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Abstract

Cohesion was �rst introduced as a software attribute that could be used to predict properties of

implementations that would be created from a given design. Unfortunately, cohesion, as originally

de�ned, could not be objectively assessed, while more recently developed objective cohesion measures

depend on code-level information. We show that association-based and slice-based approaches can be used

to measure cohesion using only design-level information. Our design-level cohesion measures are formally

de�ned, can be readily implemented, and can support software design, maintenance, and restructuring.

Index terms | cohesion, software measurement and metrics, software design, software

maintenance, software restructuring and re-engineering, software visualization, software

reuse.

1 Introduction

Module cohesion was de�ned by Yourdan and Constantine as \how tightly bound or related its internal

elements are to one another"[10, p. 106]. They describe cohesion as an attribute of designs, rather than code,

and an attribute that can be used to predict properties of implementations such as \ease of debugging, ease

of maintenance, and ease of modi�cation" [10, p. 140]. Since cohesion refers to the degree to which module

components belong together, cohesion measurement should prove to be a very useful restructuring tool [3].

Following the original guidelines [7], the assessment of module cohesion is conducted by skilled engineers.

These engineers would apply a set of subjective criteria to analyze associations between \processing ele-

ments" and classify the nature of these associations. Because of the subjective nature of the assessment, the

measurement of module cohesion has been di�cult to automate, and cohesion has not been e�ectively used

as a software quality indicator [9].

Several approaches have been used to develop objective, automatable methods for measuring module

cohesion. The �rst approach, an association-based approach, is used by Lakhotia [4] to formalize the notion

of the associations between processing elements as a set of rules concerning data dependencies in module

code. This method requires the analysis of code-level information and thus cannot be applied before code is

written.

The second approach, a slice-based approach, is used by Bieman and Ott [2]. They measure functional

cohesion in terms of the connections between code data tokens on module output slices. This method also

requires code level information.
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Class cohesion measures for object-oriented software have also been de�ned using a slice-based approach,

and by analyzing the connectivity between methods through common references to instance variables[1, 5, 6].

Method bodies are needed to apply these code-level class cohesion measures.

In this paper, we show that module cohesion can be objectively assessed using only design-level in-

formation. We develop and compare design-level cohesion measures using both the association-based and

slice-based approaches, and we describe how these measures can be applied as design, maintenance, and

restructuring tools.

2 Association-based Cohesion Measures

Stevens, Myers and Constantine de�ne module cohesion (SMC Cohesion) on an ordinal scale. SMC Cohesion

includes coincidental, logical, temporal, procedural, communicational, sequential, and functional cohesion

where coincidental cohesion is the weakest and functional cohesion is strongest cohesion [7]. SMC Cohesion

is determined by inspecting the association between all pairs of a module's processing elements.

Lakhotia uses the output variables of a module as the processing elements of SMC Cohesion and de�nes

rules for designating a cohesion level which preserve the intent of the SMC Cohesion [4]. The associative

principles of SMC Cohesion are transformed to relate the output variables based on data dependence rela-

tionships. A variable dependence graph models the control and data dependences between module variables.

The rules for designating a cohesion level are de�ned using a strict interpretation of the association principles

of SMC Cohesion. Because the rules are formal, a tool can automatically perform the classi�cation. However,

the technique can be applied only after the coding stage since it is de�ned upon the implementation details.

SMC Cohesion de�nes an intuitive notion of the cohesion attribute of design components. In a previous

paper [3], we used it as an empirical relation system to help us to de�ne a cohesion measure that can be

readily automated. This new measure can be applied to both the design and code of a module. It is derived

from a design-level view of a module, an input-output dependence graph. In this section, the model and

measure are summarized.

2.1 A Design-Level View of Module

The input-output dependence graph (IODG) is based on the data and control dependence relationships

between input-output components of a module. Input components of a module include in-parameters and

referenced global variables. Output components include out-parameters, modi�ed global variables, and

`function return' values. The term `component' refers to a static entity. An array, a linked list, a record,

or a �le is one component rather than a group of components. We de�ne the data and control dependence

informally; their formal de�nitions are given in compiler texts, for example, see reference [11].

De�nitions:

� A variable y has a data dependence on another variable x (x
d
! y) if x `reaches' y through a path

consisting of a `de�nition-use' and `use-de�nition' chain.

