
Di�erential IDDQ Testable Static RAM Architecture

Waleed K. Al-Assadi

Anura P. Jayasumana

Yashwant K. Malaiyay

Technical Report CS-96-102

February 1996

Department of Electrical Engineering/
yDepartment of Computer Science

Colorado State University

Fort Collins, CO 80523

Di�erential IDDQ Testable Static RAM Architecture �

W. K. Al-Assadi, A. P. Jayasumana, and Y. K. Malaiyay

Electrical Engineering Department
y Computer Science Department

Colorado State University

Fort Collins, CO 80523

Abstract

A testable design that enhances the IDDQ testability of random access memories (SRAMs)

for o�-line testing is proposed. Increased accuracy and test speed can be achieved by memory

array partitioning. Comaparision of IDDQ values from two blocks is performed during parallel

write/read operations to memory locations of the two blocks. Simultaneous write/read

operations to all locations within physically interleaved block can signi�cantly enhance the

test speed as well as fault activation.

1 Introduction

With the increasing complexity of semiconductor memories, the nature of the failure modes

have become more complex and subtle [1, 2]. Failure modes such as gate-oxide shorts,

bridging defects, parasitic transistor leakage, defective p-n junctions, and transistors with

incorrect threshold voltages, do not a�ect the logical behavior. Such faults may pass the

functional and logical testing, but may malfunction overtime, causing reliability hazards.

Many of those faults cause elevated quiescent power supply current (IDDQ), which is typically

several orders of magnitude greater than the IDDQ of a fault-free device.

In static random-access memories (SRAMs), most of the IDDQ testable faults are acti-

vated during the write/read cycles [3, 4, 5, 6]. In [3], an analysis of the e�ectiveness of the

IDDQ testing has been done using SRAM of 8K X 8-bit words manufactured by Philips, using

Inductive Fault Analysis technique. The results show that a high fault coverage is achieved

when IDDQ testing is performed in combination with functional testing. In [7], experimental

results were reported on deploying current testing to detect defects that cause data retention

�This work was supported partly by a BMDO funded project monitored by ONR.

problems. The idea of IDDQ testing is expanded for fault localization in [6]. In [8], a testable

SRAM structure was proposed for observing the internal switching behavior of the mem-

ory cells. The proposed structure provides a high coverage of disturb-type pattern sensitive

faults. In [4], the detailed fault model of the 6-transistor memory cell was investigated for

possible transistor level faults. It was shown that intra-cell defects can cause inter-cell faults

in the memory array, such as coupling faults. Such faults were shown to cause elevated

IDDQ when activated. In [5] a testable design for memory array was shown to enhance IDDQ

testing by allowing parallel access to the whole memory cells during the write cycle.

The above work clearly establishes the promise of IDDQ testing for SRAMs. However,

it does not establish testability requirements that can improve the e�ectiveness of current

testing. In addition the above work does not address the problem of current measurements

and the e�ects of the size of the circuit under test on the accuracy and testing speed.

In this paper, we propose a testable scheme for o�-line testing that enhances the IDDQ

testability for CMOS SRAMs. The proposed scheme partitions the memory array into identi-

cal partitions each with its own operational ground node (GND(O)). Quiescent power supply

currents can be monitored during parallel access of locations or subset of locations (blocks)

of each partition. Test speed is enhanced by comparing currents in the two partitions using

a built-in current comparator (BICC). This paper is an extension of the di�erential concept

proposed in [9]. In that work, a testable design for a word-organized SRAM architecture,

which is a special case of SRAMs, was presented.

2 Di�erential IDDQ Testing of SRAMs

The proposed scheme is intended to minimize the impact of the conventional built-in current

sensor (BICS) circuit on speed testing, by using a current comparator. The memory array

is partitioned physically into identical partitions each with its own operational ground node

(GND(O)). The partitioning is done during the design phase. The number of partitions

depend on the size of the memory array.

In most SRAM architectures, bits are physically separated such that individual bits

belonging to several logical words may reside on a segment on the same chip, i.e. a segment

i holds bit i of each word. Hence a partition in Figure 1 may represent a segment or several

segments of the same chip, connected to a certain GND(O) node. GND(O) nodes are used

during normal operations, thus bypassing the current comparator. During the test mode,

the GND(O) nodes are open, and the test ground GND(T) node (ground node of the current

comparators) will be the common ground node for the circuit , i.e. the tester will consider

GND(T) as the ground node. Identical partition sizes imply similar ground line capacitance

values for each partition.

