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Abstract

We propose anew family of interconnection networksthat are Cayley graphswith constant node degree 4.
These graphs are regular, have logarithmic diameter and are maximally fault tolerant. Weinvestigate different
algebraic properties of these networks (including fault tolerance) and propose optimal routing algorithms. As
far as we know, thisisthefirst family of Cayley graphs of constant degree 4.

1 Introduction

Design of interconnection networksis an important integral part of any parallel processing or distributed system.
Performance of the distributed system is significantly determined by the choice of the network topology. A very
efficient interconnection network isthe well-known binary n-cubes or hypercubes; they have been used to design
various commercia multiprocessor machines and they have been extensively studied. For the past several years,
there has been a spurt of research on a class of graphs called Cayley graphs that are very suitable for designing
interconnection networks. Cayley graphs are based on permutation groups and include alarge number of families
of graphs, like star graphs [AK89, AK87, QMA91], hypercubes [BA84], pancake graphs [AK89, QAM93] and
others [AT91, Sch9l, DT92]. These graphs are symmetric (edges are bidirectional), regular, and seem to share
many of the desirable properties like low diameter, low degree, high fault tolerance etc. with the well-known
hypercubes (which are aso Cayley graphs). An excellent survey of these Cayley graphs (along with extensive
bibliography) can befoundin [LJD93]. All Cayley graphsareregular, i.e., each node has the same degree, but for
Cayley graphs studied to date, the degree of the nodes increases with the size of the graph (the number of nodes)
either logarithmically or sublogarithmically. From a VLS| design point of view, these interconnection topol ogies
are not so suitablefor area efficient layout; we need constant degree networks (where the degree of a node does
not change with the size of the network). There are also important applicationsfor which the computing nodes
in the interconnection network can have only afixed number of I/O ports [SP89, CAB93]. There are graphsin
the literature that have constant node degrees, like the Cube-Connected Cycles [PV 81] where the degree of any
nodeis3irrespective of the size of the graph. These cube-connected cycle graphs can be viewed as Cayley graphs
[CCSW85]. Therealso exist graph topologiesin the literature that have almost constant node degreeslikethe De
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Bruijn graphs[PR82] or theMoebiusgraphs[L S82]. Constant degree network graphsare of considerablepractical
importance since De Bruijn graphs are being used for designing a8096 node multiprocessor at JPL for the Galileo
project [Pra9l]. But, neither De Bruijn graphs nor Moebius graphs are regular; none of them can be viewed as
Cayley graphs. Also, these graphs have a low vertex connectivity of only 2 (i.e., fault tolerance is minimal in
the sense that the graphs cannot tolerate more than one faulty node) although most of the nodes in those graphs
have degree larger than 2 (most of the nodesin De Bruijn graphs have degree 4 and most of the nodesin Moebius
graphs have degree 3).

Our purposein the present paper isto propose anew family of degree 4 Cayley graphs. The proposed family
of graphsisregular of degree 4 irrespective of the size of the graph, has alogarithmic diameter and has a vertex
connectivity of 4, i.e., the graphs are maximally fault tolerant. Compared with cube-connected cycle graphs, the
proposed graph has ahigher vertex connectivity (hence higher fault tolerance) and it accomodates alarger number
of nodesthan cube-connected cycle graph for the same diameter. Theproposed family of graphsisalsointeresting
from agraph theoretic point of view and as an attractiveaternative to De Bruijn graphsfor VLSl implementation
in terms of regularity and greater fault tolerance without additional cost. The rest of the paper is organized as
follows. Section 2 introduces the new topology and section 3 deal s with two routing schemes and establishesthe
diameter of the graphs. Section 4 investigatesdifferent algebraic properties of the graph, including the existence
of Hamiltonian circuits, and section 5 isdevoted to the fault tolerance properties of thegraph. Section 6 concludes
the paper.