� A variable y has a control dependence on another variable x if the value of x determines whether or not

the statement containing y will be performed.

� A variable y is dependent on another variable x (x ! y) when there is a path from x to y through a

sequence of data or control dependence. We call the path a dependence path.

� A variable y has condition-control dependence on another variable x (x
cc
! y) if y has a control depen-

dence on x, and x is used in the predicate of a decision (i.e., if-than-else) structure.

� A variable y has iteration-control dependence on another variable x (x
ic
! y) if y has a control dependence

on x, and x is used in the predicate of an iteration structure.

� A variable y has c-control dependence on another variable x (x
c
! y) if the dependence path between

x and y contains a decision-control dependence.
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� A variable y has i-control dependence on another variable x (x
i
! y) if the dependence path between x

and y contains an iteration-control dependence but no condition-control dependence.

IODG De�nition. The input-output dependence graph (IODG) of a module M is a directed graph, GM =

(V, E) where V is a set of input-output components of M, and E is a set of edges labeled with dependence

types such that E = f(x; y) 2 V � V j y has data, c-control, and/or i-control dependence on xg

2.2 Design-Level Cohesion (DLC) Measure

In a manner similar to the approach used to develop SMC Cohesion, we de�ne six relations between a pair

of output components based on the IODG representation:

1. Coincidental relation (R1):

R1(o1; o2) = :(o1 ! o2) ^ :(o2 ! o1) ^ :9x [(x! o1) ^ (x! o2)]
Two outputs o1 and o2 of a module have neither dependence relationship with each other, nor depen-

dence on a common input.

2. Conditional relation (R2):

R1(o1; o2) = 9x [((x
c
! o1) ^ (x

c
! o2)) _ ((x

c
! o1) ^ (x

i
! o2)) _ ((x

i
! o1) ^ (x

c
! o2))]

Two outputs are c-control dependent on a common input, or one of two outputs has c-control depen-

dence on the input and the other has i-control dependence on the input.

3. Iterative relation (R3):

R1(o1; o2) = 9x [(x
i
! o1) ^ (x

i
! o2)]

Two outputs are i-control dependent on a common input.

4. Communicational relation (R4):

R1(o1; o2) = 9x [((x
d
! o1) ^ (x! o2)) _ ((x

d
! o1) ^ (x! o2))]

Two outputs are dependent on a common input. One of two outputs has data dependence on the input

and the other can have a control or a data dependence.

5. Sequential relation (R5):

R1(o1; o2) = (o1 ! o2) ^ (o2 ! o1)
One output is dependent on the other output.

6. Functional relation (R6):

R1(o1; o2) = o1 � o2
There is only one output in a module.

Cohesion strength increases from relation R1 to R6. The six relations correspond to six association principles

(temporal cohesion is not included) of SMC Cohesion with some degree of overlap.

DLC Measure De�nition. The cohesion level of a module is determined by the relation levels of output

pairs. For each pair of outputs, the strongest relation for that pair is used. The cohesion level of the module

is the weakest (lowest level) of all of the pairs. That is, the output pair with the weakest cohesion determines

the cohesion of the module.

We have shown that the DLC measure is on an ordinal scale as long as we accept the ordering implied

by the association principles of SMC Cohesion [3].

An IODG can be displayed visually in an IODG diagram. In such a diagram, the caller-callee relationship

is represented by including the IODG of the callee in the IODG diagram of the caller. In an IODG digram,

an input is represented by a circle, and an output by a square. The texts in each circle and square are the

names of input and output variables. Each arrow indicates the dependence between two components. Figure

1 shows six cohesion levels for six simple modules.
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n

Iterative cohesion

d d

arr1 arr2

prod1 prod2

i i

     sum2 := 0;
     sum1 := 0;
begin

        for i := 1 to n1 do
            sum1 := sum1 + arr1[i];

            sum2 := sum2 + arr2[i];
        for i := 1 to n2 do

end;

procedure Sum1_and_Sum2

var i : integer;

