
Computer Science
Technical Report

A New Family of Cayley Graph
Interconnection Networks of Constant

Degree Four

Premkumar Vadapalli� and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523

Technical Report CS-95-107

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�Premkumar Vadapalli is presently with Tartan Laboratories, Pittsburgh, Pennsylvania

A New Family of Cayley Graph Interconnection Networks of
Constant Degree Four

Premkumar Vadapalli�and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523

Abstract

We propose a new family of interconnection networks that are Cayley graphs with constant node degree 4.
These graphs are regular, have logarithmic diameter and are maximally fault tolerant. We investigate different
algebraic properties of these networks (including fault tolerance) and propose optimal routing algorithms. As
far as we know, this is the first family of Cayley graphs of constant degree 4.

1 Introduction

Design of interconnection networks is an important integral part of any parallel processing or distributed system.
Performance of the distributed system is significantly determined by the choice of the network topology. A very
efficient interconnection network is the well-known binary n-cubes or hypercubes; they have been used to design
various commercial multiprocessor machines and they have been extensively studied. For the past several years,
there has been a spurt of research on a class of graphs called Cayley graphs that are very suitable for designing
interconnection networks. Cayley graphs are based on permutation groups and include a large number of families
of graphs, like star graphs [AK89, AK87, QMA91], hypercubes [BA84], pancake graphs [AK89, QAM93] and
others [AT91, Sch91, DT92]. These graphs are symmetric (edges are bidirectional), regular, and seem to share
many of the desirable properties like low diameter, low degree, high fault tolerance etc. with the well-known
hypercubes (which are also Cayley graphs). An excellent survey of these Cayley graphs (along with extensive
bibliography) can be found in [LJD93]. All Cayley graphs are regular, i.e., each node has the same degree, but for
Cayley graphs studied to date, the degree of the nodes increases with the size of the graph (the number of nodes)
either logarithmically or sublogarithmically. From a VLSI design point of view, these interconnection topologies
are not so suitable for area efficient layout; we need constant degree networks (where the degree of a node does
not change with the size of the network). There are also important applications for which the computing nodes
in the interconnection network can have only a fixed number of I/O ports [SP89, CAB93]. There are graphs in
the literature that have constant node degrees, like the Cube-Connected Cycles [PV81] where the degree of any
node is 3 irrespective of the size of the graph. These cube-connected cycle graphs can be viewed as Cayley graphs
[CCSW85]. There also exist graph topologies in the literature that have almost constant node degrees like the De

�Premkumar Vadapalli is presently with Tartan Laboratories, Pittsburgh, Pennsylvania

Bruijn graphs [PR82] or the Moebius graphs [LS82]. Constant degree network graphs are of considerable practical
importance since De Bruijn graphs are being used for designing a 8096 node multiprocessor at JPL for the Galileo
project [Pra91]. But, neither De Bruijn graphs nor Moebius graphs are regular; none of them can be viewed as
Cayley graphs. Also, these graphs have a low vertex connectivity of only 2 (i.e., fault tolerance is minimal in
the sense that the graphs cannot tolerate more than one faulty node) although most of the nodes in those graphs
have degree larger than 2 (most of the nodes in De Bruijn graphs have degree 4 and most of the nodes in Moebius
graphs have degree 3).

Our purpose in the present paper is to propose a new family of degree 4 Cayley graphs. The proposed family
of graphs is regular of degree 4 irrespective of the size of the graph, has a logarithmic diameter and has a vertex
connectivity of 4, i.e., the graphs are maximally fault tolerant. Compared with cube-connected cycle graphs, the
proposed graph has a higher vertex connectivity (hence higher fault tolerance) and it accomodates a larger number
of nodes than cube-connected cycle graph for the same diameter. The proposed family of graphs is also interesting
from a graph theoretic point of view and as an attractive alternative to De Bruijn graphs for VLSI implementation
in terms of regularity and greater fault tolerance without additional cost. The rest of the paper is organized as
follows. Section 2 introduces the new topology and section 3 deals with two routing schemes and establishes the
diameter of the graphs. Section 4 investigates different algebraic properties of the graph, including the existence
of Hamiltonian circuits, and section 5 is devoted to the fault tolerance properties of the graph. Section 6 concludes
the paper.