2 DegreeFour Cayley Graphs

Degree Four Cayley Graph G, is defined as a graph on » x 2" vertices for any integer n, n > 3; each vertex
is represented by a circular permutation of n symbolsin lexicographic order where each symbol may be present
in either uncomplemented or complemented form. Let 75, 1 < k& < n denote the k-th symbol in the set of n
symbols (we use English alphabets as symbols; thusfor n = 4,4 = a,t; = b,t3 = candty = d). We use
t; to denote either ¢, or ¢;,. Thus, for n distinct symbols, there are exactly » different cyclic permutation of the
symbolsin lexicographicorder and since each symbol can be present in either complemented or uncomplemented
form, the vertex set of G, (i.e. the underlying group I') has a cardinality of ».2" (for example, for n = 3, the
number of verticesin G5 is24; abe, cab, cab are valid nodeswhile ach or bac are not). Let I denote the identity
permutationt, s - - - £,,. Since each nodeis some cyclic permutation of the n symbolsin lexicographic order, then
if ajay - - - a, denotesthelabel of an arbitrary nodeand a; = ¢} for someinteger &, thenfor al ¢, 2 <+ < n, we

have a; = 17, ) mod n+1- Theedgesof G, are defined by thefollowing four generatorsin the graph:
(a1a2 Ap) = aas - - - ayaq
flara ap) = aas - - - a,dq
1(alflz ) = Gpdy - lp—1
f 1(alflz n) = Gp01 * Qp—q

Example: For n = 3, the vertex set of i3 (the underlying group I') is given by {abc, abc, abe, abe, cab, cab,
cab, cab, bea, bea, bea, bea, abe, abe, abe, eab, cab, cab, bea, bea, bea, abe, bea, cab} and the generator
set Qisgivenby @ = {bca cab, cab, bea}. Notethat since we are considering groups of permutation of dis-
tinct symbolswhich may be compl emented or uncomplemented, the generators themsel ves are a so permutations
of complemented or uncomplemented symbols. Figure 1 shows the proposed degree four Cayley graph G5 of
dimension 3.

Remark 1 e Theset of four generators,Q = {f, g, f~1, ¢~} closedunder inverse; in particular g isinverse
of g~' and fisinverseof f~!; thusthe edgesin &, are bidirectional.

e For anarbitraryn, n > 2, for any arbitrarynodev of thegraph G,,, é(v) # vwhereé € {g, f,g7*, f711.
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Figure 1. Example Graph for n = 3 (24 nodes)




Theorem 1 For anyn, n > 3, thegraph GG,,: (1) isa symmetric (undirected) regular graph of degree 4; (2) has
n.2" vertices; and (3) has ».2"*! edges.

Proof : (1) followsfrom the remarks 1 and 2 above. (2) followsfrom the fact that there are exactly » circular
permutationsof » symbolsinlexicographicorder (permutation with same cyclic ordering) and in any permutations
each symbol can be either in complimented or uncomplemented form. (3) followsfrom (1) and (2). O

3 Routing Schemes

3.1 A SimpleRouting Scheme

Since GG, isa Cayley graph, it is vertex symmetric [AK89], i.e., we can aways view the distance between any
two arbitrary nodes as the di stance between the source node and the identity permutation by suitably renaming the
symbols representing the permutations. For example, let cab be the source node and bea be the destination node.
We can map the destination node to the identity node abc by renaming the symbolsasb +— a, b — a, c — b,
¢+ b,a+— canda — e Under thismapping the source node becomes béa. Then the paths between the original
source and destination nodes become isomorphic to the paths between the node béa and the identity node abe in
the renamed graph. Thus, in our subsequent discussion about a path from a source node to a destination node,
the destination node is aways assumed to be the identity node / without any loss of generality. The following
algorithm S_R computes a path from an arbitrary source node aq as - - - a,, in G, to theidentity node .

Step 1: Compute k, 1 < k < n,suchthat a; = t.

Step 2: If & > | %] then go along successive g~ edges (n — k) times
else go aong successive g edges k times.

Step 3: for: = 1ton do
gotothenodetfty - - -ttty - - - 1; by either the g or the f edge;

Theorem 2 ThealgorithmS R correctly computes a path froman arbitrarynode ¢, a- - - - a,, to theidentity node
I.

Proof : The integer & always exists (Step 1) since the node aqa; - - - a,, iSa cyclic permutation of the lexico-
graphic ordering of » symbols (each symbol isin complemented or uncomplemented form). At theend of step 2,
wereach anode ayqiaiys - - -aqay - -ap = 8765 - - -1 . At the beginning of step 3, we are at anode t5¢5 - - - ¢
and we go to thenode ¢ - - - ¢ ¢4 inthefirst iteration by taking either the ¢ or the f edge (¢ edgeif ¢; = ¢; and
the f edgeif ¢; = ;). Such amove obviously exists for each iteration and at the end of step 3 we have reached
thenodet; - - -t,,, which isthe destination. O

Theorem 3 For an arbitrarynode ayas - - - a,, in G, the algorithm S R generates a path of length < L%”J.