   ( n1, n2 : integer;
     arr1, arr2 : int_array;
     var sum1,
           sum2 : integer );

     for i := 1 to n do begin

     end;
end;

procedure Prod1_and_Prod2

     prod2 := 1;

         prod1 := prod1 * arr1[i];
         prod2 := prod2 * arr2[i];

begin
     prod1 := 1;

var i : integer;

     arr1, arr2 : int_array;
   ( n : integer;

     var prod1,
           prod2 : integer );

n1

sum1

arr1 n2 arr2

sum2

Coincidental cohesion

i d i d

flag

arr1n1

sum1 sum2

arr2n2

Conditional cohesion

ddi ic c

     sum2 := 0;
     sum1 := 0;
begin

     if flag = 1
        for i := 1 to n1 do
            sum1 := sum1 + arr1[i];
      else

end;

        for i := 1 to n2 do
            sum2 := sum2 + arr2[i];

           sum2 : integer );

procedure Sum1_or_Sum2

var i : integer;

     var sum1,

(e)

     arr1, arr2 : int_array;
   ( n1, n2, flag : integer;

(b)

n

fib_arr

begin

    for i := 3 to n 

    fib_arr[1] := 1;
    fib_arr[2] := 2;

      i : integer;
var asum : int_array;

      var fib_arr : int_array;
    ( n : integer;

    Sum(n, fib_arr, sum);

end;

        fib_arr[i] := fib_arr[i-1]
                  + fib_arr[i-2];

Sequential cohesion

d

i

i d

d

Sum

d

procedure Fibo_Avg

      var avg : float );

    avg := sum / n;

 avg

n arr

sum

Functional cohesion

di

         sum := sum + arr[i];

begin
     sum := 0;
     for i := 1 to n do

end;

  ( n : integer;

procedure Sum

var i : integer;

    arr : int_array;
    var sum : integer );

(f)

     end;

var i : integer;

begin
     sum := 0;
     prod := 1;
     for i := 1 to n do begin
         sum := sum + arr[i];
         prod := prod * arr[i];

     var avg : float );

     var sum,
     arr : int_array;
   ( n : integer;

procedure Sum_and_Prod

           prod : integer;

end;
     avg := sum / n;

sum

n arr

avg

(d)

Communicational cohesion

dd

prod

i i

d

d

(c)

(a)

Figure 1: IODG's and DLC levels for six simple procedures.
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1
1

1

3

1

1

2

4

3

avg

1
1
1

1
1

2

3
4

3

1
1

1

3

1

3

3
3

max

  ( n : integer;

begin
    sum := 0;
    max = arr[1];
    for i := 1 to n do begin
        sum := sum + arr[i];
        if arr[i] > max
           max = arr[i];
    end;
    avg := sum / n;
end;

    var arr,
           sum,
           max : integer;

statementsum

    i : integer;

procedure Sum_Max_Avg

     var avg : float );

Communicational cohesion

FC measures :

SFC = 6 / 27 = 0.22

WFC = 17 / 27 = 0.63

A = (11*2 + 6*3) / (27*3) = 0.49

SMC Cohesion :

Figure 2: Data slice pro�le for Sum Max Avg.

3 Slice-based Cohesion Measures

A program slice is the portion of the program that might a�ect the value of a particular identi�er at a

speci�ed point in the program [8]. In developing cohesion measures, slices can be used to represent the

functional components of a module.

3.1 Functional Cohesion (FC) Measures

Bieman and Ott developed cohesion measures that indicate the extent to which a module approaches the ideal

of functional cohesion [2]. They introduced three measures of functional cohesion as the relative number

of \glue" or \adhesive" data tokens based on \data slices" of a module (procedure). The data slice of a

variable is the sequence of data tokens which have a dependence relationship with the variable. A data slice

is computed for each output of a procedure. Glue tokens are data tokens common to more than one data

slice. The glue tokens common to every data slice of a module are superglue tokens. The adhesiveness of a

data token is the number of data slices to which the data token is common.

The three measures of functional cohesion are Weak Functional Cohesion (WFC), Strong Functional Co-

hesion (SFC), and Adhesiveness (A). WFC is the ratio of glue tokens to the total number of tokens in a

procedure. SFC is the ratio of superglue tokens to the total number of data tokens in a procedure. Adhe-

siveness the ratio of the amount of adhesiveness to the total possible adhesiveness, which is the adhesiveness

when all data tokens are superglue tokens.

