
Computer Science
Technical Report

Using Design Cohesion to Visualize,
Quantify, and Restructure Software

Byung-Kyoo Kang
kang@cs.colostate.edu

James M. Bieman
bieman@cs.colostate.edu

January 22, 1996
Submitted for Publication

Technical Report CS-96-103

Research partially supported by NASA Langley Research Center grant NAG1-1461.

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Using Design Cohesion to Visualize, Quantify, and

Restructure Software

Byung-Kyoo Kang James M. Bieman

January 22, 1996

Technical Report CS-96-103

Submitted for Publication

Abstract

During design or maintenance, software developers often use intuition, rather than an objective set of

criteria, to determine or recapture the design structure of a software system. A decision process based on

intuition alone can miss alternative design options that are easier to implement, test, maintain, and reuse.

The concept of design-level cohesion can provide both visual and quantitative guidance for comparing

alternative software designs. The visual support can supplement human intuition; an ordinal design-level

cohesion measure provides objective criteria for comparing alternative design structures. The process for

visualizing and quantifying design-level cohesion can be readily automated and can be used to re-engineer

software.

Index terms | cohesion, software design, software maintenance, software visualization,

software measurement and metrics, software restructuring and re-engineering, software

reuse, measurement theory.

1 Introduction

Poorly structured software designs can result in systems that are di�cult to test, upgrade, maintain, and
reuse, and are unreliable. Thus, the life cycle costs of poorly designed software systems can be much higher
than that of well designed systems. An inferior design can be due to inadequate choices during the initial
design of a system, or can be a natural result of software evolution.

Objective criteria for evaluating design alternatives are needed. Many existing criteria are applicable to
implementations, not designs. Examples of objective criteria for evaluating code structure include principles
of structured programming, the cyclomatic number [11], functional cohesion [4], and many others. The
principles of information hiding and data abstraction provide guidance for structuring a design, but do not
give objective means for comparing alternative structures. Function points are used to predict the expected
size of an implementation rather than to evaluate design structure [1]. The object-oriented design mea-
sures proposed by Chidamber and Kemerer provide a mechanism to gather quantitative information about
classes in object-oriented software, but they do not provide guidance to help evaluate design alternatives [5].
Gamma et al describe a set of structural design patterns for object-oriented software and objective, but not
quantitative, criteria for choosing a particular pattern [8].

Visual displays of software designs and ordinal measures of design attributes are potential tools to identify
and evaluate design alternatives. A visual display of a design structure will increase the accuracy of decisions

Research partially supported by NASA Langley Research Center grant NAG1-1461.

Copyright c
1995 by Byung-Kyoo Kang and James M. Bieman. Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for direct commercial advantage, the copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of the authors.

Address correspondence to: J. Bieman, Computer Science Dept, Colorado State Univ., bieman@cs.colostate.edu, Fort

Collins, CO 80523. (970)491-7096, Fax: (970) 491-2466.

1

based on intuition. Measures that provide objective, quantitative characterizations of a design add further
insight, and can potentially be used in an automated structuring system.

Design visualization and measurement tools can help in developing an initial design, and they can be
used to re-engineer existing software. The most di�cult software to re-engineer is legacy software, which
often has no available design documentation. To re-engineer such software we need to recapture the design
structure from the implementation. Software visualization tools can certainly help here. After the design is
recaptured, the system can be restructured.

Our objective is to create design visualization and measurement tools that can be applied to design-level
entities. These tools should support the visualization and quantitative evaluation of design structure, and
be useful in restructuring a software design.

In the remainder of this paper we show that the concept of design-level cohesion can be used to visualize,
quantify, and restructure software. The term \software cohesion," which was introduced more than 20 years
ago [12], refers to the relatedness of module components. A highly cohesive software module is a module
whose components are tightly coupled. Cohesive modules are di�cult to split into separate components.
Thus, the degree of cohesiveness should be an attribute that is useful for evaluating the structure of modules.

A clear understanding of an attribute like design-level cohesion is required before the attribute can be
measured in a meaningful way [6, 7]. A model that captures the essence of the attribute is also needed [2].
A design model that can help make design attributes visible can be exceptionally valuable.

2 A Model for Visualizing Software Designs

An input-output dependence graph (IODG) can model a design-level view of a module. The model is based
on the data and control dependence relationships between input and output components of a module.

Input components of a module include in-parameters and referenced global variables. Output components
include out-parameters, modi�ed global variables, and `function return' values. An in-out-parameter becomes
two components, an input component and an output component. The term `component' refers to a static
entity. An array, a linked list, a record, or a �le is one component rather than a group of components. We
de�ne the data and control dependence informally; their formal de�nitions are given in compiler texts, for
example, see reference [14].

De�nition: A variable y has a data dependence on another variable x (x
d
! y) if x `reaches' y through

a path consisting of a `de�nition-use' and `use-de�nition' chain. (Here by data dependence, we mean the
`true dependence' determined by examining the data
ow of the static components.) A typical case of data
dependence between two variables is that a variable is used to compute the other through a sequence of
assignment statements.

De�nition: A variable y has a control dependence on another variable x if the value of x determines whether
or not the statement containing y will be performed.

De�nition: A variable y is dependent on another variable x (x ! y) when there is a path from x to y

through a sequence of data or control dependence. We call the path a dependence path.

De�nition: A variable y has condition-control dependence on another variable x (x
cc
! y) if y has control

dependence on x, and x is used in the predicate of a decision (i.e., if-than-else) structure. For example, all
variables in the `then' and `else' bodies of an `if' statement are condition-control dependent on variables used
in the predicate of the decision.

