Computer Science COlOg‘&%g

Technical Report

University

A Sdlf-Stabilizing Distributed Algorithm to
Construct An Arbitrary Spanning Treeof a
Connected Graph*

Gheorghe Antonoiu and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Callins, CO 80523

Technical Report CS-95-106

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.col ostate.edu

*Address for Correspondence: Pradip K Srimani, Department of Computer Science, Colorado State University, Ft. Collins, CO 80523, Tel: (303) 491-
7097, Fax: (303) 491-2466, Email: srimani@CS.ColoState.Edu

A Self-Stabilizing Distributed Algorithm to Construct An Arbitrary
Spanning Tree of a Connected Graph*

Gheorghe Antonoiu and Pradip K Srimani
Department of Computer Science
Colorado State University
Ft. Callins, CO 80523

Abstract

We propose a simple self-stabilizing distributed algorithm that maintains an arbitrary spanning tree in a connected graph.
In proving the correctness of the algorithm we devel op a new techniquewithout using abounded function (which is customary
for proving correctness of self-stabilizing algorithms); the new approach is simple and can be potentially applied to proving
correctness of other self-stabilizing algorithms.

1 Introduction

In adistributed system the computing elements or nodes exchange information only by message passing. Every node has a
set of local variables whose contents specify theloca state of the node. The state of the entire system, called the global state,
isthe union of the local states of all the nodes in the system. Each node is allowed to have only a partial view of the global
state, and this depends on the connectivity of the system and the propagation delay of different messages. Yet, the objective
inadistributed system isto arrive at adesirable global final state (legitimate state). One of the goals of adistributed systemiis
that the system should function correctly in spite of intermittent faults. In other words, the globd state of the system should
ideally remain in the legitimate state. Often, malfunctions or perturbations bring the system to some illegitimate state, and it
isdesirablethat the system be automatically brought back to the legitimate state without the interference of an externa agent.
Systemsthat reach the legitimate state starting from any illegitimate state in afinite number of stepsare called self-stabilizing
systems [Dij74, Dij86]. This kind of property is highly desirable for any distributed system, since without having a global
memory global synchronization is achieved in finite time and thus the system can correct itself automatically from spurious
perturbationor failures. Few such agorithms have recently appeared in theliterature[GH90, SS92, BGW89, FD92, ADG92];
agood survey of self-stabilizing algorithms can be found in [Sch93].

Every nodein a self-stabilizing system has a set of rules, each rule having two parts - an antecedent (boolean condition)
part and an action part. A nodeis said to be privileged if the antecedent part of some ruleistrue for that node. Privileged
nodes execute their action part (make amove), which involves changing thelocal state of the node by changing the values of
thelocal variables. Any privileged node that makes amove is called an active node.

We model a distributed system by an undirected connected graph G = (V| E), where V' denotes the set of nodes repre-
senting the machines (processors) and £ denotes the set of edges representing the interconnectionsamong the processors. Let
|V| = n =the number of nodes in the graph. Our objectivein this paper istwofold: (1) to develop a distributed algorithm
that always maintains an arbitrary spanning tree of the graph, and (2) to develop a completely different graph theoretic proof
technique to show the correctness of sdlf-stabilizing algorithms. Maintaining a spanning tree in an interconnection graph is
essential for most of the applicationsthat run on a message passing distributed system.

*Address for Correspondence: Pradip K Srimani, Department of Computer Science, Colorado State University, Ft. Collins, CO 80523, Tel: (303) 491-
7097, Fax: (303) 491-2466, Email: srimani @CS.ColoState.Edu

It isto be noted that there exist self-stabilizing algorithmsfor the spanning tree problem [HC92, SS92]; but both of these
algorithms always construct a breadth-first spanning tree; they cannot recognize an arbitrary spanning tree. Also, the proof
technique used in [HC92] is complicated using bounded monotonically decreasing functions defined on global system states.
Most existing self-stabilizing algorithms are proved to be correct by defining a bounded function that is shown to decrease
monotonically at every step [Kes88]. The proposed algorithm can recognize any arbitrary spanning tree and our proof tech-
niqueis completely new and does not need any such bounded function (we have aso not used any operationa arguments).
Another interesting feature of our algorithm is that we alow multiple privileged nodes to be concurrently active. Most self-
stabilizing agorithms assume that thereisacentral daemon [Dij74] that decideswhich of the privileged nodes makes amove.
In other words, the central daemon serializes the moves made by the privileged nodes, but the order in which the privileged
nodes are chosen to make their moves is not known a priori. However, the presence of such a daemon is against the funda-
mental idea of a distributed system. Our agorithm does not need this assumption. When multiple nodes are privileged, an
arbitrary subset of these nodes (at least one) takes action (thisis defined as one move or one step in the agorithm). Since the
actionstaken by a node depend on the local states of the neighboring nodes, we assume that current states of the neighboring
nodes dictate the action even when the nei ghboring nodes are active concurrently (in this sense the actionstaken by nodes are
still atomic). Our algorithm does not assume any order or any specific rule in which the set of active nodes is chosen at any
point of time. Thisisalso truefor the algorithmin [HC92]. But unlike[HC92], we do not need any extra complicationin the
proof; our proof technique inherently accommodates concurrent actions by nodes.