Figure 2 shows example functional cohesion computations. Each column in the �gure corresponds to a

data slice for each output. For example, the numbers in the �rst column are the number of data tokens in

the corresponding line that a�ect the output or are a�ected by the output. The data tokens that are counted

on more than two columns are glue data tokens and those that are counted on all columns are superglue

data tokens. In this example, we �nd 17 glue data tokens and 6 superglue tokens.

The functional cohesion measure is formally de�ned. Thus, measurement tools can be (and have been)

readily implemented. However, the measures depend on the implementation details and can be applied only

after the body of a module has been coded.
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arr

sum

n

com-
ponent

1

1

1

output

max

avg

0

1

sum  max  avg

1

1

0

1

0

1

1

1

0

1

(b)(a)

n arr

sum max

avg

Sum_Max_Avg

Figure 3: An example (a) the IODG and (b) IODT of a procedure Sum Max Avg.

3.2 Design-level Functional Cohesion (DFC) Measures

We derive DFC measures following the approach used to develop the functional cohesion measures. Rather

than analyzing code details, we use a design level view modeled by the IODG to de�ne the measure. The

DFC measures use a `simpli�ed' IODG which includes only dependence relationships between input-output

components, without classifying the dependences. Figure 3(a) shows a graphical (IODG) and Figure 3(b)

shows a tabular (IODT) representation of procedure Sum Max Avg of Figure 2.

In Figure 3 (b), the names of the output are listed in the �rst row and the names of the components (inputs

and outputs) are in the �rst column of the �gure. The \1" in the �gure indicates that the corresponding

component has a dependence relation with the named output, and the \0" indicates no dependence relation.

The IODG and IODT show the relationship between input-output components of a module. The DFC

measures are expressed in terms of isolated, essential, and cohesiveness:

De�nition: A component is isolated if it a�ects only one local functionality, i.e., it has a dependence

relationship with only one output.

For example, in Figure 3, component `max' is isolated since it has dependence a relationship with only

one output, itself. The other components are not isolated.

De�nition: A component is essential if it a�ects (or is a�ected by) all functionalities of the module, i.e., it

has dependence relationships with all outputs of the module.

If a module contains only one output, the output is the only functionality of the module. Thus, every

component in the module is not isolated and is essential. In Figure 3, components `n' and `arr' are essential

since they a�ect all outputs.

We de�ne the cohesiveness of a component as the degree of \relatedness" of the component to the outputs.

Cohesiveness provides more information than simply classifying a component as isolated or essential. The

cohesiveness of a component represents the relative number of outputs that the component relates together.

We do not address the cases where input does not contribute to the computation of output, i.e., in our

model, every component has dependence relation with at least one output. Therefore, the cohesiveness of

a component is the relative number of the other output(s) with which the component has a dependence

relation. If a module contains only one output, the cohesiveness of every component in the module is 1.

De�nition: For an arbitrary module, the cohesiveness of i'th component is:

Ci =

�
Ni�1

O�1
if O > 1

1 otherwise

where Ni is the number of outputs with which the ith component has a dependence relation, and O is the

total number of output in the IODG model of the module.
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The cohesiveness of an isolated component is 0 and the cohesiveness of an essential one is 1. In Figure

3(b), the cohesiveness of n and arr is 1, the cohesiveness of sum and avg is 1=2, and the cohesiveness of max

is 0.

Three measures, Loose Cohesiveness (LC), Tight Cohesiveness (TC) and Module Cohesiveness (MC), are

de�ned as the relative number of non-isolated components, the relative number of essential components, and

the average cohesiveness of the components of the model, respectively:

DFC Measure De�nition.

LC(m) = D=T

TC(m) = E=T

MC(m) =

P
T

i=1
Ci

T

where D, E, and Ci are the number of non-isolated components, the number of essential components, and

the cohesiveness of i'th component, respectively, in the IODG of module m. T is the total number of com-

ponents in m.