De�nition: A variable y has iteration-control dependence on another variable x (x
ic
! y) if y has control

dependence on x, and x is used in the predicate of an iteration structure. For example, all variables in a
`while' body are iteration-control dependent on variables used in the loop predicate.

De�nition: A variable y has c-control dependence on another variable x (x
c
! y) if the dependence path

between x and y contains a decision-control dependence. For example, for (1) x
cc
! y, (2) x

d
! a

cc
! b

d
! y,

and (3) x
cc
! a

ic
! b

d
! y, y has c-control dependence on x. The c-control dependence between an input and

an output variable means that the output value is controlled by the input value through decision structure.

De�nition: A variable y has i-control dependence on another variable x (x
i
! y) if the dependence path

between x and y contains an iteration-control dependence but no condition-control dependence. For example,

2

for (1) x
ic
! y and (2) x

d
! a

ic
! b

d
! y, y has i-control dependence on x. When an output has i-control

dependence on an input, the output value is a�ected by the execution of a iteration process whose execution
count is a�ected directly or indirectly by the input.

In our model, a dependence between an input and an output of module is either data, c-control, or
i-control dependence.

IODG De�nition. The input-output dependence graph (IODG) of a module M is a directed graph, GM =
(V, E) where V is a set of input-output components of M, and E is a set of edges labeled with dependence
types such that E = f(x; y) 2 V � V j y has data, c-control, and/or i-control dependence on xg

The graph contains the information how input-output components are related. Each input contributes
to one or more outputs; they are used to compute output(s), as input data, decision invariant, and/or loop
invariant. The dependence between components can be determined by data
ow analysis using a compiler-
like tool when an implementation is available. Without an implementation, a designer must specify the
dependencies between input and output components. Such a speci�cation is a key component of a detailed
design. An IODG can be readily displayed visually as shown in Figure 1.

The caller-callee relationship is represented by including the input-output dependence relationship of the
callee in the corresponding place of the I/O dependence diagram of the caller. In such a digram, an input
is represented by a circle, and an output by a square. The texts in each circle and square are the names of
input and output variables. Each arrow indicates the dependence between two components.

Figure 1 shows two IODG's, one for procedureAsum Hsum and another for procedure Fibo Amean Hmean.
Fibo Amean Hmean generates an array of n Fibonacci numbers and computes the arithmetic mean and har-
monic mean of the numbers by calling procedure Asum Hsum.

The IODG of Fibo Amean Hmean shows the caller-callee relationship: Asum Hsum is called by procedure
Fibo Amean Hmean. The call relationship is represented by the callee's IODG within the rounded square
in the IODG of the caller. Each dependence relation between the caller and the callee is represented by an
arrow with a dependence type(s). If a callee contains a function call, the dependence information of the
callee are included in the caller. So, the IODG of the callee must be determined before generating the caller's
IODG.

The extended IODG contains the complete dependence paths between inputs and outputs of a module.
Thus, we can determine exact dependence relationships between input/output components. For example,
consider input n and output amean of the IODG of Fibo Amean Hmean. We �nd three dependence paths

between them: (1) n
d
! amean, (2) n

d
! input parameter

i
! output parameter

d
! amean, and (3) n

i
!

fib arr
d
! input parameter

d
! output parameter

d
! amean. According to our dependence de�nitions,

amean has data and i-control dependencies on n.
To simplify the representation, the arrow in the IODG indicates only a direct dependence between input

and output. An indirect dependence is implied through a sequence of direct dependences. The IODG of
Fibo Amean Hmean shows that the direct and indirect dependence relationship between input n and output
amean and hmean.

The IODG shows the relationship between input and output components of a module. In its graphical
form, the IODG visually displays the functional structure of the module. This representation is used to
de�ne a design-level cohesion measure and is applied to the problem of restructuring software at design and
maintenance stages.

3 Measuring Design Cohesion

Software cohesion, as described by Stevens, Myers, and Constantine (SMC Cohesion) [12], provides an
intuitive mechanism for assessing the relatedness of the components in an individual module. It can be used
to determine whether the components of a module actually belong together. After describing SMC Cohesion,
we show that SMC Cohesion can be applied directly to the IODG representation of a module to evaluate
the design-level cohesiveness of the module. We use the ordering imparted by SMC Cohesion on the set of
all IODG's as an empirical relation system to show that our own automatable design-level cohesion measure

3

arrn

n

fib_arr

begin

 for i := 3 to n

 amean := asum / n;
 hmean := n / hsum;
end;

 fib_arr[1] := 1;
 fib_arr[2] := 2;

 fib_arr[i] := fib_arr[i-1] + fib_arr[i-2];
 Asum_Hsum(n, fib_arr, asum, hsum);

d d

d d

d

d
d

d

asum hsum

amean hmean

i i

i

Asum_Hsum

d
d

i
i

begin

 for i := 1 to n do begin

 asum := 0;
 hsum := 0;

 asum := asum + arr[i];
 hsum := hsum + 1.0/arr[i];
 end;
end;

var i : integer;

var asum, hsum : int_array;

procedure Fibo_Amean_Hmean

 i : integer;
 var hsum : float);
 var asum : integer;
 arr : int_array;
 (n : integer;
procedure Asum_Hsum

 var hmean : float);
 var amean : integer;
 var fib_arr : int_array;
 (n : integer;

Figure 1: Input-output dependence graph representation for Asum Hsum and Fibo Amean Hmean.