A built-in current comparator (BICC) is used to compare the quiescent power supply

currents of two partitions during the testing mode while accessing their locations simulta-

neously. A sensor similar to the Di�erential BIC (D-BIC) proposed in [10] may be used as

the BICC. With the D-BIC, testing is performed in two phases. The circuit is partitioned

into two identical parts CUT1 and CUT2. Test vectors are applied to CUT1 and the current

is compared to a reference current value in one phase. Then in the second phase, CUT2

is similarly tested. When using BICC, testing is performed in one phase, such that if the

di�erence between the currents of two partitions (e.g. jI1-I2j in Figure 1) exceeds a suitably

chosen Ith, the
ag line is raised indicating a fault.

If several BICCs are used, the
ag signals can be connected to an OR gate to generate

a Pass/Fail signal. If the di�erence is less than Ith, no fault is detected. However, this may

occur in case of faults driving similar currents in each partition. To overcome this problem,

each partition can be divided into blocks. A block is a subset of contiguous or interleaved

memory locations. Testing can be employed by simultaneously accessing two identical blocks,

each belonging to a separate partition. Reducing the size of the accessed array will allow

the resolution to be maintained. In addition, reducing the size of the partition will ensure

that leakage currents will not add up to the point where they become comparable to the

abnormal quiescent current expected of a fault. Therefore the accuracy and testing speed is

expected to improve signi�cantly.

Comparator
Current

Comparator
Current

I1
Ii Ii+1

Ith Ith

Partition (i-1)

GND(T) GND(T)

GND(T): Test Ground Node

Block Block Block Block

Partition 2Partition 1

VDD Chip boundary

CC

Pass/Fail

C

I 2

C

Flag Flag

GND(O)GND(O)

GND(O)GND(O)

GND(O): Operational Ground Node

Partition (i)

Figure 1: Principle of IDDQ comparison

3 Partitioning and Decoder Design

In this section we propose a IDDQ testable design for a SRAM architecture. Physical sep-

aration of the bits reduces the likelyhood of an alpha particle erasing more than one bit of

a logical word, thus allowing e�ective single-bit error correction and enhances reliability. In

this work we assume the the architecture shown in Figure 2. When the logical word length

is `d' bits, the memory array is composed of `d' of segments. Each segment holds one bit of

each logical word. A segment decoder is required to route input data to di�erent segments.

d 1d

W0

1

0d d1

S 0

sense amplifiers
Bit drivers and

0

bit d of all

Data out

W

Wp

Bit drivers Bit drivers

Data in

Data-in register

Output register

8 8 8

888
8

8

8

Bit drivers

dd

dd

S S1 d

Ad
dr

es
s l

in
es

Se
gm

en
t

de
co

de
r

Decoder lines

logical words
bit 0 of all

logical words
bit 1 of all

logical words

Figure 2: A SRAM Architecture

To achieve a IDDQ testable schemewith high test accuracy and speed with small hardware

overhead, design modi�cations are required to meet three basic goals [9]:

1 E�cient partitioning of memory array into identical blocks of a reasonable size.

2 Block write/read operations during the testing mode to access locations within a block

in each partition in parallel.

3 E�cient BICC circuit with high sensitivity and accurate Ith selection.

The �rst and second goals are achieved by certain modi�cations to address and segment

decoders, and memory array. Consider the memory array of 8K X 8-bit words shown in

Figure 3. This array is composed of eight segments. The three most signifacent bits (a10�a12)

of the row register are used for the segments decoder. The remaining bits (a0� a9) are used

for the 1K address decoder.