2 TheAlgorithm

Let G bethe given connected graph (V, E') where a specific node » is designated to be the root node. We use the following
notations:

e n: number of nodesin the graph

e N (%): set of the neighborsof node

e L(i): level of node:

e P(i): predecessor pointer of node ¢, pointing to one of the nodesin V.

Thus each node ¢ maintains two data structures Z(¢) and P(¢) which can have arbitrary values, i.e, 0 < L(7) < n and
1 < P(7) < n (we assume nodes are arbitrarily numbered from 1 through »). We do not need to consider level values beyond
that (even after perturbation) as we can always assume each processor is capable of doing a modulo n operation and always
keepstheremainder (mod n) asitslevel value. In thelegitimate state we want a spanning tree of the connected graph & rooted
at the given node . Consider the following predicate for any node :

U = ((P() € N(@) A (L(7) = L(P(i) + 1))

This predicateistrue when the predecessor of the node isone of itsneighborsand the level of thenode is 1 greater than the
level of its predecessor. Now we can define our legitimate state.

Definition 1 The systemisin alegitimate (stable) stateiff L(r) = 0A P(r) = r AVi £ r: ;.

Note: For any arbitrary vaid spanning tree of the graph G, there exists a legitimate state such that the predecessor pointers
correspond to the spanning tree. The converseis aso true and will be proved | ater.

The purpose of our algorithmisto bring back the stable state once the system isin any possible illegitimate state by any
perturbation. The basic ideais whenever the system isin an illegitimate state at least one of the nodes should be ableto rec-
ognizeit and should take some corrective action. Our agorithm has asingle uniform rulefor all the nodesin the graph. Each

(iv) PV =0, AV

Figure 1. Stepwise Execution of the Algorithm

node looks at its own state and the states of its neighbors and takes action by changing its own level and/or its predecessor
pointer. We introduce another predicate ®; for any node;

®; = (3))(j € N(i) A L(j) < L(3))

®; istruefor anode: iff there exists at least one neighbor of node ¢ with alevel lessthan that of node:. We can now state the
algorithmas asingle rule for each nodein the graph. Therule at node: is as follows:

ifi=rA(P>HE)#£rvV(L{E) #£0)) then P(§) =r; L(i) =0
(R) elseif —=U; A (L(i) < n) A —=®; then L(¢) = L(§) + 1
elseif =U; A ®; then P(i) = j; L(i) = L(j) + 1

Note: If there exists more than one node j for ¥; to be true, any one is chosen at random; the choice doesn’t affect the cor-
rectness of the agorithm.

Remark 1 Theroot node may be privileged in an illegitimatestate, but onceit takes action it becomes un privileged and can
never be privileged again. Thisis not true for other nodes.

Definition 2 If a privileged node changes only itslevel value (and not the predecessor), we call thisatype | move; otherwise
if it changes both itslevel and predecessor we call it atype Il move.

Remark 2 If a privileged node makes a type || move, it becomes un privileged and remains so until the new predecessor node
takes some action; if a privileged node makes a type | move, it may still be privileged after the move.

Before we prove the correctness of our algorithm, we illustrate the execution of the algorithm by using an example graph.

Example: Figurelillustratesthe execution of thealgorithmonan examplegraph from an arbitrary initia state. The connected
symmetric graph in our example has 6 vertices, {r, a, b, ¢, d, ¢}, where r is the specified root node. Each nodein thefiguresis
labeled withitsname and itslevel. The predecessor pointer at each nodeis shown by a dotted linewith an arrow. Theset PV

denotes the set of privileged nodes and the set AV denotes the set of active nodes. It isto be noted that in a given state more
than one node may be privileged; we have arbitrarily chosen a subset to be activein our example. Figure 1(i) istheinitia state
andthe Figure 1(iv) isthefina legitimatestate. It isto be noted that there are many other possible sequence of moves that will
bring the state back to a stable state starting from the same initial illegitimate state.

3 Correctness Proof

In order to provethat the correctness of a sdlf-stabilizing agorithm, we need to show that it meets the following threerequire-
mentsof aself-stabilizinga gorithm[Dij86]: (a) Inany illegitimatestatethereisat least one privilegednode; (b) Inalegitimate
state no nodeis privileged; and (c) For dl possible initial states and for all possibleways a privileged nodeis selected to take
action during execution of the algorithm, the system is guaranteed to reach alegitimate state after afinite number of moves.