2 Degree Four Cayley Graphs

Degree Four Cayley Graph Gn is defined as a graph on n � 2
n vertices for any integer n, n � 3; each vertex

is represented by a circular permutation of n symbols in lexicographic order where each symbol may be present
in either uncomplemented or complemented form. Let tk , 1 � k � n denote the k-th symbol in the set of n
symbols (we use English alphabets as symbols; thus for n = 4, t1 = a, t2 = b, t3 = c and t4 = d). We use
t�
k

to denote either tk or �tk . Thus, for n distinct symbols, there are exactly n different cyclic permutation of the
symbols in lexicographic order and since each symbol can be present in either complemented or uncomplemented
form, the vertex set of Gn (i.e. the underlying group �) has a cardinality of n:2n (for example, for n = 3, the
number of vertices in G3 is 24; abc, cab, �cab are valid nodes while acb or bac are not). Let I denote the identity
permutation t1t2 � � � tn. Since each node is some cyclic permutation of the n symbols in lexicographic order, then
if a1a2 � � �an denotes the label of an arbitrary node and a1 = t�

k
for some integer k, then for all i, 2 � i � n, we

have ai = t�
(k+i) mod n+1

. The edges of Gn are defined by the following four generators in the graph:

g(a1a2 � � �an) = a2a3 � � �ana1
f(a1a2 � � �an) = a2a3 � � �an�a1

g�1(a1a2 � � �an) = ana1 � � �an�1
f�1(a1a2 � � �an) = �ana1 � � �an�1

Example: For n = 3, the vertex set of G3 (the underlying group �) is given by fabc; �abc; a�bc; ab�c; cab; �cab;
c�ab; ca�b; bca; �bca; b�ca; bc�a; �a�bc; a�b�c; �ab�c; �c�ab; c�a�b; �ca�b; �b�ca; b�c�a; �bc�a; �a�b�c; �b�c�a; �c�a�bg and the generator
set
 is given by
 = fbc�a; �cab; cab; bcag. Note that since we are considering groups of permutation of dis-
tinct symbols which may be complemented or uncomplemented, the generators themselves are also permutations
of complemented or uncomplemented symbols. Figure 1 shows the proposed degree four Cayley graph G3 of
dimension 3.

Remark 1 � The set of four generators,
 = ff; g; f�1; g�1g closed under inverse; in particularg is inverse
of g�1 and f is inverse of f�1; thus the edges in Gn are bidirectional.

� For an arbitraryn, n > 2, for any arbitrary node v of the graphGn, �(v) 6= v where � 2 fg; f; g�1; f�1g.

abc

bca

cab

abcbca

cab
cab

abc

cab

bca

cab

bca

abc bca

abc

cab

abc

cab
bca

cab

bca

abcbca

abc

__

_

_

__

_

_

_

_

_

__

_

_

_

__

_

_

__

_

_

_

__

__

_

Figure 1: Example Graph for n = 3 (24 nodes)

Theorem 1 For any n, n � 3, the graph Gn: (1) is a symmetric (undirected) regular graph of degree 4; (2) has
n:2n vertices; and (3) has n:2n+1 edges.

Proof : (1) follows from the remarks 1 and 2 above. (2) follows from the fact that there are exactly n circular
permutations ofn symbols in lexicographic order (permutation with same cyclic ordering) and in any permutations
each symbol can be either in complimented or uncomplemented form. (3) follows from (1) and (2). 2

3 Routing Schemes

3.1 A Simple Routing Scheme

Since Gn is a Cayley graph, it is vertex symmetric [AK89], i.e., we can always view the distance between any
two arbitrary nodes as the distance between the source node and the identity permutation by suitably renaming the
symbols representing the permutations. For example, let �cab be the source node and bc�a be the destination node.
We can map the destination node to the identity node abc by renaming the symbols as b 7! a, �b 7! �a, c 7! b,
�c 7! �b, �a 7! c and a 7! �c. Under this mapping the source node becomes �b�ca. Then the paths between the original
source and destination nodes become isomorphic to the paths between the node �b�ca and the identity node abc in
the renamed graph. Thus, in our subsequent discussion about a path from a source node to a destination node,
the destination node is always assumed to be the identity node I without any loss of generality. The following
algorithm S R computes a path from an arbitrary source node a1a2 � � �an in Gn to the identity node I .

Step 1: Compute k, 1 � k � n, such that ak = t�
n

.

Step 2: If k > bn
2
c then go along successive g�1 edges (n� k) times

else go along successive g edges k times.

Step 3: for i = 1 to n do
go to the node t�

i
t�
i+1 � � � t

�
n
t1t2 � � � ti by either the g or the f edge;

Theorem 2 The algorithm S R correctly computes a path from an arbitrary node a1a2 � � �an to the identity node
I .

Proof : The integer k always exists (Step 1) since the node a1a2 � � �an is a cyclic permutation of the lexico-
graphic ordering of n symbols (each symbol is in complemented or uncomplemented form). At the end of step 2,
we reach a node ak+1ak+2 � � �ana1 � � �ak � t�1t

�
2 � � � t

�
n

. At the beginning of step 3, we are at a node t�1t
�
2 � � � t

�
n

and we go to the node t�2 � � � t
�
n
t1 in the first iteration by taking either the g or the f edge (g edge if t�1 = t1 and

the f edge if t�1 = �t1). Such a move obviously exists for each iteration and at the end of step 3 we have reached
the node t1 � � � tn, which is the destination. 2

Theorem 3 For an arbitrary node a1a2 � � �an in Gn, the algorithm S R generates a path of length � b3n
2
c.