(DLC) satis�es the representation condition of measurement [6, 7]. That is, we show that the DLC measure
is consistent with the intuition provided by SMC Cohesion.

3.1 SMC Cohesion as an Empirical Relation System

Stevens, Myers and Constantine de�ned seven levels of cohesion on an ordinal scale [12]. The SMC Cohesion
of a module is determined by inspecting the association between all pairs of its processing elements. The
purpose of SMC Cohesion is to predict properties of implementations that will be created from a given
design, so a processing element is a module behavior that may not yet be reduced to code. SMC Cohesion is
based on seven distinct associative principles between each pair of processing elements in a module. These
seven levels are listed in order of increasing strength of association:

1. Coincidental association: there is no relationship between the processing elements.

2. Logical association: both processing elements belong to the same logical class of related functions.

3. Temporal association: each occurrence of both processing elements occurs within the same limited
period of time during execution.

4. Procedural association: both processing elements are elements of a common procedural unit which is
an iteration or decision process.

5. Communicational association: both processing elements operate upon the same input data set and/or
produce the same output data.

6. Sequential association: the output data from one processing element is input to the other processing
element.

7. Functional association: both processing elements are essential to the performance of a single function.

When a pair of processing elements exhibit more than one cohesion level, the cohesion for the pair is their
highest association level. When a module contains more than one pair of processing elements, the module's
cohesion is the lowest association level of all pairs.

Because of its intuitive nature, the assessment of SMC Cohesion requires the judgment of human raters.
As a result, SMC Cohesion cannot be readily applied to measure cohesion in practice [13].

Though not a measure, SMC Cohesion de�nes an intuitive notion of the cohesion attribute of design
components. Since SMC Cohesion also imparts an ordering on design components, we can use it as an
empirical relation system to help us to de�ne a quantitative cohesion measure that can be readily automated.

4

3.2 A Design-Level Cohesion (DLC) Measure

The DLC measure is derived from the design-level view of module, modeled by the IODG. In deriving the
DLC measure, we follow the approach used to develop SMC Cohesion. We de�ne six relations between a
pair of output components based on the IODG representation. The corresponding cohesion level is based on
six relations:

1. Coincidental relation (R1):

R1(o1; o2) = :(o1 ! o2) ^ :(o2 ! o1) ^ :9x [(x! o1) ^ (x! o2)]
Two outputs o1 and o2 of a module have neither dependence relationship with each other, nor depen-
dence on a common input.

2. Conditional relation (R2):

R1(o1; o2) = 9x [((x
c
! o1) ^ (x

c
! o2)) _ ((x

c
! o1) ^ (x

i
! o2)) _ ((x

i
! o1) ^ (x

c
! o2))]

Two outputs are c-control dependent on a common input, or one of two outputs has c-control depen-
dence on the input and the other has i-control dependence on the input.

3. Iterative relation (R3):

R1(o1; o2) = 9x [(x
i
! o1) ^ (x

i
! o2)]

Two outputs are i-control dependent on a common input.

4. Communicational relation (R4):

R1(o1; o2) = 9x [((x
d
! o1) ^ (x! o2)) _ ((x

d
! o1) ^ (x! o2))]

Two outputs are dependent on a common input. One of two outputs has data dependence on the input
and the other can have a control or a data dependence.

5. Sequential relation (R5):

R1(o1; o2) = (o1 ! o2) ^ (o2 ! o1)
One output is dependent on the other output.

6. Functional relation (R6):

R1(o1; o2) = o1 � o2
There is only one output in a module.

These six relations are in an ordinal scale; cohesion strength increases from R1 to R6. These six relations
correspond to six association principles (temporal cohesion is not included) of SMC Cohesion with some
degree of overlap. (The correspondence is shown in section 3.3.) The DLC measure is de�ned based on the
six relations.

DLC Measure De�nition. The cohesion level of a module is determined by the relation levels of output
pairs. For each pair of outputs, the strongest relation for that pair is used. The cohesion level of the module
is the weakest (lowest level) of all of the pairs. That is, the output pair with the weakest cohesion determines
the cohesion of the module.

Consider the IODG's of Figure 1. Outputs hsum and asum of module Asum Hsum have iterative and
communicational relations. Since the communicational relation is stronger than the iterative relation, the
cohesion level of module Asum Hsum is communicational cohesion. Module Fibo Amean Hmean has three
pairs of outputs. The output pair �b arr and amean has three relations, iterative, communicational, and
sequential. Since the sequential relation is the strongest, the pair has a sequential relation. Similarly,
the output pair �b arr and hmean has a sequential relation, and the output pair amean and hmean has
a communicational relation. Since the communicational relation is the weakest among the relations of all
pairs, the entire module exhibits a communicational cohesion.

Figure 2 shows six cohesion levels for six simple modules. The �gure visually displays the intuition behind
each DLC cohesion level.