Using the de�nition of component cohesiveness, module cohesiveness can be expressed as

MC(m) =

PT

i=1
(Ni � 1)

T � (O � 1)
=

PT

i=1
Ni � T

T �O � T

The three measures for the procedure Sum Max Avg in Figure 2 and 3 are

LC(Sum Max Avg) = 4=5 = 0:8

TC(Sum Max Avg) = 2=5 = 0:4

MC(Sum Max Avg) = (2 � 2 + 2 � 1)=(5 � 2) = 0:6

An isolated component has zero cohesiveness, a non-isolated component has cohesiveness of greater than

0, and essential component has cohesiveness of one. Thus, for a given module m:

E �

TX
i=1

Ci � D

where D, E, Ci, and T are de�ned as above. Therefore,

TC(m) � MC(m) � LC(m)

3.3 Relationship between the DFC and FC measures

The DFC measures correspond closely to the FC measures. Each of the DFC measures (LC, TC, and MC) was

de�ned to correspond to one of the FC measures (weak functional cohesion, strong functional cohesion, and

adhesiveness) respectively. However, DFC measures are de�ned in terms of relations between the components

of a module interface, while FC measures are based on the relationship between the components in a module

body.

Figure 4 contains unlabeled IODG diagrams for di�erent module con�gurations. Input, output, and

selected internal data tokens are represented by circles, squares, and square bars, respectively. Figure 4(d)

shows three modules with the same number of inputs and outputs, and the same dependence relations. Thus,

their DFC measures are equal. However, the second module contains more essential data tokens. As the

result, the FC measures of the second module are higher than those of the �rst module. The third module

contains more isolated data tokens. As the result, the FC measures of the third module are lower than those

of the �rst module. Figure 4 (e) and (f) also show that an increase in the number of essential or isolated

data tokens a�ects the FC measures.

7



(a)

(b)

(c)

(d)

(e)

(f)

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC = FC

DFC = FC DFC < FC DFC > FC

DFC = FC DFC = FC DFC > FC

DFC = FC DFC < FC DFC > FC

Figure 4: Comparing the DFC and FC measures.

Figure 4 (a), (b), and (c) show that a change in the number of essential or isolated data tokens in a

module may not a�ect FC measures. All input-output components in a module are isolated for case (a), and

essential for cases (b) and (c). If the FC values are 1 for a given module, the DFC values are 1, if the FC

values are 0 for a given module, the DFC values are 0. If the DFC values are between 0 and 1 for a given

module, the corresponding FC values depend on the relative number of isolated, non-isolated, and essential

data tokens. Therefore, when FC > DFC, we know that there is a greater relative number of essential data

tokens than essential input-output components. When DFC > FC, there is a greater relative number of

isolated data tokens than isolated input-output components.

We see that the DFC and FC measures are equivalent only for some modules. There is, however, a

general correspondence between the DFC and FC measures. An empirical study may con�rm or refute the

correspondence. Such a study can determine the distribution of isolated and essential data tokens in real

software.

FC measures provide more detailed information for restructuring existing modules than DFC measures.

The FC measures captures the cohesion due to internal details. For example, the second module in Figure

4(d) is more di�cult to decompose into two modules than the third module in 4(d). To decompose the

second module, most of data tokens need to be rewritten. However, the FC measures alone can not capture

input-output relationships. For example, high values of FC measures may be due to essential input-output

components or other essential data tokens. Both measures, when used together, can provide more complete

information.

4 Relationship between the DLC and DFC Measures

The DLC measure is an association-based measure and the three DFC measures are slice-based measures.

Both sets of measures have been de�ned using an intuitive understanding of cohesion based on the \related-

ness" of module components. An analysis of the relationship between the DLC and DFC measures provides

further evidence of how the measures correspond to the intuition of cohesion.

We investigate the e�ect on the measures of increases in the number of the connections between module

components and increases in the number of module components. To compare the DFC measures with the

DLC measure, we use the simpli�ed IODG. The simpli�ed IODG (without dependence labels) cannot account

for the di�erence between `conditional', `iterative', and `communicational' DLC levels. Thus, these relation

levels are represented as an `indirect' relation, and their corresponding cohesion levels are `indirect' cohesion.
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4.1 The e�ect of increasing the number of dependence connections.

Figure 5 shows the IODG, IODT, and DFC measures, the association level of each pair of outputs, and the

DLC measures for seven module con�gurations. To show the e�ect of increasing the number of connections

on the measures, we �x the number of inputs and outputs for each module. Each module in the �gure has

three inputs and three outputs.

The number of direct or indirect dependence connections increases from module (a) to module (g). We

look at the e�ect of increasing the number of connections for each measure.