Proof : If k > bn
2
c then (n�k) � bn

2
c and hence at the end of step 2 we reach the nodeak+1ak+2 � � �ana1 � � �ak

by a path of length� bn
2
c. Step 3 generates a path of length exactlyn from this intermediate node to the destination

node. Hence the result. 2

Corollary 1 The upper bound on the diameter of Gn is given by D(Gn) � b3n
2
c.

Remark 2 Although the above algorithm does generate a path of length � b3n
2
c from an arbitrary node to the

identity node, it does not generate the optimal (shortest) path in most cases.

3.2 Diameter and Optimal Routing

Definition 1 Consider an arbitrary node s = a1a2 � � �an in Gn. There exists an unique integer k such that ak =
t�1. We define left distance DL(s) and right distance DR(s) of the node s (from the identity node) as follows:

DL(s) = 2(k�m1 � 1) + (n� k + 1)

DR(s) = 2(n� k �m2) + (k � 1)

where

m1 = max
m

f9(i; j) j (1 � j � k) ^ (1 � i � n�m+ 1) ^ ajaj+1 � � �aj+m�1 = titi+1 � � � ti+m�1g

m2 = max
m

f9(i; j) j (k � j � n) ^ (1 � i � n �m+ 1)^ ajaj+1 � � �aj+m�1 = titi+1 � � � ti+m�1g

Then, we define the distance of the node s (from the identity node) as

D(s) = minfDL(s); DR(s)g

Note that the process of optimal routing from an arbitrary node to the identity node is equivalent to sorting a
given permutation using the available operators (generators). The algorithm S R does reach the identity node by
simply constructing the identity node; it does not take into account if the source node is already partially sorted.
That’s why it is not optimal most of the time. Also, the generators f and f�1 provide complemenation of the
symbols while the generators g and g�1 provide circular shifts without complementation. The parameters m1

and m2 measure the longest sequence of uncomplemented symbols on left and right of the special symbol t1 (it
is special because it occupies the first position in the destination identity node I). Also, the generators f and g

provide left circular shifts while the generators f�1 and g�1 provide right circular shifts. The left (right) distance
of a node attempts to compute the number of hops necessary to reach I by recognizing the presortedness on the
left (right) of the special symbol t1. The significance of these two distances will be clearer when we describe the
optimal routing algorithm later.
Example 1: Consider the node s = f�ghija�bcd�e in G10 (the identity node is abcdefghij). Here, k = 6, since
a6 = \a" = t1, m1(s) = 3 (due to the substring “hij”), m2(s) = 2 (due to the substring “cd”), DL(s) = 9 and
DR(s) = 11. Hence D(s) = 9.

Theorem 4 For an arbitrary node s = a1a2 � � �an in Gn, D(s0) = D(s) � 1, where s0 = �(s) and � 2

fg; f; g�1; f�1g.

Proof : We need to consider the case of each operator separately; assume �(s) = s0 with correspondingm0
1, m0

2

and k0.
Case 1: (� = g) We have k0 = k � 1 and there can be four possible changes in m1 and m2 (note that either m1

or m2 or both can change at most by 1).

Subcase A:m0
1 = m1�1&m0

2 = m2+1. We getDL(s
0) = 2(k0�m0

1�1)+n�k
0+1 = DL(s)+1

and DR(s
0
) = 2(n� k0 �m0

2 + 1) + k0 � 1 = DR(s)� 1; or D(s0) = D(s)� 1.
Subcase B: m0

1 = m1 � 1 & m0
2 = m2. We get DL(s

0) = DL(s) + 1 and DR(s
0) = DR(s) + 1; or

D(s0) = D(s) + 1.
Subcase C: m0

1 = m1 & m0
2 = m2+ 1. We get DL(s

0) = DL(s)� 1 and DR(s
0) = DR(s)� 1; or

D(s0) = D(s)� 1.
Subcase D: m0

1 = m1 & m0
2 = m2. We get DL(s

0) = DL(s) � 1 and DR(s
0) = DR(s) + 1; or

D(s0) = D(s)� 1.

Case 2: (� = f) We have k0 = k � 1 and there can be three possible changes in m1 and m2 (note that either m1

or m2 or both can change at most by 1).

Subcase A: m0
1 = m1 � 1 & m0

2 = m2. We get DL(s
0
) = DL(s) + 1 and DR(s

0
) = DR(s) + 1; or

D(s0) = D(s) + 1.
Subcase B: m0

1 = m1 & m0
2 = m2 + 1. We get DL(s

0
) = DL(s)� 1 and DR(s

0
) = DR(s)� 1; or

D(s0) = D(s)� 1.
Subcase C: m0

1 = m1 & m0
2 = m2. We get DL(s

0
) = DL(s) � 1 and DR(s

0
) = DR(s) + 1; or

D(s0) = D(s)� 1.

Case 3:(� = g�1) We have k0 = k+ 1 and there can be four possible changes in m1 and m2 (note that either m1

or m2 or both can change at most by 1).