Proof: Ifk > |3] then(n—Fk) < | 5] andhenceat theend of step2wereachthenodeay 1 apio - - - anay - - - a
by apathof length < | % |. Step 3 generatesapath of length exactly » from thisintermedi ate nodeto the destination
node. Hence the result. O

Corollary 1 The upper bound on the diameter of GG, isgivenby D(G,) < L%J.

3n

Remark 2 Although the above algorithm does generate a path of length < | <*

identity node, it does not generate the optimal (shortest) path in most cases.

| froman arbitrary node to the



3.2 Diameter and Optimal Routing

Definition 1 Consider anarbitrarynode s = aqas - - - a, in G,,. Thereexistsan uniqueinteger 4 such that ay, =
7. We define left distance Dy (s) and right distance Dg(s) of the node s (from the identity node) as follows:

Dp(s)=2k—mi—-1)+(n—k+1)

Dr(s)=2(n—k—mg)+(k—1)
where

my =max{3(i,j) [(1<j<E)A(A<i<n—m+1)Aajajp - jpmo1 = tiligr - ligm-1}
my = max{3(i,j) [ (k<j<n)A(L<i<n—m+1)Aajajpr - ajpm = liligr - Ligm—1}
Then, we define the distance of the node s (from the identity node) as
D(s) = min{Dr(s), Dr(s)}

Note that the process of optimal routing from an arbitrary node to the identity node is equivalent to sorting a
given permutation using the available operators (generators). The algorithm S_R does reach the identity node by
simply constructing the identity node; it does not take into account if the source node is aready partially sorted.
That’swhy it is not optima most of the time. Also, the generators f and f~! provide complemenation of the
symbols while the generators ¢ and ¢~ provide circular shifts without complementation. The parameters m;
and m, measure the longest sequence of uncomplemented symbols on left and right of the special symbol ¢; (it
is specia because it occupies the first positionin the destination identity node 7). Also, the generators f and ¢
provideleft circular shiftswhilethe generators f~! and ¢! provideright circular shifts. Theleft (right) distance
of anode attempts to compute the number of hops necessary to reach I by recognizing the presortedness on the
left (right) of the special symbol ¢;. The significance of these two distances will be clearer when we describe the
optimal routing algorithm later.

Example 1: Consider thenode s = fghijabede in G (theidentity nodeis abede fghij). Here, k = 6, since
ag = “a” = t1, m1(s) = 3 (dueto the substring “hij”), m2(s) = 2 (dueto the substring “cd”), Dr(s) = 9 and
Dpr(s) = 11. Hence D(s) = 9.

Theorem 4 For an arbitrary node s = ajay---a, in Gy, D(s') = D(s) £ 1, wheres’ = é(s) and § €
{g. L9771

Proof :  We need to consider the case of each operator separately; assumed(s) = s’ with corresponding m , m/
and &'

Casel: (6 = g) Wehavek’ = k — 1 and there can be four possible changesin my and m, (note that either 14
or my, or both can change at most by 1).

SubcaseA: m) = m;—1& mh = mo+1. Weget Dr,(s') = 2(kK'—mj—1)+n—k"+1 = Dr(s)+1
and Dp(s')=2(n—k —mh+ 1)+ k" —1=Dp(s)—1;0r D(s") = D(s) £ 1.

SubcaseB: m} = mq — 1 & mb = mo. Weget Dr(s') = Dr(s) +1and Dr(s") = Dg(s)+1; or
D(s") = D(s)+ 1.

Subcase C: m} = my & mb = mg+ 1. Weget Dy(s') = Dr(s)—1and Dr(s") = Dg(s)—1; or
D(s") = D(s)— 1.

Subcase D: m} = my & mb = my. Weget Dr(s') = Dr(s) —1and Dr(s') = Dg(s) + 1; or
D(s') = D(s) =+ 1.



Case2: (6 = f) Wehave k' = k — 1 and there can be three possible changesin mq and ms (notethat either m4
or my, or both can change at most by 1).

