generator ¢(C1, C4) wereach thevertex (C1 ---CFCl ... .C¥)(...) = (¢} ---c¥ ]

- CFCI)(...) (see Remark 4.1). Note that (...) indicates other cyclesin the vertex, if any.

Lemma 4.2 Consider an arbitrary vertex u in T,,, u = (C1)(C3)(...) = (C}---CH)(C---CE)(...). Thereare
k x k' distinct neighbors of the vertex « each of the form (xzy)(...) where 2 and y are arbitrary digits such that

xz € Cy and y € Cy and * indicates some digit string.

Proof :  Theproof followsfrom the Remark 4.3 and thefact that || = k and |C5| = &’. Notethat for any choice
of z (say, = = C}) and y, the generator needed to reach the neighbor is given by g(C{“, y). Distinctnessfollows

from the distinctness of the generators for different choicesof = and y. O

Lemma4.3 Consider an arbitrary vertex « inT,,, u = (...)(C1C2...C¥), suchthat k > 3 (C, isan arbitrary
cycle of & digits). Thereexist (¥) — k vertices each of theform (...)(*CiC{),1 < i < k—2andi+2 < j <k
(the combination: = 1, j = k excluded), each at a distance 2 from the vertex «. Moreover, these vertices as well

asthe vertices on the paths from u to these vertices are all distinct.

Proof : Each pair of digits C*, C7 is distinct and the two required generators (transpositions) needed for each
choice of C*, C7 are g(C*,C7) and g(C**+', C7) (also see Remark 4.1). Note that none of these verticesinvolved

are on any minimal path from « to the identity vertex I. O

Remark 4.4 Let (C1C?...C}) bethecyclerepresentation of an arbitrary vertex with asinglecycle C. Applying
the sequence of transpositions (C1C2), (C2C3), ... (CF~1CF) to thisvertex and in that order will map the vertex
to identity. Furthermore, at step j, digit C{ is put in correct position as the result of transposition (C{, C{“),

1 <j <k — 1. For agiven cycle, thisrouting is referred to as the standard minimal routing for that cycle.

Lemma4.4 Let v and v beapair of verticesin 7T, such that « hasa cycle of the form (azy) (possibly other cycles
aswell) and » has a cycle of the form (awz) (possibly other cyclesaswell), where z, y, z, and w are single digits
and « isastring of 1 or moredigits. Let P be the set of shortest paths from « to the identity vertex I such that the

generator g(z,y)isappliedlast (standard minimal routing). Smilarly, let @) be the set of shortest pathsfrom» to

12



the identity vertex I such that the generator g(w, =) is applied last (standard minimal routing). Any pathin P is

vertex digoint fromany pathin @ iff {z,y} # {w, z}.

Proof : Thedigit y occupies the correct position of the digit = for each vertex aong every path in P and each
path in P passes through the vertex (xzy) before reaching the node 7. Similarly, the digits = occupies the correct
position of the digit w for each vertex along every path in @ and each path in @ passes through the vertex (wz)

before reaching the node /. The claim readily follows. O

Theorem 4.2 For any given vertex u inT,,, there exist n(n — 1)/2 vertex-digjoint paths (to the identity vertex I)

whose lengths are as follows:

No. of Paths Length

(m—8) D

("3") + (n=m) xm+ (3) = (m—06) | D+2 (atmost)

where m = m(u), 8 = 6(u),and D = D(u).

Proof : Letthecyclerepresentation of thevertex ubeu = Cy,Cy, -+, C,,wherep = p(u) and 31 |C5| = m.

Denote the set of vertex disjoint minimal pathsby ¥, . According to Lemma4.1 |¥,| = (m — #). Note that
none of theinvariant digitsin vertex « are ever moved in any of these minimal paths.

Thereare(n—m ) invariant symbolsinvertex . Let («) denotethe cyclerepresentation of thevertex . Choose
any two arbitrary invariant digits, say digits and j, apply the generator ¢(:, j) to the vertex « to reach the node
(*)(77), then apply shortest routing to the () portion of the vertex and execute the cycle (i) last. Call the set of
paths formed thisway ¥, where |¥,| = ("7,"). Each pathin ¥, is vertex disjoint from any other in ¥, because
of the uniquechoice of pairs of invariant digits; also each pathin ¥, isvertex disjoint from any pathinin ¥,. Each
pathin ¥, hasalength of D + 2.