Remark 3 Theroot noder is privileged iff (P(r) # r V L(r) # 0); any other node (i #) isprivileged iff =¥, A (®; V
(=®; A L(i) < n)).

Remark 4 If anodei (i # r) isnot privileged then the predicate ¥; v (=®; A L() = n) istrue.

Lemmal Inalegitimateor a stable state, no nodeis privileged.

Proof : Obviousfrom definitions 1 and 3. a

Lemma?2 If no nodeis privileged, each nodein the graph hasa level less than n.

Proof : We prove by contradiction. Let S(k) = {i{|L({) = k} bethe set of nodeswithlevel k,0 < k < n. Assume
[S(n)| > 1. Sincethe root node » isnot privileged, L(r) = 0 and hence » ¢ S(n). Since the graph is connected, at least
onenodei € S(n) must have aneighbor outside of S(n). Sincethisneighbor hasalevel lessthann, ¥; istrue (—®; isfase)
(Remark 4) and hence there exists anode j such that P(i) = j and L(¢) = L(j) + 1. Thatis, L(j) = n — 1 and hence,
|S(n —1)] > 1. For any node k£ € S(n — 1), ¥, must be true since node k has alevel less than » and is not privileged.
Proceeding as before, |S(n — 2)| > 1. By repesting the argument we see that |S(k)| > 1 foral k, 0 < k < n. Sincethese
S(k)'s are mutualy digjoint, union of al these sets has at least (n + 1) nodes which isa contradiction. Thus, S(n) must be
null, i.e., each nodein the graph hasalevel less than n. O

Lemma3 If no nodeisprivileged, the global system state represents a valid spanning tree of the graph rooted at node .

Proof : Since node r isnot privileged, P(r) = » and L(r) = 0. By Lemma 2, each node i (: # r) has alevel less than
and hence by Remark 4 the predicate ¥; istrue for node . The predecessor pointers define a subgraph of G whose edges are
(1, P(4)), ¢ # r; thissubgraphisacyclic since ¥; istrue for each node ¢ and is connected since each node is connected to the
root. Hence, the global system state represents a valid spanning tree of the graph rooted at node . |

Next, we prove that the algorithm brings the system back to a stable state starting from any arbitrary illegitimate state.
First, we note that the local state of anode is defined by the pair (L(7), P(¢)) and the global system state is defined by the
union of thelocal states of the nodes. Since the levels and predecessors can assume only finitely many different values, the
system state space isfinite. We need some definitions.

Definition 3 For any system state, we define a spanning_tree set STSrecursively asfollows: (i) root noder isin STS; and (ii)
any other node isin STSiff ¥; istrueand P (i) € ST'S.

Definition 4 Theset STSiscalled initial or ISTSif the root nodeis privileged and final or FSTSif theroot noder € ST'S is
not privileged.

Example: Consider the previous example. In the initia system state (Figure 1), the IST'S is {r} since the root node r is
privileged; in Figure 1(ii) the F'ST'S is {r, b}, in Figure 1(iii) the F'ST'S is{r, b, a,d} and finadly in Figure 1(iv) the F'ST'S
is{r,a,b, ¢, d,e}.

We make the following immediate observations:

e For each possible system state, thereisawell defined STS (either ISTS or FSTS); the set isnever null (it aways contains
theroot node).

e Nonodeinan ISTSis privileged except the root node » which is privileged.
e Nonodein FSTSis privileged.

o For any legitimate state, the set STSisan FSTS (since the root must not be privileged); for an illegitimate state, the set
STSisether an ISTSor aFSTS.

o Starting withan illegitimatestate withan ISTS, subsequent system stateswill have an ISTS until theroot nodeis active;
after that action all subsequent system stateswill have a FSTS (Remark 1).

o If a any state the FSTS contains al the nodes of the graph, the state is a legitimate state, i.e., we have a spanning tree
of the graph defined by the predecessor pointers.

Lemma4 Any node i # r inISTSfor a system state will remain in the ISTSfor all subseguent system states until the root
node takes action.

Proof : Nonodeinan ISTSis privileged other than the root; in order to be privileged again, its predecessor must be active
first. Thus, all membersinan ISTSremainin ISTS until theroot node r is active; when the node » in an | STStakes action, the
STSfor the resulting system state may consist of the root node alone, if the level of the root nodeis changed by the action. O

Lemma5 Any nodei inthe FSTSfor a system state will alwaysremain in the FSTSfor all subsequent system states.