Subcase A: m} = my — 1 & mb = my. Weget Dy(s') = Dr(s)+ 1and Dr(s’) = Dg(s)+1; or
D(s")y = D(s)+ 1.
Subcase B: m} = m; & m4 = my + 1. Weget Dy,(s') = Dy(s) — 1and Dr(s’) = Dg(s) —1; or
D(s") = D(s)— 1.
Subcase C: m} = my & m}, = my. Weget Dr(s') = Dr(s) — 1 and Dr(s’) = Dg(s) + 1; or
D(s') = D(s) =+ 1.

Case3:(6 = g~') Wehave k' = k + 1 and there can be four possible changesin m, and m; (notethat either m;
or my, or both can change at most by 1).

SubcaseA: m} = m;+1& mh = my—1. Weget Dy,(s') = Dy(s)—1and Dg(s’') = Dr(s)+1;
or D(s') = D(s) £ 1.

Subcase B: m} = m; & m4 = my — 1. Weget D,(s') = Dy(s)+ 1and Dr(s’) = Dg(s) + 1; or
D(s")y = D(s)+ 1.

Subcase C: m} = mq + 1 & mb = my. Weget Dy(s') = Dr(s)— 1and Dr(s’) = Dg(s) —1; or
D(s")y = D(s)— 1.

Subcase D: mj = my & mY = my. Weget Di(s') = Dp(s) + 1 and Dgr(s’) = Dp(s) — 1; or
D(s") = D(s)+ 1.

Case4:(6 = f~!) Wehavek’ = k + 1 and there can be three possible changes in m; and m, (note that either
mq Or my or both can change at most by 1).

Subcase A: m) = my & mb = mg — 1. Weget D.(s') = Dr(s)+ 1and Dr(s") = Dg(s)+1; or
D(s") = D(s)+ 1.
SubcaseB: m} = mq + 1 & mb = mo. Weget Dr(s') = Dr(s) — 1and Dr(s") = Dg(s) —1; or
D(s") = D(s)— 1.
Subcase C: m} = my & m}, = my. Weget Dr(s') = Dr(s)+ 1 and Dr(s’) = Dg(s) — 1; or
D(s') = D(s) =+ 1.

0
Corollary 2 Fortheidentitynode! = tt5---t,inG,, D(I) = 0and D(6(1)) = 1foranyé,s € {g, f,g~', /711

Given an arbitrary node s = aqas - - - a,, the values of &, my and ms can easily be computed in one linear
scan of the node label; while doing so, the values of j (refer definition 1) corresponding to mq and m4 are dso
stored in integer variables, say jr, and jr respectively. In example 1 above, the values of j;, and jr are 3 and 8
respectively. Once thisis done, Dy (s), Dr(s) and D(s) can be computed and the algorithm Opt_Rout, given
in Figure 2 can be used to generate a path of length D(s) from the node s to the destination node 7, the identity
permutation.

Theorem 5 For anarbitrarynodes = aya; - - -a,, inG,,, thefunction D(s), given by definition 1, correctly gives

the distance of the node s fromtheidentity node I = t1t5 - - - t,,.



Procedure Opt_Rout(s, m1, ms, jr, jr, PL(s), Dr(s))
if DL(S) < DR(S) then
begin
fori=1to(j, —1)do
Move to the ¢ neighbor of the current node.
fori=1to(jrp —1)+(n—k+1)do
if the last symbol of the current node is uncomplemented
then move to the g~ neighbor
else move to the f~! neighbor
fori =1tok — jr — my do
Move to the ¢ ~' neighbor of the current node.
fori =1tok — jr — my do
if thefirst symbol of the current node is uncomplemented
then move to the g neighbor
else move to the f neighbor
end
else
begin
fori=1ton— jr—mo +1do
Move to the ¢ —' neighbor of the current node.
fori=1to(n—jr—mo+ 1)+ (k—1)do
if thelast symbol of the current node is uncomplemented
then move to the g neighbor
else move to the f neighbor
for i = 1tojr — k do
Move to the ¢ neighbor of the current node.
for i = 1tojr — k do
if thefirst symbol of the current node is uncomplemented
then move to the g =1 neighbor
else moveto the f~* neighbor
end