5

flag

arr1n1

sum1 sum2

arr2n2

Conditional cohesion

ddi ic c

n

Iterative cohesion

d d

arr1 arr2

prod1 prod2

i i

sum

n arr

dd

prod

i i

n arr

sum

Sequential cohesion

d

d

avg

d

i

 sum2 := 0;
 sum1 := 0;
begin

 if flag = 1
 for i := 1 to n1 do
 sum1 := sum1 + arr1[i];
 else

end;

 for i := 1 to n2 do
 sum2 := sum2 + arr2[i];

 sum2 : integer);

procedure Sum1_or_Sum2

var i : integer;

 var sum1,
 arr1, arr2 : int_array;
 (n1, n2, flag : integer;

 sum2 := 0;
 sum1 := 0;
begin

 for i := 1 to n1 do
 sum1 := sum1 + arr1[i];

 sum2 := sum2 + arr2[i];
 for i := 1 to n2 do

end;

procedure Sum1_and_Sum2

var i : integer;

 (n1, n2 : integer;
 arr1, arr2 : int_array;
 var sum1,
 sum2 : integer);

 for i := 1 to n do begin

 end;
end;

procedure Prod1_and_Prod2

 prod2 := 1;

 prod1 := prod1 * arr1[i];
 prod2 := prod2 * arr2[i];

begin
 prod1 := 1;

var i : integer;

 arr1, arr2 : int_array;
 (n : integer;

 var prod1,
 prod2 : integer);

 end;
end;

var i : integer;

begin
 sum := 0;
 prod := 1;
 for i := 1 to n do begin
 sum := sum + arr[i];
 prod := prod * arr[i];

 prod : integer);
 var sum,
 arr : int_array;
 (n : integer;

procedure Sum_and_Prod

 sum := 0;
begin

 for i := 1 to n do
 sum := sum + arr[i];

 avg := sum / n;
end;

 var avg : float);

 (n : integer;

procedure Sum_and_Avg

var i : integer;

 var sum : integer;
 arr : int_array;

n arr

sum

Functional cohesion

di

 sum := sum + arr[i];

begin
 sum := 0;
 for i := 1 to n do

end;

 (n : integer;

procedure Sum

var i : integer;

 arr : int_array;
 var sum : integer);

n1

sum1

arr1 n2 arr2

sum2

Coincidental cohesion

i d i d

(e)

(c)

(a)
(b)

Communicational cohesion

(f)

(d)

Figure 2: IODG's and DLC levels for six simple procedures.

6

Relation levels
of DLC Measure

2. Logical

1. Coincidental

5. Sequential

6. Functional

1. Coincidental

5. Sequential

6. Functional

4. Communicational

2. Conditional

3. Iterative
3. Procedural-I

 Procedural-II

of SMC Cohesion
Association principles

4. Communicational

Figure 3: The relationship between the six association principles of SMC Cohesion and the six relation levels
of DLC measure.

3.3 The Relationship between the DLC Measure and SMC Cohesion

SMC Cohesion is intended to be used to predict the quality attributes of modules that would be created
from a given design. It is de�ned in terms of \processing elements", which is processing that must be done
in a module but may not yet be reduced to code. The DLC measure treats each output component as part
of a module's functionality, which is how functional cohesion measures [4] and Lakhotia's rules to compute
module cohesion [10] have been de�ned. The \processing element" of SMC Cohesion, therefore, corresponds
to the output component of the DLC measure.

Figure 3 shows the relationship between the DLC measure and SMC Cohesion. We omit the temporal
association of SMC Cohesion because the DLC measure can not indicate temporal cohesion.

For SMC Cohesion, procedurally associated processing elements are elements of the same procedural unit.
The common procedural units are an iteration and decision process. We separate procedural association into
two categories, the decision unit (procedural-I) and the iteration unit (procedural-II). We now examine the
relationship between the relation levels of DLC measure and the association principles of SMC Cohesion.

1. Coincidental relation vs coincidental association: When a pair of output components has a
coincidental relation, the data tokens having dependence on one output do not have any connection
with the data tokens corresponding to the other output { there are two independent functions. Thus,
the coincidental relation matches the intuition of the coincidental association of SMC Cohesion.

2. Conditional relation vs logical/procedural-I associations : Consider two cases: (1) a pair of
outputs are c-control dependent on a common input and (2) one output is c-control dependent on
an input and the other output is i-control dependent on the same input. Case (1) includes both the
logical and procedural-I associations of SMC Cohesion since processing elements of both associations
always share a common decision unit. Case (2) does not match any of SMC's association principles.
We include case (2) in the DLC conditional relation because it is, intuitively, clearly stronger than the
coincidental relation and weaker than the iterative relation. The conditional relation includes both
logical and procedural-I associations but not other associations. Thus, we can reasonably match the
conditional relation with both logical and procedural-I associations.

3. Iterative relation vs procedural-II association: Since processing elements of procedure-II associ-
ation share a common iteration unit, the iterative relation includes procedure-II association. It cannot
include other associations. (The iterative relation includes some rare cases of communicational asso-
ciation. See the following discussion of communicational relation.) The iterative relation reasonably
matches procedural-II association.

7

4. Communicational relation vs communicational association: Processing elements in a commu-
nicational association operate upon the same input and/or produce the same output. An example is a
pair of components that have data dependence on one input. A processing element can operate upon
input data without causing data dependence between them. For example, the summation of numbers
from 1 to n can be implemented by direct computation (n(n + 1)=2) or by iteration. When using
iteration, the sum is not data dependent on the input n; it is only control dependent. However, such
cases are rare and are not included in our analysis.

5. Sequential relation vs sequential association: In a sequential association, the output data from
one processing element serve as input to the next processing element. This is clearly represented by
the dependence of the data
ow graph between the two processing elements. The sequential relation
matches the intuition of sequential association.

6. Functional relation vs functional association: When a module contains only one output, the
module has functional relation. Thus, the functional relation matches the function association of SMC
cohesion.

Since the six association principles of SMC Cohesion are on ordinal scale, we claim the following rela-
tionship between the six relation levels of the DLC measure:

Coincidental < Conditional � Iterative < Communicational < Sequential < Functional

The DLC measure is on an ordinal scale as long as we accept the ordering implied by the association
principles of SMC Cohesion.