Proof : Similar to the proof of the previouslemma. o

Remark 5 In general, the cardinality of the set STSis non decreasing upto a certain point, then drops to 1 (when the root
node takes action) and then becomes non decreasing again with each subsequent system state.

Definition 5 Let 7" be an arbitrary set of nodesin & that does not contain the root node. We call an action taken by a node
i € T aT-closed action iff either the action does not change P(i) or the action makes P (i) € 7. For agiven set T at any
given system state, define £, = min{ L(é)|i € T}, Trnin = {¢|L(¢) = bmin} @and T =T — Tpin.

Lemma6 For anygivenset 7', r ¢ T, there cannot exist an infinite sequence of T-closed actions.

Proof : Weuseinductionon |T'|. When |T'| = 1, thenodein 7" can take a T-closed action by making only atypel move; but
thiscan be donea most » times after which no more T-closed action is possible. Hence, theclaimistruefor |T'| = 1. Assume
theclamistruefor |T'| = k — 1 forsome k, 1 < k < n. Let |T'| = k. Assume that an infinite sequence of T-closed actions
exists. Notethat any move by nodesin7” does not changethe set 7;,,;,, . First, we show that some node(s) in 7,,;, must make
amoveinfinitetime. Any moveby anodein7”, if not 7”-closed, hasto be atype Il move and the new predecessor will bein
Tomin (themoveisT-closed by assumption) and hence the node remains un privileged (Remark 2) until nodesin 7,,,;,, make a
move. Since|7"| < |T'|, by induction hypothesis, thereis no infinite sequence of 7"-closed moves. Hence some nodein 7,
will make a move in finite time and to be T-closed, nodesin 7;,,;,, can make only type | moves. If al nodesin 7,;, make
concurrent type | moves, £,,,;, will increase by 1 and we get anew T;,,;,, Set, or ese |T;,:, | will decrease. Repeating the same

argument in the latter case, we seethat 4,,,;,, will increase by 1infinitetime. Applying similar argument repeatedly, £,,,;,, Will
eventually become n and | 7”| will be zero and no more T-closed moves will be possible. Hence the claim follows. 0

Lemma?7 Inanyillegitimatestatewitha FSTS(root nodeisnot privileged), the FSTSgrowsin size after finitely many moves.

Proof: Let7 =V — FSTS (Vistheset of dl nodesinthegraph). If any node: € 7' takesan action whichisnot 7'-closed,
then after this movethe node i entersinto /'.S7'S. Since an infinite sequence of T'-closed actionsisimpossible, FSTS grows
insizein finitely many moves. d

Corollary 1 In any illegitimate state with an ISTS (root node is privileged), either the ISTS grows in size or the root node
takes action in finitely many moves.

Combining the above two lemmas we see that if the root nodeis privilegedin any illegitimatestate, it will take action (and
become permanently un privileged) in finitely many moves and then subsequently the F'ST'S will continualy grow in size
and will eventually consist of al nodesin the graph in finitely many moves. Thus we state the foll owing theorem.

Theorem 1 Sarting from any illegitimate state, the proposed algorithmbrings back the systemto a legitimate statein finite
time.

4 Conclusion

We have proposed a new self-stabilizing distributed algorithm that can maintain an arbitrary spanning tree in a connected
graph. We have developed a new techniqueto prove the correctness of our agorithm that may prove useful in designing self-
stabilizing algorithmsfor other graph theoretic problems.

References

[ADG92] A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocksin step. Parallel Processing Letters, 1(1):11-18,
1992

[BGW89] G.M.Brown, M. G. Gouda, and C. L. Wu. Token systemsthat self-stabilize. IEEE Trans. Comput., 38(6):845-852,
June 1989.

[Dij74] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM, 17(11):643—
644, November 1974.

[Dij86] E.W. Dijkstra. A belated proof of self-stabilization. J. of Distributed Computing, 1(1):5-6, 1986.

[FD92] M. FlateboandA. K. Datta. Two-State self-Stabilizing a gorithms. In Proceedings of the |PPS-92, California, June
1992.

[GH90] M. Goudaand T. Herman. Stabilizing unison. Inf. Processing Letters, 35(4):171-175, 1990.

[HC92] S.T.HuangandN.-S. Chen. A sdlf-stabilizinga gorithm for constructing breadth first trees. Inf. Processing Letters,
41:109-117, January 1992.

[Kes88] J.L.W.Kessds. Anexercisein proving self-stabilizationwith avariant function. Inf. Processing Letters, 29(2):39—
42, 1988.

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67, March 1993.

[SS92] S. Surand P. K. Srimani. A self-stabilizing distributed algorithm to construct BFS spanning tress of a symmetric
graph. Parallel Processing Letters, 2(2,3):171-180, September 1992.