Figure 2: Algorithm Opt_Rout(s, m1, m2, jr, jr, Dr(s), Dr(s))



Proof : Theorem 4 states that for an arbitrary node s and its immediate neighbor s’ (s’ = 6(s), where s €
{9, f,97%, f71}), wehave D(s') > D(s) — 1. Thus, to reach the identity node 7 from the node s in the graph
G, aleast D(s) hopsare necessary. From the definition 1 and the construction of the algorithm Opt_Rout, it is
evident that the algorithm constructs a path of length D(s) from any given node s to theidentity node /. Thusthe

proof follows. O
Corollary 3 The algorithmOpt_Rout isan optimal (shortest) routing algorithmfor nodesinthegraph G,.

Corollary 4 For an arbitrarynode s = ayay---a, inG,, (s # I), thereexistsa é, § € {g, f,¢~', f~1} such
that D(é(s)) = D(s) — 1.

Proof :  Obviousfrom theorem 5. O
Theorem 6 The diameter of thegraph G, isgivenby D(G,,) = [ 22].

2

Proof : Consider thenode z = #|z |4y -« tnty -+ -f|2). Weseethat D(z) = |22]. This, coupled with corol-

lary 1 establishesthe result. O
4 Topological Propertiesof the Graph &,

In this section weinvestigatedifferent interesting structural properties of the proposed degree four Cayley graphs.

Definition 2 Any cycle in &,, consisting of only the f-edges (induced by the symmetric functions f or f~!) is
called an f-cycle. Smilarly, any cyclein G, consisting of only the g-edges (induced by the symmetric functions
g or g~')iscalled an g-cycle.

Example: InFigure 1, thecycle {bca, cab, abe, bea, cab, abe, bea } isan f-cyclewhilethe cycles {bea, cab, abe,
bea } and {bea, eab, abe, bea } are g-cycles.
Definition 3 The complement of any vertex v = aqas - - - a,, iN G, isthevertex @ obtained by complementing the

symbolsinu, i.e., @ = a,a, - - - a,. For example, complement of the vertex u = cab in G5 isthe vertex @ = cab.

Lemmal For an arbitrary pair of nodes« and » in &, such that g(u) = v, the complement nodes satisfy the

samerelation, i.e., g(u) = v.



Proof : Consider an arbitrary node u = ajas; - - - a,,; thenvisgivenby v = g(u) = azas - - -ana;. S0, g(u) =

gl@ray -+ -ay,) = G3as - - Gy = 0. O

Theorem 7 All of the ».2™ nodesof ¢, of dimension n are partitionedinto vertex digoint f-cycles of length 2n;

number of f-cyclesin G,, is2"1.

Proof : Consider an arbitrary node v = ajay---a, inG,. Forany i, i > 1,let fi(v) = f(f~'(v)), where
fH(v) = f(v). Itiseasy to observetha f*(v) = v = ajay---a, and f**(v) = v. Also, f'(v) # f’(v) for
1 < 4,57 < 2n. Thus, from an arbitrary vertex » if the f function is repeatedly applied, a cycle of length 2n is
traced inthegraph &,,. That these f-cycles are vertex disjoint followsfrom thefact that f~! exists(also notethat
f(v1) = f(vg),if and only if v, = vy). O

Corollary 5 For any vertex » in G,,, both » and © belong to the same f-cycle.

Remark 3 e Consider the symbol set {#1,%5,---,t,} for G,,. Forall k,1 < k < n, each f-cycleinG,, has

a unique node starting with ¢;, and another unique node starting with .

e Foreach f-cyclein G, theuniquenodestartingwith ¢, iscalled theleader node. Sncetherearen symbols
and the leader nodes start with ¢;, there are 2”1 leader nodesin &, which is equal to the number of f-
cyclesinG,,. Each f-cycleischaracterized by itsleader node. For example, the leader node of the f-cycle

cited in example 1 isabe.

e Consider an arbitrary leader node,#3t; - - - t* (of some f-cycle); each leader node mapstoa (n — 1) bit
binary number by assigning 0 if ¢7 = ¢; and 1 if tf = ¢; for 2 < ¢ < n. Thisgives usa convenient way to
number all the2”~! f-cyclesin &,, from fy to fon—1_4. Again, in example 1, the leader node abc mapsto

the 2-bit number 11 = 3 and the hence f-cycleis numbered as f5.