5

d0
bits

S0 1S S2 3S 4S S 6S
7S

d0 1d d2 d3 d4 d5 d6 d7

A0 A1 A7

t c t c t c

a
1

a
0

a
0

a
1

a
11a

10

1
 -

to
-

1
K

 d
e
c
o
d
e
r

A
d

d
re

s
s
 r

e
g

is
te

r

a
10

12

A1

A7

A0a 12

a
11

a
10

Bit drives

W/R
Data-in register8

8
8 8

8 bits

Block 0

Block 2

Block 3

Block 1

bits bits

d

bits

d

bits

d

bits

d

bits

d

bits

d2 3 4 5 6 7
bits

d1

Test signal (t)

GND1(O)GND2(O)

segment decodel

3
-t

o
-8

d
e
c
o
d
e
r

Figure 3: The IDDQ 8K X 8 testable SRAM

If we are assuming only one BICC is used, i.e. the array can only be partitioned into

two partitions, then two GND(O) nodes are required. Segments are divided equally among

the GND(O) nodes. Segments S0, S2, S4, and S6 are connected to a one GND(O) node

and the other segments are connected to the other GND(O) node. However, depending on

the size of the memory array, more than two partitions may be required. If four partitions

are to be used, then two segments are connected to a GND(O) node (i.e. four GND(O)

nodes) and two BICCs are required. For the example under consideration, let us assume

two partitions. A test signal (t) is required such that during normal operation mode t=0.

During test mode when t=1, memory cells in both partitions are accessed simultaneously for

parallel write/read operations. The segment decoder is modi�ed by adding the test signal

(t). The write operation is performed when W=R signal is low.

The most crucial issue is the address decoder modi�cations that allow selective access

to several physically contiguous or physically interleaved memory locations simultaneously.

The conventional address decoder is modi�ed to allow two modes of operation, normal and

testing. To achieve high test speed, the process of current comparisons is needed to be

limited to a minimumnumber, which implies minimum number of comparand blocks needed

(goal 1 above). For the example under consideration, we assume that each of the 1K X 8

cell segment can only be divided into four blocks. In general it can be more than four blocks

depending on the size of the memory array.

During the normal operation mode (t=0), the decoder works normally and is able to

activate only one word line for each write or read operation. During the testing mode (t=1),

the decoder is able to activate one block of locations simulatenously. To achieve this mode

of operation, the two least signi�cant bits a0 and a1 of the address register, and the test

signal (t) are used to perform block selection during the testing mode as shown in Figure

3. Another test signal tc is required to perform state-coupling test. Modi�cations to the bit

drivers are shown in Figure 4. Bit drivers are modi�ed such that when tc = 1, test vectors

of interchangeably complemented bits like (01010101) vector can be written to each physical

word. Consider Figure 4 for the write operation to segment 0. When tc = 1, decoder output

lines A1, A3, A5, and A7 are activating their corresponding bit drivers to allow complement

of the input bit to be written to the corresponding memory cells of the segment. This applied

for each segment. However, the decoder works normally when tc = 0.

In the test mode, each partition contains four blocks. Physical locations of the four blocks

are interleaved with each other. The remaining higher order bits are to select the locations

within the block in the normal mode of operation. The operation is such that during the

testing mode, the AND gate that corresponds to a combination of (a0; a1) is active , thus the

corresponding 1K address lines of the address decoder are active. These active lines of the

address decoder are going to select 1K interleaved words (a block) in each partition. These

two blocks are accessed simulatenously. The currents from both blocks are compared while

parallel write/read operations are performed into both blocks. From this design shown in

Figure 3, only one block is selected from each partition for current comaparision.

c
tc

d
0

Bit Bit Bit Bit

A0

A7A1

t

a

Segment 0

10

a
11

a
12

A0

A1

A7

W/R

Test signal (t)

S
e
g
m

e
n
t

d
e
c
o
d
e
r

Data-in

d
7

Bit Bit Bit Bit

8

A
2

Figure 4: Bit-drive Modi�cations

4 Test Scheme

Faults that enhance IDDQ are mainly transition faults, state coupling and bridging faults,

and neighborhood pattern sensitive faults. To detect state coupling and bridging faults,

all states of two adjacent cells i and j in a segment should be considered [11]. The testing

sequence contains a set of parallel write/read operations to the blocks, such that if a test

vector v is applied to block i, then v is applied to block (i + 1). A minimal test sequence

contains two patterns each of (00000000) and (11111111) test vectors. The procedure is to

apply a pattern without activating tc signal. Then the same pattern is applied when tc is

activated. For example, when tc is active and test vector (00000000) is applied, then vector

(01010101) is written to the array. However, when vector (11111111) is applied while tc is

active, vector (10101010) will be written to the array.