Choose an arbitrary invariant digit o (thereare (n — m ) choices) and an arbitrary digit 5 = C{ fromany cycle
C; (there are ;. choices for ¢ and |C;| choicesfor j); apply the generator g(«, 3) to the vertex u to reach the node
Cy,Cyyeer, Ciyg, (CITH 010 0 B) Ciyy - - - €, (Remark 4.3), apply shortest routing to reach theidentity

vertex using the generator ¢(«a, ) last. Let ¥5 denote the set of paths generated according to this scheme. Each
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pathin ¥5 hasalengthof D + 2 and |¥5] = Y4 (n — m)|C;| = m(n — m). Pathsin ¥5 are mutually disjoint
by the unique choices of « and /3 for each path; they are also vertex digjoint from the pathsin ¥, and V5.

Thereare § cyclesof length 2 and » — 6 cycles of length > 2 in vertex «. We generate two sets of non minimal
paths. First, for each k-cycle, & > 2, we go to the (’2“) — k distinct neighbors of « (each at a distance 2 from u) as
defined in Lemma 4.3 and from each of these vertices follow standard minimal routing to reach the identity vertex
1. Each pathisof lengthat most D + 2 and they are mutually vertex digjoint (Lemma4.4). Second, chooseany pair
of cyclesin«, generate distinct neighborsasin Lemma4.2 and follow standard minimal routing from each neighbor
to reach the identity vertex /. Each path isof length D + 2 and they are mutually vertex disjoint (Lemma4.4). Let
V¥, denotethe set of paths generated according to thesetwo schemes. Each pathin ¥, hasalength of at most D + 2
and |Wy] = () — (m —260) — 6 = () — m + 6 (number of transpositionsavailable involving al m digitsin
all thecyclesis (}); we need to exclude  transpositionsfor each k-cycle, k > 2, (total (m — 26) transpositions)
corresponding to adjacent digits (Ileading to minimal paths) and # optimal transpositionscorrespondingto 2-cycles).
Each pathin ¥, isdigointto any pathin ¥y by Lemma4.4 and isaso disjoint from any pathin ¥, or ¥5 since no
invariant isinvolved.

Corollary 4.2 \ertex connectivity of 7;, isn(n — 1)/2.

Example: Consider the vertex (12)(345)(6) in 1. Theminimal paths(i.e., pathsin ¥;) were shown in Figure 3.
The set ¥, isempty since thereis only one invariant digit e.g. “6”. The set ¥5 has five paths that are generated
by mixing the invariant digit with the 2-cycle and the 3-cycle; these paths are shown in Figure 4. Thereisno cycle
of length > 3; hence the pathsin the set ¥, are generated by combining the 2-cycle and the 3-cyclein all possible

(six) ways; the paths are shown in Figure 5.

Theorem 4.3 The fault-diameter of 7, isat most (n + 1).

Proof :  According to Theorem 4.2 there are () disjoint paths between any two verticesin T,, of length at most

D + 2. In addition, the connectivity of T}, is (;). Therefore, removal of (3) — 1 verticesfrom T,, will leave at least
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(16) 34 (45) (26) (16)
(261) (345) (—)>(zel)(45) — (261) —— (16)

26 (16) (26)
(26) (45) (53) 62 )

/—> (162) (345) — (162)(53) —» (162) —* (26) K
45 (36)

(36) (12) (49 (56) R B

\_>

(12) (345) (12) (3456 i» (3456) ——» (563) —— (36)

) )
\ \ (46 53 (36) (46) /
(12) (4536) (12 (4536) (59 (364) (46)
(56) (56)
(12) (5346) (12 (34 (48)

(5346) (465) (56)

Figure4: The set U5 of pathsfor the vertex (12)(345)(6)in T

(51)
9 o 2sast) 2 o g5y L e (a1 e (sp)
(14) (24) (45) (53) (31)
—— » (24531) (4531) (531) 31

T

(31)
(34) (41)
/—> 25341) (29) (5341) (53) (341) (41) k

(15) ( 2
(12) (345) |
(52)
\\ﬂ, (13452) ) (3452) (39 (452) {25) (52) N
14 45 (32)
(24 (14532) (19 (45399 22 5320 8o (39
(25) ( ) 1

(15) (53) (34) (42)
——» (5342) (342) (42)

15342

Figure5: The set ¥, of pathsfor the vertex (12)(345)(6)in T

one disjoint path between two vertices which is longer than the minimal path by an additive 2. The diameter of 7,
is(n —1). Sothefault-diameter dy < (n — 1)+ 2=n + 1.