Theorem 8 All of the ».2™ nodes of ¢, of dimension » are partitioned into vertex disjoint g-cycles of length n;

number of g-cyclesin G, is2™.

Proof :  Similar to the proof of theorem 7. O

Theorem 9 For any arbitraryvertexv in GG,, suchthat f(v) = uw and g(v) = w, thereexistsa vertex  such that

g(z)=wand f(z) = w; furthermore, the nodes v, u, w and = areall distinct.



Proof : Consider an arbitrary vertex v = ajaz---a,. Thenu = f(v) = ay---a,a; andw = g(v) =
az---a,a,. Choosethenoder asz == ¢7(u) = @yay---a,. Thus, g(z) = wand f(z) = ay - -a,a; = w.
That thesefour nodes are distinct are a so obviousfrom the fact that the different symbolsin the nodesare distinct.

a

Remark 4 Theorem 9 provides a method to connect two different f-cycles via g-edgesin G, (note that for an

arbitrary node v, the nodes » and « belong to the same f-cycle and the nodes = and w belong to a different f-

cycle.

Definition 4 Two f-cycles, say f; and f;, aresaidto be adjacentif thereexistsavertexv € f; andavertexu € f;

suchthat v = g(u) or u = g(v).

Theorem 10 If two f-cycles f; and f, are adjacent, then there are four g-edges connecting f; and f.

Proof : Since f1 and f, are adjacent, assumethereexistsavertex v € f; suchthat g(v) = u, whereu € f,. Let
f(v) = w. Thenby theorem 9 ¢~1(w) = y = f~1(u); thusy isanodein f,. Also, by thecorollary 5, v, w € f;
andu,y € fandg(v) = wandg~1(w) = y (by lemmal). Thustherearefour g-edgesbetween thetwo f-cycles
fiand f;. O

Theorem 11 Each f-cyclein GG, isadjacent to » different f-cycles.

Proof: Consideranarbitrary f-cyclewiththeleaderv = ajas - - -a,,, wherea; = t;. Now, g(v) = agas - - -aya; =
1o and the node o belongsto the f-cyclewithleader aqasas - - - @,,. Then, consider thenodesy;, 1 < ¢ < n, such
thaty; = g(v;) wherev; = fi(v). Wehavey; = g(aiy1aiq2 - @n@182 -+ +8;) = Qiq2Gits - Qpl1 Gy -+ - GGt
thisnode y; belongsto a f-cyclewith theleader ayas - - -a;a;41a;42 - - - a,,. Obviously, thenodes y;, 0 < i < n,
belong to different f-cycles(they have different leaders) and hence any f-cycleisadjacent to » different f-cycles

inG,. |

Corollary 6 Consider an f-cycle f; for agiveni, 0 < i < 2"71; iisa(n—1) bitbinarynumber, say b,,_1b,, o - - - bo.
Thenthe f-cycle f; or fy,,_,»,_,..b, iISadjacenttothefollowingn f-cycles: fy 7 5. S5 b oebor Jor 15 abyyaembys

T fbn—1bn—2"'50'

Theorem 12 Thegraph G,,, n > 3, hasa Hamiltonian cycle.



Figure 3: Combining two f-cyclesto produce alarger cycle

Proof : Consider two arbitrary adjacent f-cycles, say f; and f,. By theorem 9, there exist nodes ., » € f; and
nodesw,y € f; suchthat w = g(v) = f(y)andu = f(v) = g(y). A larger cycle can be constructed involving
al nodesof f; and f, by using thesetwo g-edges as shownin Figure 3. This, coupled with thefactsthat f-cycles
in G, are vertex-digoint and each f-cycle is adjacent to exactly » distinct other f-cycles, leads to the desired

result. O

5 Fault Toleranceof &,

The node fault tolerance of an undirected graph is measured by the vertex connectivity of the graph. A graph &
issaid to have avertex connectivity £ if the graph G remains connected when ar arbitrary set of lessthan £ nodes
are faulty. Obvioudly, the vertex connectivity of a graph G cannot exceed the minimum degree of anode in G;
thus£(G,) < 4 since G, isa4-regular graph for al values of n. A graphiscalled maximally fault tolerant if
vertex connectivity of the graph equal s the minimum degree of anode. Our purposein this section isto show that

the proposed graph &, has a vertex connectivity of 4 and hence these graphs are maximally fault tolerant.