4 Restructuring Software Designs

The DLC cohesion level can be used as a criterion to determine whether or not a given module should be
redesigned or restructured. An IODG provides visual help to determine how to perform the restructuring.
The restructuring process is a sequence of restructuring operations.

4.1 Restructuring Operations

Figure 4 shows eight basic restructuring operations using the IODG. Figure 4 (a) shows the decomposition of
a module that exhibits coincidental cohesion. Since each group of data tokens corresponding to each output
does not have any dependence relation on the other group, the decomposition simply requires the separation
of the groups.

Figure 4 (b) shows the decomposition of a module with conditional, iterative, or communicational cohe-
sion. The decomposition process copies all common and non-common data tokens in a dependence relation-
ship with the each output into the resulting module.

Figure 4 (c) shows two operations: (1) the decomposition of a module with sequential cohesion and (2)
the composition of two modules with a sequential relationship. The output of a module (producer module)
is used as the input of the other (user module). In case (1), a module with sequential cohesion becomes two
modules that have a sequential relationship. The producer module includes all data tokens on which the �rst
output depends. The user module includes all data tokens on which the second output depends without the
data tokens on which the �rst output has dependence. The operation of case (2) is the inverse of case (1).

Figure 4 (d) shows another way of decomposing a module with sequential cohesion. An output component
is replaced by a module call and is factored out into a separate module (callee). The callee includes the
output and all data tokens that the output depends on. The output and data tokens of the callee are removed
from the caller and replaced by a module call statement.

Figure 4 (e) shows the composition of two module with a caller/callee relationship. The call statement
is replaced by the tokens of the callee. The composition may be appropriate when the callee is called only
by the caller. The composition process can reduce unnecessary coupling.

Figure 4 (f) contains two operations, `hide' and `reveal'. Using hide, H(M1:O1), output O1 of module
M1 is hidden by changing the output into a local variable. This operation removes an unnecessarily exposed
output; the output is not used outside of its module.

8

O1

I I21

M1

O2 O

I

M2

1

1 O

I

2

M3

2

O

I

M2

1

1

M1

O1 O

I1

2 O

I

2

M3

1

O1

O2

I1

O1

I

M2

1
I2

O2

M3

I1

O2

O1

O2

M1

O

I1

1

M2
M2

M1

I1

1 M2M1 :O
D4

I1

O2

M1 M2
C2

M2

O

I1

1

M1
M1

O

I1

M2

2

M2, M3{ }M1
D1

M2, M3{ }M1
D2

O2O2

(c)

(d)

(e)

(f)

(a)

(b)

M1

M2, M3{ }M1
C1

M2, M3{ }M1
D3

I1

O1

I1

O1

M1 M2
M1 M2

H(

R(
M1 M2

O1)

O1)

Figure 4: Eight basic operations for module restructuring.

`Reveal' is the inverse of hide. Using reveal, R(M1:O1), a local variable O1 of M1 is revealed by changing
the local variable into an output variable. The operation reveals a hidden function and exports it. Reveal can
be used to separate a hidden function from a large module. We simply reveal the local variable corresponding
to the hidden function and apply the appropriate decomposition operation.

Existing software can potentially be restructured automatically by applying the restructuring operations.
The data dependences, IODG's, and the DLC measure can be generated using practical code analysis
technique.

4.2 A Restructuring Process

The following restructuring process consisting of a sequence of restructuring operations, is applied to improve
the design structure of software system:

1. Generate IODG's of the modules of interest. If the software is at the design stage, the designer draws
the IODG for each module. (Ideally, a software tool would construct an IODG from from a design.)
During maintenance, the input-output dependence information can be automatically generated using
a tool (a DLC tool) and an IODG can be drawn based on the information.

2. Compute the DLC level from each IODG. It is straightforward to compute DLC level from the IODG
information. This step can also be automated by the DLC tool.

3. Locate the modules with low DLC levels and determine the poorly-designed modules among them.
Modules with multiple independent functions will be identi�ed. The optimal DLC level will depend on
the application, the required reusability, readability, and maintainability of software. Managers need
to specify expected marginal DLC levels of modules.

4. Decompose the IODG of each module that has been identi�ed as poorly-designed one. This step
includes two sub-steps:

9

(a) Partition the output components of the IODG so that when decomposed according to the partition,
each resulting IODG has higher DLC level. The IODG and DLC measure guides the partitioning
process. The partitioning process can be automated by computing DLC values for all possible
partitions. The number of output components of a module is generally limited to a tractable
number.

(b) Decompose each IODG according to its partition. Each resulting IODG includes input-output
components that have dependence relation with the partitioned outputs. The dependence type
(i.e., data, i-control, or c-control dependence) between components is also copied.

To decompose two IODG's with a caller-callee relationship, the callee is examined �rst. The correspond-
ing invocation in the caller is changed to re
ect the callee's decomposition, and then the decomposition
is applied to the caller.

This step is repeated until the DLC level of each resulting IODG is acceptable.

5. Locate unnecessarily decomposed (i.e., overmodularized) modules and compose them. When a system
is overmodularized, the overall interaction between modules is unnecessarily increased, i.e., the coupling
of the system is high. To locate overmodularized modules, a practitioner can use other quality measures
such as coupling, size, and/or reuse measures. The IODG can help an engineer visualize the module
structure to help identify candidates for composition.