MC measure. The DFC MC measure always detects an increase in the number of dependence connections,

and is clearly more sensitive than the LC and TC measures. Figure 5 shows that the MC values precisely

correspond to changes in the number of dependence connections in each module, which is consistent with our

intuition about cohesion. That is, modules with more related components are more cohesive than modules

with fewer related components.

LC measure. The LC measure captures the relative number of isolated (or non-isolated) components in a

module. A relatively low LC value means that there are more isolated components than non-isolated ones.

The modules in Figure 5(c) and Figure 5(d) have the same number of dependence connections and equal

MC values. However module 5(d) has more isolated components than module 5(c). Module 5(c) has two

input components connecting output components while module 5(d) has only one such connection. This

di�erence between modules 5(c) and 5(d) is re
ected by the LC measure.

TCmeasure. The TC measure detects the relative number of the components with the strongest connection.

These are the essential components of the module. TC is zero when there are no components that are used to

compute every output. TC equals one when all components in the module are tightly related and essential

to the functionality of the module. Modules 5(a), 5(b), and 5(c) contain no essential components. All

components of module 5(g) are essential and tightly related. Thus, TC is 0 for modules 5(a), 5(b), and 5(c),

and 1 for module 5(g).

DLC measure. Figure 5 shows that DLC is not very sensitive to the di�erent number of connections

in the modules. In contrast to MC and LC, DLC does not distinguish between modules 5(a), 5(b), and

5(c). DLC �nds the weakest connection among module components. Finding the weakest connection is

important, because \for debugging, maintenance, and modi�cation purposes, a module behaves as if it were

only as strong as its weakest link" [10, p. 132]. Also, the DLC measure computed using a labeled IODG

(where dependence is classi�ed) provides more precise information about the relationship between output

components than the DFC measures. For example, when an input is used by two outputs, while the DFC

measures treat the input as simply an essential component for the outputs, the DLC measure classi�es

the relationship between the two outputs into conditional, iterative, or communicational relation using the

classi�ed dependence information.

Among MC, LC, and TC, TC is closest to DLC. In calculating DLC, the lowest cohesion level of all

pairs is the cohesion of the module. The module of Figure 5(c) contains three pairs of outputs. The lowest

relation level is `coincidental', so the corresponding cohesion level of the module is coincidental. TC is 0

for the module since there are no essential components | components that connect all outputs. Whenever

the DLC level for a module is `coincidental', the TC value is 0. If there is even one pair of outputs whose

relation level is `coincidental', there can be no component that connects all outputs. The reverse is, however,

not true. When a module TC is 0, the cohesion level is not always coincidental, because there may be some

components that connect some portion of the outputs, and those components together connect all outputs.

When all outputs are connected, the DLC cohesion level is not coincidental.

Both DLC and TC are calculated using the most extreme cases. Thus, they generally correspond to each

other. This correspondence between these measures is in all modules of Figure 5. In modules (a), (b), and

(c) of the �gure, the DLC levels are `coincidental' and the TC values are 0. In 5(d) and 5(e), the DLC levels

are `indirect' and the TC values are 1:6.

4.2 The e�ect of increasing the number of input-output components.

Figure 6 shows how the DFC measures change as the number of input or output components are increased.

Each module in the �gure has equal DFC measures (MC, LC, and TC) which are represented as a single
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Figure 5: The e�ect on the DFC and DLC measures of increasing the number of dependence connections.
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DFC value.

If there is only one output in a module, DFC = 1 no matter how many inputs there are. The DLC

measure indicates \functional" cohesion. If there are multiple outputs and every component is isolated, the

DFC measures are 0 without regard to the number of inputs and outputs in the module, which corresponds

to coincidental cohesion as indicated by DLC. These correspondences are shown in Figure 6 (a) and (b).

The DFC measures are sensitive to the relative number of isolated or essential components in a module.

As the relative number of isolated components in a module is increased, (more components are not related

with each other) the DFC value decreases. Figure 6 (c), (d), and (g) show the decrease of DFC when the

relative number of isolated components is increased. Figure 6(f) shows that when the relative number of

essential components in a module is increased, the DFC value increases. In cases 6(e) and 6(h), the relative

number of essential components are not changed, and the DFC values also show no change.

As we see in Figure 6, the DLC measure does not capture the di�erences in the relative number of

cohesive components. When the number of isolated or essential components is changed, the corresponding

DLC levels are not changed.