Let « and v be two vertices in 1), with respective cycle representations of (1)(23...n) and (12...n). Now
distributethe (};) — 1 faultssuch that all neighborsof « arefaulty except for ». Any path from « toidentity must pass

through » whichisan antipode of identity. Thelengthof suchapathis(n—1)+1 = n. Itfollows: n < df < n+41.

a

Theorem 4.4 The fault diameter of 7, isn.
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Proof :  For brevity, we provide only a sketch of the proof which is established by construction. We have to con-
centrate on the vertices which are at amaximum distance from the identity vertex (i.e., at adistanceof n — 1). Note
that such vertices must have a single cycle containing al the » digits. For such vertices we give aformulation of
() vertex-disjoint minimal paths (of length » — 1) to the identity vertex.

Without loss of generality, let the cyclic representation of an antipode « with respect to I be: (123...n). We

create an ordered set of all possibletranspositionsasfollows: tspr = {(12),(13)...(1n),(23),(24),...(2n),...
(1n),(2n),...(n—1,n)}. Each optimal disjoint path originates from » viaadistinct transposition and terminates
a I through another distinct transposition. For any path, if ¢; € tsgr ischosen to be the last transposition from
utol,tyy € tspr Will be selected as the first transposition used along that path. For (%) paths constructed this
way, al the neighbors of « and I will be distinct (because there are (g) t;’sintspr). Depending on t;, two cases
are distinguished:
Case(i): t; = (jn),1 < j < n — 2. Clearly applying ;41 = (j + 1,7 + 2) automatically corrects digit j + 1. If
t; = (n—1,n),thent,;; = (12) which after being applied to « will correct digit 1. Thus, starting from digit j + 1
(or 1), other digits(i.e. j + 2,7 + 3,...) are corrected in a cyclic order leaving out digits j and » which will get
corrected in the last step. Case(ii): ¢; = (jk),j # k # n. Heret;11 = (4, k + 1). We begin by correcting digit
k + 1 and the digit correction order will be (k + 1,k +2,...j — 1,7+ 1,...,k =2,k — 1). Digitsj and & will
get corrected in the last step.

We show the distinctnessof theintermediate vertices a ong the paths constructed as described before by contra-
diction. Supposetwo paths between « and I meet at an intermediate vertex ¢ beforereaching 7. For thisto happen,
the same set of digitswould have to be corrected in the same number of stepsin the above paths, no matter what
the correction order is. But this cannot happen due to the cyclic nature of the correction order used in construction
of each path and the uniqueness of the pair of digits which will get corrected in the last step along each path. O
Example: Consider the vertex (123456) inTs. tspr = {(12), (13),(14), (15),(16),(23),(24),

(25),26), (34),(35), (36), (45), (46), (56)}. All ($) = 15 minimal paths, each of length 5, are shown in Figure 6.

Remark 4.5 Another very important consideration in designing robust interconnection networks is the existence

of wide containers of short lengths[MP88]. A container is a set of vertex disjoint paths between arbitrary pair of
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(23456) ——  (3456) ——=  (456) (56)

(13456) —  (1456) — (145) — (15)

™ (12456) — (1256) —= (126) — (12)

(12356) —™ (1236) — (123) — (23)
(12346) e (1234) — (234) — (34)
—— =  (12345) —  (2345) —®  (345) —>  (45)
%—> (12)(3456) —= (12)(346) — (12)(46) — > (46) j\
(12345) — = (123)(456) = (13)(456) —= (13)(4s) —= (13 /'I
\\—> (1234) (56) —= (134)(56) — = (14)(56) — (14 —
(1456) (23) — (156)(23) ——* (156) — (16)
(156)(234) — (56)(234) — ™ (24)(56) — (24)

(16)(2345) ——» (16)(345) — (16)(35) — (35)

(1256)(34) ——— (256)(34) —™ (52)(34) ——» (52)

(126) (345) ——w

(26) (345) ——  (26)(45) (26)

> (1236) (45) ——— (136)(45) ——» (36)(45) — (36)

Figure 6: Minimal Vertex Digjoint Paths from the vertex (123456) in T

vertices. The existence of wide containers (a large number of vertex digjoint paths) is essential to establish virtual
links between vertices both when there are permanent regular faults(verticesjust ceaseto exist) aswell aswhen the
faults are Byzantinein nature (i.e., faulty vertices can behave maliciously by changing or misdirecting messages).
The details, protocolsand algorithmsto establish virtual linkswith the help of containerscan be found in [MP88].
Fromtheabovetheorems, itisapparent that all containersin 7., areof length D +2 < n-+1 and that each container

in T, isof length at most diameter of the graph plus one. Thus these graphscompare very favorably with the set of

graphs with wide containers of short lengths presented in [MP88] .