6. Generate module code. If the software being restructured is an existing product, the �nal step is
generating module code corresponding to each IODG. The process of code generation can also be
automated by the DLC tool. The tool uses the data tokens and the dependence information that was
obtained from the initial modules during step 1.

4.3 Restructuring Examples

Example 1. Figure 5 shows the restructuring process applied to procedure Sum Prod Avg, which computes
the sum and average of the values in one array and the product of the values in another array. If development
is in the design stage, only IODG's are available. During maintenance, the corresponding program code is
available.

Assume that the code of procedure Sum Prod Avg exists and is considered for restructuring. First the
IODG information of Sum Prod Avg is generated, and the corresponding DLC level is computed. The graph
shows that sum and prod have an iterative relation, sum and avg have sequential and communicational
relations, and avg and prod have iterative and communicational relations.

Since sum and avg have two relations and sequential relation is ranked higher than communicational
relation, sequential relation is chosen for the output pair. Since avg and prod have also two relations and
communicational relation has higher rank than iterative relation, communicational relation is chosen for the
output pair. Because among three pairs of outputs sum and prod have lowest rank of relation, iterative
relation, the corresponding cohesion level of the procedure is therefore iterative cohesion.

We want to decompose the procedure into two procedures with higher cohesion levels. The optimal
partition of output components of the procedure among all possibilities is one partition for sum and avg,
and another partition for prod. Decomposed IODG's Sum Avg and Prod corresponding to each partition are
generated. The cohesion level of procedure Sum Avg is sequential cohesion and that of Prod is functional
cohesion. We do not decompose the procedures further and generate program code corresponding to the
IODG's.

Example 2. Figure 6 shows the restructuring process of modules Asum Hsum and Fibo Amean Hmean

of Figure 1. The restructuring involves the caller-callee relationship between the two procedures and several
restructuring operations. The resulting restructured modules are given in Figure 7. At the start of the
restructuring process, both modules exhibit communicational cohesion. The modules are restructured into
three modules that exhibit functional cohesion, the strongest cohesion level. The restructured modules
should be easier to understand, maintain, and reuse.

10

sum

avg

sum

avg

Restructuring at maintenance stage.

Restructuring at design stage.

d d

dd

prod

= iterative cohesion
Sum_Prod_Avg

Sum_Prod_Avg

DLC()

arr1

Sum_Avg

dd

d

Sum_AvgDLC() =

d

arr2

prod

Prod

functional cohesion
ProdDLC() =

i i

i

i

begin
 sum := 0;

 for i := 1 to n do begin

 (n : integer;

 sum := sum + arr1[i];

procedure Sum_Prod_Avg

 prod := prod * arr2[i];

 prod := 1;

 end;
 avg := sum / n;
end;

end;
 avg := sum / n;
 sum := sum + arr1[i];
 for i := 1 to n do
 sum := 0;
begin

procedure Sum_Avg
 (n : integer;

 var avg : float);

end;

 (n : integer;
procedure Prod

 prod := prod * arr2[i];
 for i := 1 to n do
 prod := 1;
begin

 arr1,
 arr2 : int_array;

var i : integer;

var i : integer;

 arr1 : int_array;

var i : integer;
 var prod : integer);

 var sum : integer;

 var sum,
 prod : integer;
 var avg : float);

 arr2 : int_array;

sequential cohesion

arr1 n arr2

n

n

Figure 5: Example 1: restructuring procedure Sum Prod Avg.

Example 3: Figure 8 shows the restructuring process of modules with the sequential relationship, i.e., an
output of a module is used as an input of another module. Assume that procedure BasicSalary is called
only by procedure Salary Bonus and the functionality `salary' of procedure Salary Bonus is sometimes used
independently from `bonus' of the module. Their design structures viewed from IODG representation is not
desirable since the functionality `basic salary' is exposed unnecessarily and the functionality `salary' needs
to be in an independent module. The given modules, BasicSalary and Salary Bonus are the examples of
poorly-designed software even though they have relatively high DLC cohesion levels, sequential cohesion and
functional cohesion. In this example, the IODG representation plays a more important role than the DLC
measure. The resulting modules, after the restructuring process, are Salary and Bonus whose DLC cohesion
level are both functional cohesion.

5 Related Work

Closely related work has focused on code-level cohesion measures and restructuring based on code-level
cohesion. Lakhotia uses the output variables of a module as the processing elements of SMC Cohesion
and de�nes rules for designating a cohesion level which preserve the intent of the SMC Cohesion [10]. The
associative principles of SMC Cohesion are transformed to relate the output variables based on their data
dependence relationships. A `variable dependence graph' models the control and data dependences between
module variables. The rules for designating a cohesion level are de�ned using a strict interpretation of the
association principles of SMC Cohesion. The rules to determine cohesion levels are formal. Thus, a tool can
automatically perform the classi�cation. However, the technique can be applied only after the coding stage
since they are de�ned upon the implementation details.

Bieman and Ott develop cohesion measures that indicate the extent to which a module approaches
the ideal of functional cohesion [4]. They introduce three measures of functional cohesion based on \data
slices" of a procedure. Bieman and Ott show that the measures satisfy the requirements of an ordinal scale.
The functional cohesion measures are formally de�ned, and cohesion measurement tools have been built.