Subcase A: m0
1 = m1+1 & m0

2 = m2�1. We get DL(s
0
) = DL(s)�1 and DR(s

0
) = DR(s)+1;

or D(s0) = D(s)� 1.
Subcase B: m0

1 = m1 & m0
2 = m2 � 1. We get DL(s

0
) = DL(s) + 1 and DR(s

0
) = DR(s) + 1; or

D(s0) = D(s) + 1.
Subcase C: m0

1 = m1 + 1 & m0
2 = m2. We get DL(s

0
) = DL(s)� 1 and DR(s

0
) = DR(s)� 1; or

D(s0) = D(s)� 1.
Subcase D: m0

1 = m1 & m0
2 = m2. We get DL(s

0
) = DL(s) + 1 and DR(s

0
) = DR(s) � 1; or

D(s0) = D(s)� 1.

Case 4:(� = f�1) We have k0 = k + 1 and there can be three possible changes in m1 and m2 (note that either
m1 or m2 or both can change at most by 1).

Subcase A: m0
1 = m1 & m0

2 = m2� 1. We get DL(s
0) = DL(s) + 1 and DR(s

0) = DR(s) + 1; or
D(s0) = D(s) + 1.
Subcase B: m0

1 = m1 + 1 & m0
2 = m2. We get DL(s

0) = DL(s)� 1 and DR(s
0) = DR(s)� 1; or

D(s0) = D(s)� 1.
Subcase C: m0

1 = m1 & m0
2 = m2. We get DL(s

0) = DL(s) + 1 and DR(s
0) = DR(s) � 1; or

D(s0) = D(s)� 1.

2

Corollary 2 For the identity node I = t1t2 � � � tn inGn,D(I) = 0 andD(�(I)) = 1 for any �, � 2 fg; f; g�1; f�1g.

Given an arbitrary node s = a1a2 � � �an, the values of k, m1 and m2 can easily be computed in one linear
scan of the node label; while doing so, the values of j (refer definition 1) corresponding to m1 and m2 are also
stored in integer variables, say jL and jR respectively. In example 1 above, the values of jL and jR are 3 and 8

respectively. Once this is done, DL(s), DR(s) and D(s) can be computed and the algorithm Opt Rout, given
in Figure 2 can be used to generate a path of length D(s) from the node s to the destination node I , the identity
permutation.

Theorem 5 For an arbitrary node s = a1a2 � � �an inGn, the functionD(s), given by definition 1, correctly gives

the distance of the node s from the identity node I = t1t2 � � � tn.

Procedure Opt Rout(s;m1; m2; jL; jR; DL(s); DR(s))
if DL(s) < DR(s) then

begin
for i = 1 to (jL � 1) do

Move to the g neighbor of the current node.
for i = 1 to (jL � 1) + (n� k + 1) do

if the last symbol of the current node is uncomplemented
then move to the g�1 neighbor
else move to the f�1 neighbor

for i = 1 to k � jL �m1 do
Move to the g�1 neighbor of the current node.

for i = 1 to k � jL �m1 do
if the first symbol of the current node is uncomplemented

then move to the g neighbor
else move to the f neighbor

end
else

begin
for i = 1 to n� jR �m2 + 1 do

Move to the g�1 neighbor of the current node.
for i = 1 to (n� jR �m2 + 1) + (k � 1) do

if the last symbol of the current node is uncomplemented
then move to the g neighbor
else move to the f neighbor

for i = 1 to jR � k do
Move to the g neighbor of the current node.

for i = 1 to jR � k do
if the first symbol of the current node is uncomplemented

then move to the g�1 neighbor
else move to the f�1 neighbor

end

Figure 2: Algorithm Opt Rout(s;m1; m2; jL; jR; DL(s); DR(s))

Proof : Theorem 4 states that for an arbitrary node s and its immediate neighbor s0 (s0 = �(s), where � 2

fg; f; g�1; f�1g), we have D(s0) � D(s) � 1. Thus, to reach the identity node I from the node s in the graph

Gn at least D(s) hops are necessary. From the definition 1 and the construction of the algorithm Opt Rout, it is

evident that the algorithm constructs a path of lengthD(s) from any given node s to the identity node I . Thus the

proof follows. 2

Corollary 3 The algorithm Opt Rout is an optimal (shortest) routing algorithm for nodes in the graph Gn.

Corollary 4 For an arbitrary node s = a1a2 � � �an in Gn (s 6= I), there exists a �, � 2 fg; f; g�1; f�1g such

that D(�(s)) = D(s)� 1.

Proof : Obvious from theorem 5. 2

Theorem 6 The diameter of the graph Gn is given by D(Gn) = b3n
2
c.

Proof : Consider the node x = �tbn
2
c+1 � � � �tn�t1 � � ��tbn

2
c. We see that D(x) = b3n

2
c. This, coupled with corol-

lary 1 establishes the result. 2

4 Topological Properties of the Graph Gn

In this section we investigate different interesting structural properties of the proposed degree four Cayley graphs.