Definition 5 For agiven G,, computethereduced graph RG,, 1 inthefollowingway: condenseeach f-cycleinto
asinglenodeand label that nodewith the(n — 1) bit binary number correspondingtothe f-cycle (seecorollary 6);

connect two arbitrary vertices by an undirected edge iff the corresponding f-cycles are adjacentin G',.

Remark 5 e Figure4 showsthereduced graph RG; and RGs.

e Eachvertexin RG,, hasabinarylabel of lengthn andhasadegree(n+1) (each vertexin RG,, corresponds
to a distinct f-cyclein Gi,,41; each f-cyclein G, 41 has a n-bit binary label and is adjacent to (n 4 1)
distinct other f-cycles). Thus, RG',, isa(n + 1)-regular undirected graph.



Figure 4: Reduced Graphs RG, and RG3

¢ Anytwo arbitrary vertices« and » in RG,, are connected by an edge iff either their Hamming distanceis

1 or » isthe complement of v by corollary 6.

e Consider a hypercubegraph H,, of dimensionn [S38]; let H,, = (V, ') where V isthe set of 2" vertices
and E isthe set of edges. Then H,, isalways contained in the graph RG,, = (V’/, E’) suchthat V! = V
and ' = FU{(u,v) | (u,v € V)A (u=7).

Theorem 13 [SS38] A hypercube H,, has a vertex connectivity », i.e. for any two given source and destination

nodes, there are n vertex digjoint paths.

Remark 6 For any two given nodes » and v in H,, such that Hamming distance of « and » is k, there are k
paths of length & which are obtained by keeping the similar bits of » and » the same throughout and changing
the dissimilar bits selectively for different paths, and there n — k paths of length & + 2 which are obtained by
complementing one (different ones for different paths) similar bit, keeping it fixed and changing other bits and

then complementing the similar bit again at the last step. See [ SS38] for details.

Theorem 14 \ertex connectivity of RG, is(n + 1).

Proof : Consider two arbitrary nodes u = wouy « - - 4,1 andv = vovy - - - v,_1 IN RG,,. Since H,, iscontained
in RG,,, thereare n vertex digjoint paths between « and ». We need to show the existence of the (n + 1)-st vertex
disioint path between « and v. Let the Hamming distance of « and v be k. We need consider three cases:

Casel: k = n. Theren pathsbetween « and » of length » (theorem 13). Now, inthiscaseu = v and by definition

thereisadirect edge from « tov in RG,.



Case2: k = n— 1. Without loss of generality, let vy = vp and u; # v; for1 < ¢ < n— 1. Therearen — 1 paths
between » and » of lengthn — 1 (theorem 13); all nodesinvolved has the same value u in their O-th bit positions.
In RG,,, the other two vertex digioint paths are computed as follows: (1) go from « to ' = wouq - - - u,_1 and
from «’ to v (thereisan edge between «’ and » since v’ = v); (2) go from v to v’ = vgvy - - - v,_1 and from v’ to
u (thereis an edge between v" and u since v’ = ).

Case3: 1 <k <n-—1,i.e,thereareat|east two bit positionswhere the source and the destination disagree. We
aready have n vertex dijoint paths: & of them are of length % (each node on al these paths have n — & bitsin
the same state; there are k£ matching bits in the source and the destination node) and » — & of them are of length
k + 2 (each node on al these paths has exactly one of the » — & common bitsinverted). To get the (n + 1)st vertex
digoint path from « to » we do the following: go from « to «, complement the k bits (the bit positionswhere «
and » disagree) one at atime in any order to reach the node # and then go to ». Note that each node on this last

path has » — k (> 2) common bitsinverted. O

Lemma 2 Consider two arbitrary nodes« and » in ,, such that » and » belong to different f-cycles. Then there

exist four vertex digjoint paths between « and .