11

DLC(Asum_Hsum
DLC(Fibo_Amean_Hmean

) = communicational cohesion
) = communicational

cohesion

DLC(Asum) = functional cohesion
DLC() = functional cohesionHsum

DLC(Fibo_Hmean
DLC(Fibo_Amean) = sequential cohesion

) = sequential cohesion

DLC(Asum) = functional cohesion
DLC() = functional cohesionHsum
DLC(Fibo_Amean_Hmean) =

communicational cohesion

n

fib_arr

arrn

l

d d

d

d

d

d

Fibo_Amean_Hmean

hmeanamean

d
d

Asum_Hsum

dd

Asum_Hsum

hsumasum

i i

i
i

arr

hsum

arrn

asum

n

fib_arr

amean hmean

Hsum

d

d

Asum

n

d d

dd

d d

d d

Fibo_Amean_Hmean

l

Hsum

i

i

Asum

di i

i

arrn

asum

arrn

hsum

n arr n arr

amean hmean

n

fib_arr

d

Asum

Hsum

d

Amean Hmean

d d

d d d d

d d

Asum Hsum
Fibonacci

i

i i

d di i
arrn

hsum

arrn

asum

amean

fib_arr

n

fib_arr

n

Hsum

d

d

Asum

i

i

Fibo_Amean

Asum

d

dd

d

d

dd

d

Fibo_Hmean

Hsum

hmean

d di i

i i

arrn arrn

amean hmean

n

fib_arr

d d

Amean HmeanFibonacci

i,d i,di { Fibo_Amean, Fibo_Hmean }

Asum Amean

Hsum Hmean

{Fibo_Hmean Fibo, Hmean

Fibo_Amean { Fibo, Amean

}

}

Fibo_Amean_Hmean

Asum_Hsum Asum, Hsum{ }
D2

D2

D3

D3

C2

C2

R6: Generate program code.

R2:

R1: Generate IODG’s.

R3:

R4:

R5:

Restructuring steps :

of Figure 1.
Program code

System1.4 System1.3

DLC of every module is functional cohesion.

DLC of every module is functional cohesion.

System1.1 System1.2

System1.5

R1 R2

R4

R3

R5

Program code
of Figure 7.

R6

Figure 6: Example 2: restructuring procedures Asum Hsum and Fibo Amean Hmean of Figure 1.

12

begin

 for i := 3 to n

 fib_arr[1] := 1;
 fib_arr[2] := 2;

end;

 fib_arr[i] := fib_arr[i-1]
 + fib_arr[i-2];

procedure Fibonacci

begin
 asum := 0;
 for i := 1 to n do begin
 asum := asum + arr[i];
 end;
 amean := asum / n;
end;

procedure Amean

begin

 for i := 1 to n do begin

 end;

end;

 hsum := 0;

 hsum := hsum + 1.0/arr[i];

 hmean := n / hsum;

procedure Hmean

var i, asum : integer;
 var amean : float);

 (n : integer;
 arr : int_array;

var i : integer;
 var fib_arr : int_array);
 (n : integer;

var i, hsum : integer;
 var hmean : float);

 (n : integer;
 arr : int_array;

Figure 7: Procedures produced after restructuring the procedures of Figure 1.

However, the measure also depends on the implementation details of module and can be applied only after
coding stage of software development process.

Kim, Kwon, and Chung introduce restructuring methods where module strength (cohesion) is used as a
criterion to restructure modules [9]. They de�ne processing blocks which are similar to the `data slices' of
Bieman and Ott. A processing block is a group of data tokens with data or control dependence relationship
with an output variable. A rule recognizes `logically associated' module functions that are dependent to-
gether on an output. Each of these logically associated functions are also considered as a processing block.
Unfortunately, these logically associated functions cannot always be automatically detected by analyzing
program code. An examination of dependencies alone cannot determine whether a predicate variable is used
to select a function or to compute a function.

Module strength is de�ned in terms of data sharing, control sharing, and level of sharing. Depending on
its module strength, a module is restructured by either `separating' or `grouping'. A module with low module
strength is split into new modules, while other modules are decomposed and the resulting components are
grouped into a package. The decision to group processing blocks into a package cannot be made using only
module strength. The process of making a package requires an understanding of both module functions and
design decisions.

Like our approach, module strength is used as a criterion for software restructuring. However, Kim et al
de�ne cohesion based only on the code implementation. The attributes that are actually quanti�ed by the
measure are not speci�ed. For restructuring, the measure computes the average of the relatedness between
processing blocks rather than �nding the most weakly connected blocks.

Our approach is unique in that we use only design-level information to determine the cohesion and
restructuring options. Our design-level cohesion measure quanti�es well-de�ned attributes in a consistent
fashion. Finally, our cohesion measure, cohesion model and restructuring process can be automated.

6 Conclusions

The choice of a good software design structure should be made in the most objective fashion possible. We
apply the notion of design cohesion to the problem of visualizing, quantifying, and restructuring a software
system. Our method is based on the notion of cohesion developed by Stevens, Myers, and Constantine [12].
In this paper, we report the following progress towards improving the ability to make objective software
design decisions:

1. We de�ne the IODG, a graph model that represents a design-level view of a module. The IODG is a
formal model based on the dependency relationships between inputs and outputs of a module. It can
be used to graphically visualize the design structure of a module. The IODG with its formal basis and
graphic presentation can surely help one to understand the functionalities of a module.