Definition 2 Any cycle in Gn consisting of only the f -edges (induced by the symmetric functions f or f�1) is

called an f -cycle. Similarly, any cycle in Gn consisting of only the g-edges (induced by the symmetric functions

g or g�1) is called an g-cycle.

Example: In Figure 1, the cycle f�b�ca, �cab, abc, bc�a, c�a�b, �a�b�c, �b�ca g is an f -cycle while the cycles f�b�ca, �ca�b, a�b�c,

�b�ca g and f�b�c�a, �c�a�b, �a�b�c, �b�c�a g are g-cycles.

Definition 3 The complement of any vertex u = a1a2 � � �an in Gn is the vertex �u obtained by complementing the

symbols in u, i.e., �u = �a1�a2 � � � �an. For example, complement of the vertex u = c�a�b in G3 is the vertex �u = �cab.

Lemma 1 For an arbitrary pair of nodes u and v in Gn such that g(u) = v, the complement nodes satisfy the

same relation, i.e., g(�u) = �v.

Proof : Consider an arbitrary node u = a1a2 � � �an; then v is given by v = g(u) = a2a3 � � �ana1. So, g(�u) =

g(�a1�a2 � � ��an) = �a2�a3 � � ��an�a1 = �v. 2

Theorem 7 All of the n:2n nodes of Gn of dimension n are partitioned into vertex disjoint f -cycles of length 2n;

number of f -cycles in Gn is 2n�1.

Proof : Consider an arbitrary node v = a1a2 � � �an in Gn. For any i, i � 1, let f i(v) = f(f i�1(v)), where

f1(v) = f(v). It is easy to observe that fn(v) = �v = �a1�a2 � � � �an and f2n(v) = v. Also, f i(v) 6= f j(v) for

1 � i; j � 2n. Thus, from an arbitrary vertex v if the f function is repeatedly applied, a cycle of length 2n is

traced in the graph Gn. That these f -cycles are vertex disjoint follows from the fact that f�1 exists (also note that

f(v1) = f(v2), if and only if v1 = v2). 2

Corollary 5 For any vertex v in Gn, both v and �v belong to the same f -cycle.

Remark 3 � Consider the symbol set ft1; t2; � � � ; tng for Gn. For all k, 1 � k � n, each f -cycle in Gn has

a unique node starting with tk and another unique node starting with �tk .

� For each f -cycle inGn, the unique node starting with t1 is called the leader node. Since there are n symbols

and the leader nodes start with t1, there are 2n�1 leader nodes in Gn which is equal to the number of f -

cycles in Gn. Each f -cycle is characterized by its leader node. For example, the leader node of the f -cycle

cited in example 1 is abc.

� Consider an arbitrary leader node t1t�2t
�
3 � � � t

�
n

(of some f -cycle); each leader node maps to a (n� 1) bit

binary number by assigning 0 if t�
i
= �ti and 1 if t�

i
= ti for 2 � i � n. This gives us a convenient way to

number all the 2n�1 f -cycles in Gn from f0 to f2n�1�1. Again, in example 1, the leader node abc maps to

the 2-bit number 11 = 3 and the hence f -cycle is numbered as f3.

Theorem 8 All of the n:2n nodes of Gn of dimension n are partitioned into vertex disjoint g-cycles of length n;

number of g-cycles in Gn is 2n.

Proof : Similar to the proof of theorem 7. 2

Theorem 9 For any arbitrary vertex v in Gn such that f(v) = u and g(v) = w, there exists a vertex x such that

g(x) = u and f(x) = w; furthermore, the nodes v, u, w and x are all distinct.

Proof : Consider an arbitrary vertex v = a1a2 � � �an. Then u = f(v) = a2 � � �an�a1 and w = g(v) =

a2 � � �ana1. Choose the node x as x == g�1(u) = �a1a2 � � �an. Thus, g(x) = u and f(x) = a2 � � �ana1 = w.

That these four nodes are distinct are also obvious from the fact that the different symbols in the nodes are distinct.

2

Remark 4 Theorem 9 provides a method to connect two different f -cycles via g-edges in Gn (note that for an

arbitrary node v, the nodes v and u belong to the same f -cycle and the nodes x and w belong to a different f -

cycle.

Definition 4 Two f -cycles, say fi and fj , are said to be adjacent if there exists a vertex v 2 fi and a vertex u 2 fj

such that v = g(u) or u = g(v).

Theorem 10 If two f-cycles f1 and f2 are adjacent, then there are four g-edges connecting f1 and f2.

Proof : Since f1 and f2 are adjacent, assume there exists a vertex v 2 f1 such that g(v) = u, where u 2 f2. Let

f(v) = w. Then by theorem 9 g�1(w) = y = f�1(u); thus y is a node in f2. Also, by the corollary 5, �v; �w 2 f1

and �u; �y 2 f2 and g(�v) = �u and g�1(�w) = �y (by lemma 1). Thus there are four g-edges between the two f -cycles

f1 and f2. 2

Theorem 11 Each f -cycle in Gn is adjacent to n different f -cycles.