4.4 Embedding of Other Graphsin 7,

It is clear that the transposition graph 7, contains star graph S,, and bubble-sort graph B,, i.e. these graphs can be
optimally embedded in T, (with dilation one and expansion one). In this section we exploreembeddability of some

other networks like hypercubes and 2D meshesin 7T,,.
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Theorem 4.5 T, isbipartite; T,, does not contain any cycle of odd length.

Proof : Theproof followsfrom thefact that the transpositionsare odd permutations. Any Cayley graph based on

transpositionsis bipartite. O

Theorem 4.6 T, (n > 2) containsall cycles of even length ¢, 4 < ( < n!l.

Proof : It has been shownin [JLD91] that astar graph .5, containsall ¢ cyclesfor even ¢ and 6 < ¢ < n!. Since

S, isasubgraph of 7,,, the result readily follows. O
Theorem 4.7 A Transposition graph 7', contains ("7, ") (7) k!n distinct S5’s (S, isastar graph of dimension k).
Theorem 4.8 InT,,, thereare | %] digoint sets of generatorsfor B,,.

Theorem 4.9 Consider a My x M5 2-dimensional mesh such that M, x M, = n!. Thereisan optimal (expansion

= 1) embedding of thismeshin T,.

Proof : It has been shownin [JLD9]1] that a My x M, 2-dimensional mesh such that My x My = n! can be
embedded in a star graph S, with unit expansion and dilation 3 where edges with dilation 3 correspond to trans-
positionsof theform (4, ), 7, j # 1 which can be executed using three generatorsin S,, namely (1¢), (1, 7),(1,7).
Butin 7, transpositionsof theform (¢, j) can be executed with only one generator (since all possibletransposition
generators are present). Hence the result follows. O
Example: Figure 7 showsthe mapping of a6 x 4 meshin 7. Notethat all the vertices are not |abeled and the edge
label (7 ) indicates that the generator ¢(7, j ) is used.

Next, we consider embedding of hypercubesin transposition networks. It isto be noted that the embedding of
hypercubesinto star graph has been investigated before (see [NSK90] for instance). These embeddings generally
offer dilations of 3 or more. For Transposition networks, on the other hand, more efficient embedding is expected

to exist due to their robust structure.

Theorem 4.10 Thereisa dilation-1 embedding of hypercube ¢),,_1 into T,.
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Figure 7: Mapping of a6 x 4 meshin T}

Proof : The proof is by induction. First we show a possible embedding of @, in T (induction base). Then we
show that given @,,_» isembeddablein T,,_1, itispossibleto embed ¢),,_1 inT,,. An embedding of Q4 inT5 is
depicted in Figure 8(a) where for simplicity only link labels are shown in terms of their corresponding generator
actions (i.e. traversal of alink with label (ij) swaps digitsin positions: and j). Now suppose the embedding of
Q,_2inT,_ 4 isgiven. Then two copies of of ¢),,_» can bejoined (using two copies of T;,_; which are contained
in7T,,) viaabundle of linkslabeled as (1) as shown in Figure 8(b). To find the link labels of the second @,,—1,
four possibilitiesare examined:

Case (i): 3distinctdigits: # j # k # 1 areused inlabeling a4-cycle in thefirst @,,_». Thelabding of the
corresponding 4-cyclein the second @, isshown in Figure 9(a).

Case (ii): 3distinctdigits: # j # k and+ = 1 areused in labeling a4-cycle. The labeling of the second 4-cycle
isshownin Figure 9(b).

Case (iii): 4digtinctdigits: # j # k # £ # 1 areused in labeling a4-cyclein thefirst Q,,_». Thelabeling of the
corresponding 4-cyclein the second @, isshown in Figure 9(c).