2. We derive a design-level cohesion (DLC) measure based on the IODG representation of module, and
we show that DLC is consistent with the intuition provided by SMC Cohesion. The DLC measure

13

end;

 else
 basic_salary := w_sum * 15;

 basic_salary := w_sum * 10;
 if w_year < 5
 w_sum := w_sum + w_record[i];
 for i := 1 to 31 begin
 w_sum := 0;
begin
var i, w_sum : integer;
 var basic_salary : integer);
 w_year : integer;
 (w_record : int_array;
procedure BasicSalary

 (basic_salary,
 sales_amount : integer;
 var salary,
 bonus : integer);
var credit : integer;
begin

procedure Salary_Bonus

 if sales_amount < 1000

 else salary := basic_salary + 200;
 crdit := sales_amount /1000
 + salary/100;

 else

 else if credit < 500
 bonus := salary / 20;
 if credit < 100

 bonus := salary / 5;
end;

 bonus := salary / 10;

 salary := basic_salary + 100;

 else

 if w_year < 5
 w_sum := w_sum + w_record[i];
 for i := 1 to 31 begin
 w_sum := 0;
begin

 var salary : integer);
var i, w_sum, basic_salary : integer;

procedure Salary
 (w_record : int_array;
 w_year : integer;
 sales_amount : integer;

 sales_amount : integer;

procedure Bonus
 (salary,

 var bonus : integer);
var credit : integer;
begin
 crdit := sales_amount /1000
 + salary/100;

end;
 bonus := salary / 5;
 else
 bonus := salary / 10;
 else if credit < 500
 bonus := salary / 20;
 if credit < 100

 basic_salary := w_sum * 15;
 basic_salary := w_sum * 10;

end;

 if sales_amount < 1000

 else salary := basic_salary + 200;
 salary := basic_salary + 100;

R2

R3

R4

R1

D3 {Salary, Bonus}R2: Salary_Bonus
C1

BasicSalary)H(
BasicSalary_Salary Salary

R1: Generate IODG’s.

Restructuring steps :

{R3: BasicSalary, Salary }

R4: Generate program code.

BasicSalary_Salary

w_year

salary

w_record

sales_amount

DLC(
DLC(Bonus) = functional coh.

Salary) = functional coh.

sales_amount

bonus

salarycd

Salary

System2.3

c

Bonus

c,d c

DLC(BasicSalary) = functional coh.
Salary_Bonus) = sequential coh.DLC(

w_record w_year

basic_salary

sales_amount

bonussalary

basic_salary

System2.1

BasicSalary

c,d

Salary_Bonus

cd c

d c

w_record w_year

basic_salary

sales_amount

bonus

salary

DLC() = functional coh.
DLC(
DLC(

BasicSalary
Salary
Bonus

) = functional coh.
) = functional coh.

basic_salary

salary

sales_amount

System2.2

d

BasicSalary

c

BonusSalary

c,d c
cd

Figure 8: Example 3: Restructuring procedures with sequential relationship.

14

provides an objective criteria for evaluating and comparing alternative design structures.

3. We de�ne eight basic restructuring operations based on the IODG representation and the DLC measure.
We describe a process for applying the restructuring operations to improve design of system modules.
We show that the restructuring process can improve the design-level cohesion in three examples.

The IODG representation, the DLC measure, and the restructuring process can be applied during software
design or maintenance. During design, IODG's can be constructed from design information. Implementation
details are not needed. During maintenance, IODG's can be readily generated using a compiler-like code
analysis tool. Such a tool can be used to recapture designs from existing, possibly legacy, systems. The DLC
measure can be easily computed once an IODG is generated either from a design or an implementation.

We are now implementing tools to generate IODG's from software designs and implementations, to
graphically display IODG's, and to support the restructuring process. We have already developed class
cohesion measures and measurement tools for object-oriented software [3]. We also plan to evaluate the e�ects
of restructuring on external quality attributes such as testability, reusability, reliability, and maintainability.

References

[1] A. Albrecht and J. Ga�ney. Software function, source lines of code, and development e�ort prediction.
IEEE Trans. Software Engineering, SE-9(6):639{648, June 1983.

[2] A. Baker, J. Bieman, N. Fenton, D. Gustafson, A. Melton, and R. Whitty. A philosophy for software
measurement. J. Systems and Software, 12(3):277{281, July 1990.

[3] J. Bieman and B-K Kang. Cohesion and reuse in an object-oriented system. Proc. ACM Symp. Software

Reusability. (SSR'94), pp. 259{262, April 1995. Reprinted in ACM Software Engineering Notes, Aug.
1995.

[4] J. Bieman and L. Ott. Measuring functional cohesion. IEEE Trans. Software Engineering, 20(8):644{
657, Aug. 1994.

[5] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE Trans. Software

Engineering, 20(6):476{493, June 1994.

[6] N. Fenton. Software Metrics - A Rigorous Approach. Chapman and Hall, London, 1991.

[7] N. Fenton. Software measurement: a necessary scienti�c basis. IEEE Trans. Software Engineering,
20(3):199{206, 1994.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.

[9] H-S Kim, Y-R Kwon, and I-S Chung. Restructuring programs through program slicing. Int. J. Software
Engineering and Knowledge Engineering, 4(3):349{368, Sept. 1994.

[10] A. Lakhotia. Rule-based approach to computing module cohsion. Proc. 15th Int. Conf. Software Eng.,
pp. 35{44, 1993.

[11] T. McCabe. A complexity measure. IEEE Trans. Software Engineering, SE-2(4):308{320, 1976.

[12] W. Stevens, G. Myers, and L. Constantine. Structured design. IBM Systems J., 13(2):115{139, 1974.

[13] M. Woodward. Di�culties using cohesion and coupling as quality indicators. Software Quality J.,
2(2):109{127, June 1993.

[14] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers. Addison-Wesley, 1991.

15