Proof : Consider an arbitrary f -cycle with the leader v = a1a2 � � �an, wherea1 = t1. Now, g(v) = a2a3 � � �ana1 =

y0 and the node y0 belongs to the f -cycle with leader a1�a2�a3 � � ��an. Then, consider the nodes yi, 1 � i < n, such

that yi = g(vi)where vi = f i(v). We have yi = g(ai+1ai+2 � � �an�a1�a2 � � ��ai) = ai+2ai+3 � � �an�a1�a2 � � ��aiai+1;

this node yi belongs to a f -cycle with the leader a1a2 � � �ai�ai+1ai+2 � � �an. Obviously, the nodes yi, 0 � i < n,

belong to different f -cycles (they have different leaders) and hence any f -cycle is adjacent to n different f -cycles

in Gn. 2

Corollary 6 Consider an f -cycle fi for a given i, 0 � i < 2
n�1; i is a (n�1) bit binary number, say bn�1bn�2 � � � b0.

Then the f -cycle fi or fbn�1bn�2���b0 is adjacent to the followingn f -cycles: f�bn�1
�bn�2����b0 , f�bn�1bn�2���b0 , f

bn�1
�bn�2bn�3���b0 ,

� � �, f
bn�1bn�2����b0 .

Theorem 12 The graph Gn, n � 3, has a Hamiltonian cycle.

w=g(v)=f(y)

y

f

f

v

u=f(v)=g(y)

Figure 3: Combining two f -cycles to produce a larger cycle

Proof : Consider two arbitrary adjacent f -cycles, say f1 and f2. By theorem 9, there exist nodes u; v 2 f1 and

nodes w; y 2 f2 such that w = g(v) = f(y) and u = f(v) = g(y). A larger cycle can be constructed involving

all nodes of f1 and f2 by using these two g-edges as shown in Figure 3. This, coupled with the facts that f -cycles

in Gn are vertex-disjoint and each f -cycle is adjacent to exactly n distinct other f -cycles, leads to the desired

result. 2

5 Fault Tolerance of Gn

The node fault tolerance of an undirected graph is measured by the vertex connectivity of the graph. A graph G

is said to have a vertex connectivity � if the graph G remains connected when ar arbitrary set of less than � nodes

are faulty. Obviously, the vertex connectivity of a graph G cannot exceed the minimum degree of a node in G;

thus �(Gn) � 4 since Gn is a 4-regular graph for all values of n. A graph is called maximally fault tolerant if

vertex connectivity of the graph equals the minimum degree of a node. Our purpose in this section is to show that

the proposed graph Gn has a vertex connectivity of 4 and hence these graphs are maximally fault tolerant.

Definition 5 For a givenGn compute the reduced graphRGn�1 in the followingway: condense each f -cycle into

a single node and label that node with the (n�1) bit binary number corresponding to thef -cycle (see corollary 6);

connect two arbitrary vertices by an undirected edge iff the corresponding f -cycles are adjacent in Gn.

Remark 5 � Figure 4 shows the reduced graph RG2 and RG3.

� Each vertex inRGn has a binary label of lengthn and has a degree (n+1) (each vertex inRGn corresponds

to a distinct f -cycle in Gn+1; each f -cycle in Gn+1 has a n-bit binary label and is adjacent to (n + 1)

distinct other f -cycles). Thus, RGn is a (n+ 1)-regular undirected graph.

Figure 4: Reduced Graphs RG2 and RG3

� Any two arbitrary vertices u and v in RGn are connected by an edge iff either their Hamming distance is

1 or u is the complement of v by corollary 6.

� Consider a hypercube graph Hn of dimension n [SS88]; let Hn = (V;E)where V is the set of 2n vertices

and E is the set of edges. Then Hn is always contained in the graph RGn = (V 0; E0
) such that V 0

= V

and E 0 = E [f(u; v) j (u; v 2 V) ^ (u = �v).

Theorem 13 [SS88] A hypercube Hn has a vertex connectivity n, i.e. for any two given source and destination

nodes, there are n vertex disjoint paths.

Remark 6 For any two given nodes u and v in Hn such that Hamming distance of u and v is k, there are k

paths of length k which are obtained by keeping the similar bits of u and v the same throughout and changing

the dissimilar bits selectively for different paths, and there n � k paths of length k + 2 which are obtained by

complementing one (different ones for different paths) similar bit, keeping it fixed and changing other bits and

then complementing the similar bit again at the last step. See [SS88] for details.

Theorem 14 Vertex connectivity of RGn is (n+ 1).