This test sequence is capable of detecting stuck-at and a large fraction of state coupling

and bridging faults. For each test vector applied, four block write operations and four block

read operations are required as shown:

Write: block 0 (00000000)

Write: block 1 (11111111)

Write: block 2 (00000000)

Write: block 3 (11111111)

Read : block 0

Read : block 1

Read : block 2

Read : block 3

The above sequence is repeated for tc = 1. If tc is not used, it will take 8 times as long to

write a pattern like (01010101) to a physical word. Although neighborhood pattern sensitive

faults are considered complex faults and require a series of write/read operations into small

sets of interleaved locations, the sequence above is capable of detecting some of those faults.

From above, it is clear that 16 parallel write/read operations are required to test the SRAM

for the faults assumed. This scheme may not cover some non IDDQ testable failure modes

which may need to be considered separately.

Several of the well known SRAM testing algorithms have a complexity proportional to

n, where n is the number of memory locations. With the testable scheme proposed, the

complexity of testing is proportional to b, where b is the number of blocks. Since b � n,

the testing process is speeded-up proportional to (n/b). However the accuracy of testing

depends also on the performance and sensitivity of the comparator BICS used for current

monitoring.

5 Conclusions

We have extended the di�erential concept in [9] for a general IDDQ testable SRAM design.

The proposed scheme employs memory array partitioning and parallel write/read operations,

during which several faults are activated with elevated quiescent power supply current. The

currents are compared in one phase for each opearion. This enhances the testability such

that testing can be performed in a signi�cantly shorter time. A possible test sequence is

presented. However, several questions remain unanswered in this area. For example, how to

make optimal partitioning such that it will not add more hardware overhead, and accordingly

how to make the selection of the of the threshold current Ith.

References

[1] C. A. Papachristou and N. B. Sahgal, \An Improved Method for Detecting Functional
Faults in Semiconductor Random Access Memories," IEEE Trans. on Computers, vol.
c-34, no. 2, pp. 110-116, February 1985.

[2] R. Rajsuman and K. Rajkanan, \An Architecture to Test Random Access Memories,"
Proc. 4th. Int'l. VLSI Design Conf., pp.144-147, Bangalore, India, January 1992.

[3] R. Meershoek, B. Verhest, R. McInerney and L. Thijssen, \ Functional and IDDQ Testing
on a Static RAM," Proc. Int'l Test Conf., pp.929-937, 1990.

[4] W. K. Al-Assadi, Y. K. Malaiya, and A. P. Jayasumana, \Modeling of Intra-Cell De-
fects in CMOS SRAM," Records of the 1993 IEEE International Workshop on Memory
Testing, pp. 78-81, August 1993.

[5] H. Yokoyama, H. Tamamoto and Y. Narita, \A Current Testing for CMOS Static RAMs,"
Records of the 1993 IEEE Int'l Workshop on Memory Testing, pp. 137-142, August 1993.

[6] C. Elm and D. Tavangarian, \Fault Detection and Fault Localization Using IDDQ-Testing
in Parallel Testable FAST-SRAMs," Proc. IEEE VLSI Test Symp., pp. 380-385, April
1994.

[7] C. Kuo, T. Toms, B. T. Neel, J. Jelemensky, E. A. Carter, and P. Smith, \Soft-Defect
Detection (SDD) Technique for a High-Reliability CMOS RAM," IEEE Journal of Solid-
State Circuits, vol. 25, no.1, pp. 61-66, February 1990.

[8] S. T. Su and R. Z. Makki, \Testing of Static Random Access Memories by Monitoring
Dynamic Poer Supply Current," Journal of Electronic Testing: Theory and Applications,
vol. 3, no. 3, August 1992, pp. 265-278.

[9] W. K. Al-Assadi, A. P. Jayasumana and . K. Malaiya, \ A Bipartite, Di�erential IDDQ
Testable Static RAM Design," Records of the 1995 IEEE International Workshop on
Memory Technology, Design and Testing, pp. 36-41, August 1995.

[10] A. D. Singh and J. P. Hurst, \Incorporating IDDQ Testing in BIST: Improved Coverage
through Test Diversity," Proc. IEEE VLSI Test Symp., pp.374-379, April 1994.

[11] R. Dekker, F. Beenker, and L. Thijssen, \A Realistic Fault Model and Test Algorithms
for Static Random Access Memories," IEEE Transaction on Computer-Aided Design,
vol. 9, no.6, June 1990, pp.567-572.