To summarize, the DFC measures MC, LC, and TC are sensitive to the relative number of dependence

connections, the relative number of isolated components, and the relative number of essential components,

respectively. The DLC measure is, however, not very sensitive to the relative number of connections, isolated,

and essential components in a module. However, DLC measure always �nds the weakest connection among

module components and determines the cohesion level. DLC also provides more precise information for the

relationship between output components, than the DFC measures. Among the three DFC measures, the TC

measure has been found to correspond most closely to the DLC measure.

There is a fundamental di�erence between the DFC measure and the DLC measure. When calculating

a cohesion value, the DFC measures average the cohesion values of all components, while the DLC measure

�nds the most weakly connected relation. This di�erence is intentional. The generated data from both

measures should be interpreted di�erently.

5 Applications of Design-level Cohesion Measures

The IODG model and associated measures can be used to improve software quality during design and

maintenance.

� IODG diagrams give a visual representation of module interfaces. Such visualizations can help software

engineer understand the functional structure of programs during design and maintenance. For existing

software, the IODG information can be generated automatically using a compiler-like tool. Without

an implementation, IODG information should be part of a detailed design. IODG diagrams can be

also drawn automatically based on the IODG information.

� The DLC/DFC measures can be used to locate modules that perform multiple functions having no or

weak relations with each other. These modules may be poorly-designed and should be redesigned or

restructured. The measures can be computed easily from the IODG information.

� The IODG diagram and associated cohesion measures can be used to redesign software during the

design process, and to restructure existing software [3]. The measures are criteria for determining

whether or not a given module should be redesigned or restructured. An IODG diagram can help one

to decide how a selected module will be restructured.

Figure 7 shows how restructuring can be accomplished using IODG diagrams, DLC/DFC measures, and

the following process:

1. IODG's of programs of interest are generated.

2. Modules with low DLC/DFC values are located. The optimal DLC/DFC value will depend on the

application, the required reusability, readability, and maintainability of the software. Managers need

to specify expected marginal DLC/DFC values.
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Figure 6: The e�ect on the DFC and DLC measures of increasing the number of input-output components.
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Figure 7: Software Restructuring Process

3. Each module that has been identi�ed as poorly-designed is decomposed: (1) Partition the output

components of the IODG so that when decomposed according to the partition, each resulting IODG

has higher DLC level. (2) Decompose each IODG according to its partition. Each resulting IODG

includes input-output components that have dependence relations with the partitioned outputs. This

step is repeated until the cohesion values for each resulting module are acceptable.

4. Unnecessarily decomposed modules are located and composed. To locate overmodularized modules, a

practitioner can use other quality measures such as coupling, size, and/or reuse measures. The IODG

can help identify candidates for composition through visualization of the module structure.

5. Finally, new program code is generated. The information of data tokens and their dependence from

the initial programs obtained during step 1 is used for this process.

The DLC/DFC measures use the IODG information to determine the module cohesion. Thus, one

needs to manipulate only the IODG's and need not deal with implementation details. Compiler-like tool

can automate the generation of IODG diagrams, DLC/DFC measures, and restructuring process. We are

developing such tools for C programs.

6 Conclusions

We have formalized the concept of design cohesion using a graph model of a procedure interface, the IODG.

The IODG models dependencies between externally visible module components and can be generated from

design-level information.

The IODG forms the basis for a set of cohesion measures that can be applied prior to implementation. The

behavior of these cohesion measures matches the original intuitive, informal de�nition of software cohesion [7].

Our design-level cohesion measures also generally correspond to several existing code-level cohesion measures.

We derived these cohesion measures using an association-based approach similar to that used by Stevens

et al [7] and the slice-based approach used to derive code-level functional cohesion measures [2]. Each of our

measures quantify di�erent attributes of the notion of cohesion. Three slice based measures are sensitive

to the number of connections, the number of isolated components, or the number of essential components

(components connected with all procedure outputs). One association-based cohesion measure is sensitive to

the weakest connection between module components.

The IODG model can be used to visualize the functional structure of programs and provides support for

program understanding. The design-level cohesion measures can be used to locate poorly designed modules.

Our model and measures can help to restructure software during design and maintenance. We are now
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developing tools to partially automate a restructuring process based on the IODG model and associated

measures.
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