Proof : Consider two arbitrary nodes u = u0u1 � � �un�1 and v = v0v1 � � �vn�1 in RGn. Since Hn is contained

in RGn, there are n vertex disjoint paths between u and v. We need to show the existence of the (n+1)-st vertex

disjoint path between u and v. Let the Hamming distance of u and v be k. We need consider three cases:

Case 1: k = n. Theren paths between u and v of lengthn (theorem 13). Now, in this caseu = �v and by definition

there is a direct edge from u to v in RGn.

Case 2: k = n� 1. Without loss of generality, let u0 = v0 and ui 6= vi for 1 � i � n� 1. There are n� 1 paths

between u and v of length n�1 (theorem 13); all nodes involved has the same value u0 in their 0-th bit positions.

In RGn, the other two vertex disjoint paths are computed as follows: (1) go from u to u0 = �u0u1 � � �un�1 and

from u0 to v (there is an edge between u0 and v since u0 = �v); (2) go from v to v0 = �v0v1 � � �vn�1 and from v0 to

u (there is an edge between v0 and u since v0 = �u).

Case 3: 1 � k < n� 1, i.e., there are at least two bit positions where the source and the destination disagree. We

already have n vertex disjoint paths: k of them are of length k (each node on all these paths have n � k bits in

the same state; there are k matching bits in the source and the destination node) and n � k of them are of length

k+2 (each node on all these paths has exactly one of the n�k common bits inverted). To get the (n+1)st vertex

disjoint path from u to v we do the following: go from u to �u, complement the k bits (the bit positions where u

and v disagree) one at a time in any order to reach the node �v and then go to v. Note that each node on this last

path has n� k (� 2) common bits inverted. 2

Lemma 2 Consider two arbitrary nodes u and v inGn such that u and v belong to different f -cycles. Then there

exist four vertex disjoint paths between u and v.

Proof : Let u 2 fi and v 2 fj where i 6= j. Consider the following four f -cycles adjacent to fi:

g(u) = u1 2 fi1; g�1(u) = u2 2 fi2;

gf(u) = u3 2 fi3; gf�1
(u) = u4 2 fi4

It is easy to see that for n � 4 these four f -cycles are distinct. Similarly, the node v can reach (by vertex disjoint

paths) to four distinct f -cycles, say fj1; fj2; fj3; and fj4. Note that it is possible that fi` = fjk for some ` and

m. By Menger’s theorem [Har72], given two sets of nodes V1 and V2 such that jV1j = jV2j = n in a n-connected

graph, there are n vertex disjoint paths connecting the nodes from V1 to those in V2. The reduced graph RGn�1

corresponding to Gn is n-connected by the previous theorem and hence for n � 4 there are 4 vertex disjoint paths

connecting the two sets of 4 distinct f -cycles. Thus, there exist four vertex disjoint paths between u and v.

For the case n = 3, choose fi1; fi2; fi3 similarly but choose fi4 such that f�1(u) = u4 2 fi4 (i.e., fi4 is the

given f -cycle fi. Choose fj1; fj2; fj3; and fj4 similarly. Note that in this case there are exactly 4 f -cycles in the

entire graph G3; thus, there is an one-to-one and onto mapping from one set of f -cycles to the other. Thus again,

there exist four vertex disjoint paths between u and v. 2

Lemma 3 Consider two arbitrary nodes u and v in Gn such that u and v belong to the same f -cycle. Then there

exist four vertex disjoint paths between u and v.

Proof : Since u and v belong to the same f -cycle, we directly get two vertex disjoint paths between u and v

along the given f -cycle. Consider the following four f -cycles:

g(u) = u1 2 f1; g�1(u) = u2 2 f2

g(v) = v1 2 f3; g�1(v) = v2 2 f4

Note that f1 and f2 are distinct and f3 and f4 are distinct; but one of f1 and f2 may be the same as one of f3

and f4 (when u = f(v) or v = f(u)). In any case, there are two vertex disjoint paths between the two sets of

two f -cycles each by the n-connectivity of the reduced graph RGn�1 corresponding to Gn. Thus there exist four

vertex disjoint paths between u and v. 2

Theorem 15 The graph Gn is 4-connected for any given n, n � 3.

Proof : Obvious from the previous two theorems. 2

Remark 7 The graph Gn is maximally fault tolerant.

Remark 8 The proofs of the preceding two theorems outline a possible strategy to compute the vertex disjoint

paths between two nodes in Gn, although that may not give four such shortest paths. Given the source node s

and the destination node d, we can also run Dinic’s algorithm for maximal flow assuming each edge has a unit

capacity to compute the 4 node disjoint paths between s and d; see [ET75, Eve79] for details.