Case (iv): 4digtinct digits: # j # k # fand¢ = 1 are used in labeling a 4-cycle. The labeling of the second

4-cycleis shownin Figure 9(d).
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(14)

(15) edges

(b)
Figure 8: Embedding of Q4 in T}

So, two copiesof @), canbejoinedvialinkswiththelabel (1n) to createa®,,—; . Sincedilation of thefirst ),,_,

was one, thedilation of the new @,,_; will remain one aswell. O

Remark 4.6 Theaboveembeddingisinnoway optimal; asa matter of fact embedded hypercubeshaveavery large
expansion and the expansion increases with the size of the hypercube. We pose the following question for further
investigation. What isthesmallest n suchthata )., canbeembeddedin 7', ? Inaddition, onemay consider packing
more than one hypercubein 7T;, to improve the utilization of available vertices. For example, it can be readily seen
from Theorem 4.10 that up to |n/2] @,,—1’s can be embedded in 7,. Thisis because there exist |n/2] pairs of

T,_1'sinT,, and each pair of T;,_'scontainsa @, _1.

As discussed previously, no two edge-disjoint .5,,"’s can be embedded in 7’,. This can be readily seen from the
transposition matrix where each row specifies the set of generators for agiven S,,. Since any two such rows, say

rows: and j, havetheelement ¢(¢, j ) incommon, their corresponding 5,,’scannot be edge-disjoint. Now consider a
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(c) Case (ii) (d) Case (iv)

Figure 9: Four possibilities of embedding @, in T},

transpositionnetwork in whichtheno. of linksineach dimension (or thenumber of available generators) isdoubl ed.
Call suchanetwork aDoublylinked Transposition Networkor DT’,,. A T, inwhich haf the available bandwidthfor

each generator actionisutilized may alsoberegarded asa DT,,. Regarding DT, thefollowing can be established.

Theorem 4.11 The doubly-linked Transposition Network DT, contains » edge-disoint 5,,’s.

Proof : By construction. The generator set of each .5, is specified by one of the rows of the n x n generator
matrix. Since there are two links between two adjacent vertices, ¢(1, ) is distinct form g(j, ¢) for any two rows ¢
and j. O
Corollary 4.3 DT,, cansimilarly embed »n edge-digoint B,,’s.
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Remark 4.7 Observethat in embedding edge-disjoint S,,’'sand B,,’sin DT, all theavailablelinks have been uti-

lized, and thus the embedding is optimal.

5 Conclusion

It was shown that the set of generators for any graph isomorphic to n-star is unique up to isomorphism among
digits. Furthermore, unlike the hypercube, the star graph was shown to be incapable of achieving awildcard di-
mension through adding a single dimension to itsexisting ones. The Bubble-sort, however, can have one wildcard
with only one extra dimension. A systematic method was suggested to add generators in order to obtain a certain
number of wildcard generators. The minimum number of generators required for this purpose was derived. For
the star graph, the superiority of the proposed method over replication method was for the case of n = 2k + 1,
where obtaining & wildcard dimensions using the proposed method resulted in & fewer generators as compared to
thereplication method. Based on the proposed method, afault tolerant network, known as Transpositiongraph, was
devel oped which can reconfigure to an n-dimensional star graph despitethefailureof upto ([4] — 1) linksand to
an n-dimensional bubblesort graph despitethefailureof upto (n —2) links. It isto be noted that these transposition
graphs were briefly mentioned in [Lei90, LJD93].

It appears that the different properties like low diameter, strong resilience (vertex and link fault tolerance) en-
joyed by the Cayley graphs are dictated by theintrinsic properties of the respective generator sets. The basic nature
of the “transposition” operation plays an important role towards contributing to the richness of the star graphs and
other families of graphsthat use transpositionsas their generators. Our purposein the second part of this paper has
been to investigate in details the topol ogical properties of these Transposition Graphs, where the generator set in-
cludes all possibletranspositions. The transposition graph 7, is regular, has sublogarithmic diameter and asimple
shortest routing algorithm and it is optimally fault tolerant (vertex connectivity is (3)); itisshown that 7,, haswide
containers of short lengths (container length isincreased only by one over the diameter of the graph). To compare
transposition networkswith say, hypercubes, T,, has alesser diameter and wider container; this comes with aprice
—T,, has alarger node degree. We have also shown how T;, can efficiently embed popular existing architectures

like 2D meshes and hypercubes. Obviously, any other Cayley graph of dimension » that uses only transposition
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typegeneratorsisincludedin 7,,. It'd be interesting to study 7T, asasimulator of those graphs under multiplelink

fallure.
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