Proof : Letu € f; andv € f; where: # j. Consider the following four f-cycles adjacent to f;:
g(u)=us € fi1, g_l(u) = ug € fi2,

gf(u)=us € fiz, ¢f "(u)=u4s€ fuu

Itiseasy to seethat for n > 4 thesefour f-cycles aredistinct. Similarly, the node » can reach (by vertex digoint
paths) to four distinct f-cycles, say f;i1, fi2, f;3, and f;4. Notethat it is possiblethat f;; = f;; for some ( and
m. By Menger’stheorem [Har72], given two sets of nodes V; and V3 such that |Vy| = |V,| = n inan-connected
graph, there are n vertex digjoint paths connecting the nodes from V; to thosein V. Thereduced graph RG,, ¢
corresponding to &, isn-connected by the previoustheorem and hencefor » > 4 there are 4 vertex digoint paths
connecting the two sets of 4 distinct f-cycles. Thus, there exist four vertex digjoint paths between « and ».

For the case n = 3, choose fi1, fi2, fi3 Similarly but choose f;4 suchthat f~1(u) = uy € fis (i€, fis isthe
given f-cycle f;. Choose f;1, f;2, f;3, and f;4 sSimilarly. Notethat in thiscasethere are exactly 4 f-cyclesin the
entire graph G3; thus, thereis an one-to-one and onto mapping from one set of f-cyclesto the other. Thusagain,

there exist four vertex disjoint paths between « and v. O

Lemma 3 Consider two arbitrarynodes » and » in &, such that » and » belong to the same f-cycle. Then there

exist four vertex digjoint paths between « and .



Proof : Since » and » belong to the same f-cycle, we directly get two vertex digjoint paths between » and »

along thegiven f-cycle. Consider the following four f-cycles:
glwy=w € fi, g N u)=u € fy

g(v) =v1 € f3, g ' (v) =1 € f4

Notethat f; and f; aredistinct and f5; and f; are distinct; but one of f; and f, may be the same as one of f;3
and fys (Whenu = f(v)orv = f(u)). Inany case, there are two vertex digjoint paths between the two sets of
two f-cycles each by the n-connectivity of the reduced graph RG,,_1 correspondingto GG,,. Thusthere exist four

vertex digoint paths between « and . O

Theorem 15 Thegraph G, is4-connected for any given n, n > 3.

Proof :  Obviousfrom the previous two theorems. O

Remark 7 The graph &, is maximally fault tolerant.

Remark 8 The proofs of the preceding two theorems outline a possible strategy to compute the vertex digjoint
paths between two nodes in G,,, although that may not give four such shortest paths. Given the source node s
and the destination node d, we can also run Dinic’'s algorithm for maximal flow assuming each edge has a unit

capacity to compute the 4 node disjoint paths between s and d; see [ET75, Ever9] for details.

6 Conclusion

In this paper we have proposed a new family of Cayley graphs with a constant degree of four. The graph has a
diameter logarithmic in the number of nodes, are regular and dense, and is maximally fault tolerant. We have in-
vestigated different al gebrai c properties of the graph and proposed simplerouting al gorithms. The proposed graph
seemsto be an attractive aternativeto the well known binary De Bruijn graphsfor designing i nterconnection net-
works especially when the network is needed to be maximally fault tolerant. It isto be noted that while simple
routing is very efficient for De Bruijn graphs [PR82], optimal routing in those graphs is complicated [GS86];
simple routing in the proposed graphsis very efficient and optimal routing, while more complicated than simple
routing, is relatively simpler than that for De Bruijn graphs. When one compares the proposed graphs with the
cube-connected cycles (only other Cayley graph of fixed degree), proposed graphs have two distinct advantages:
vertex connectivity is one higher than that of cube-connected cycles (although at a higher cost in terms of edges)

and they can accommodate much larger number of nodes for a given diammeter of the network. It isaso to be



noted that although cube-connected cycles can be viewed as Cayley graphs [ CCSW85] using complicated trans-
formations, it isyet to be seen how Cayley graph theoretic tools can be utilized to establishtopological properties
of the cube-connected cycles. Further study of the proposed graph is heeded to make it really useful in network
design; most important of them are to to design fault tolerant routing algorithm for this graph as well as to study
embedding of other graphs like hypercubes and meshes etc. Although one may easily get a fault tolerant rout-
ing algorithmin the line of the Remark 8 in a straightforward way, the resulting algorithm wouldn’t be efficient;
neither would it compute the shortest path in the remaining graph in presence of faults. Our investigations are

underway and we intend to report further results soon.

Acknowledgement: Theauthorsare grateful to thereviewersfor many detailed comments that greatly improved

the presentation.
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