6 Conclusion

In this paper we have proposed a new family of Cayley graphs with a constant degree of four. The graph has a

diameter logarithmic in the number of nodes, are regular and dense, and is maximally fault tolerant. We have in-

vestigated different algebraic properties of the graph and proposed simple routing algorithms. The proposed graph

seems to be an attractive alternative to the well known binary De Bruijn graphs for designing interconnection net-

works especially when the network is needed to be maximally fault tolerant. It is to be noted that while simple

routing is very efficient for De Bruijn graphs [PR82], optimal routing in those graphs is complicated [GS86];

simple routing in the proposed graphs is very efficient and optimal routing, while more complicated than simple

routing, is relatively simpler than that for De Bruijn graphs. When one compares the proposed graphs with the

cube-connected cycles (only other Cayley graph of fixed degree), proposed graphs have two distinct advantages:

vertex connectivity is one higher than that of cube-connected cycles (although at a higher cost in terms of edges)

and they can accommodate much larger number of nodes for a given diammeter of the network. It is also to be

noted that although cube-connected cycles can be viewed as Cayley graphs [CCSW85] using complicated trans-

formations, it is yet to be seen how Cayley graph theoretic tools can be utilized to establish topological properties

of the cube-connected cycles. Further study of the proposed graph is needed to make it really useful in network

design; most important of them are to to design fault tolerant routing algorithm for this graph as well as to study

embedding of other graphs like hypercubes and meshes etc. Although one may easily get a fault tolerant rout-

ing algorithm in the line of the Remark 8 in a straightforward way, the resulting algorithm wouldn’t be efficient;

neither would it compute the shortest path in the remaining graph in presence of faults. Our investigations are

underway and we intend to report further results soon.

Acknowledgement: The authors are grateful to the reviewers for many detailed comments that greatly improved

the presentation.

References

[AK87] S. B. Akers and B. Krishnamurthy. The star graph: an attractive alternative to n-cube. In Proceedings
of International Conference on Parallel Processing (ICPP-87), pages 393–400, St. Charles, Illinois,
August 1987.

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection networks.
IEEE Transactions on Computers, 38(4):555–566, April 1989.

[AT91] B. W. Arden and K. W. Tang. Representation and routing of Cayley graphs. IEEE Transactions on
Communications, 39:1533–1537, December 1991.

[BA84] L. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structure for a computer netwrk.
IEEE Transactions on Computers, 33(3):323–333, March 1984.

[CAB93] C. Chen, D. P. Agrawal, and J. R. Burke. dBCube: a new class of hierarchical multiprocessor in-
terconnection networks with area efficient layout. IEEE Transactions on Parallel and Distributed
Systems, 4(12):1332–1344, December 1993.

[CCSW85] G. E. Carlsson, J. E. Cruthirds, H. B. Sexton, and C. G. Wright. Interconnection networks based on a
generalization of cube-connected cycles. IEEE Transactions on Computers, C-34(8):769–772, 1985.

[DT92] K. Day and A. Tripathi. Arrangement graphs: a class of generalized star graphs. Information Pro-
cessing Letters, 42:235–241, July 1992.

[ET75] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM J. on Computing,
4:507–518, 1975.

[Eve79] S. Even. Graph Algorithms. Pitman Publishing, 1979.

[GS86] S. Guha and A Sen. On fault tolerant distributor communication architecture. IEEE Transactions on
Computers, C-35(3):281–283, March 1986.

[Har72] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.

[LJD93] S. Lakshmivarahan, J. S. Jwo, and S. K. Dhall. Symmetry in interconnection networks based on
Cayley graphs of permutation groups: a survey. Parallel Computing, 19:361–407, 1993.

[LS82] W. E. Leland and M. H. Solomon. Dense trivalent graphs for processor interconnection. IEEE Trans-
actions on Computers, 31(3):219–222, March 1982.

[PR82] D. K. Pradhan and S. M. Reddy. A fault tolerant communication architecture for distributed systems.
IEEE Transactions on Computers, C-31(9):863–870, September 1982.

[Pra91] D. K. Pradhan. Fault tolerant VLSI architectures based on de Bruijn graphs (Galileo in the mid
nineties). DIMACS Series in Discrete Mathematics, 5, 1991.

[PV81] F. Preparata and J. Vuillemin. The cube-connected cycles: a versatile network for parallel computa-
tion. Communications of ACM, 24(5):30–39, May 1981.

[QAM93] K. Qiu, S. G. Akl, and H. Meijer. On some properties and algorithms for the star and pancake inter-
connection networks. Journal of Parallel and Distributed Computing, 1993.

[QMA91] K. Qiu, H. Meijer, and S. G. Akl. Decomposing a star graph into disjoint cycles. Information Pro-
cessing Letters, 39(3):125–129, 1991.

[Sch91] I. D. Scherson. Orthogonal graphs for the construction of interconnection networks. IEEE Transac-
tions on Parallel and Distributed Systems, 2(1):3–19, 1991.

[SP89] M. R. Samatham and D. K. Pradhan. The De Bruijn multiprocessor network: a versatile parallel
processing and sorting network for VLSI. IEEE Transactions on Computers, 38(4):567–581, April
1989.

[SS88] Y. Saad and M. H. Shultz. Topological properties of hypercubes. IEEE Transactions on Computers,
37(7):867–872, July 1988.

