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Abstract

Most Automatic Target Recognition (ATR) algorithms operate in 2D image space. Even

when using 3D models, these 3D models are typically translated o�-line into sets of 2D

representations, such as templates, which are then applied to imagery to perform detection,

recognition and veri�cation. In contrast to this approach, the work reported here takes steps

toward direct matching of 3D models to range and optical imagery. The key idea is to exploit

known 3D sensor and target geometry to drive a model-based sensor fusion process.

This process, which we call `coregistration', resolves uncertainty in the 3D placement of

the target relative to the sensors as well as uncertainty in the exact pixel registration between

range and optical sensors. A speci�c coregistration algorithm is presented along with results

on both synthetic and real data. Extending coregistration, two approaches are presented for

�nding locally optimal matches between 3D target models and multi-sensor data. Both are

demonstrated on real data.

1 Introduction

Model-based object recognition work has long emphasized the importance of aligning 3D object
models to features extracted from sensed imagery [BC82; Low91; GH91; HU90; HU88; BR92a;
BR92b; Bev92a; Bev93; BR94; BHP94b; BR95]. While model-based approaches to Automatic
Target Recognition have become much more common [DVD93; GJSL90], direct incorporation
of alignment into the recognition process is rare [BJLP92]. This paper presents algorithms and
results from a project at Colorado State University which is developing a new family of Target
Veri�cation algorithms based upon alignment.

Recognition problems in ATR typically involve complex objects viewed at great distances.
Often they are partly obscured and backgrounds contain signi�cant amounts of clutter. All these
factors make typical ATR problems more di�cult than those in which alignment to optical imagery
alone has been demonstrated. To handle these more di�cult problems, the work presented here
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exploits range as well as optical imagery. The direct measurement of range helps to resolve
ambiguities which make robust recognition in optical imagery alone extremely di�cult.

Working with two heterogeneous sensors raises many issues, including how to determine the
registration mapping between them. In an ideal world, this mapping could be uniquely determined
through o�-line calibration. However, it is more prudent to assume that such estimates are
accurate to within several pixels, but not more so. A system might try to resolve this ambiguity
by only using low-level cues prior to applying model-based processing, but doing so would neglect
valuable constraints implied by target geometry. Thus, we reach a key thesis of our work: �nal
re�nement of the pixel-to-pixel registration between range and optical imagery should

be an integral part of the model-based target recognition process.

We use the term coregistration to describe the process in which sensor-to-target and sensor-
to-sensor alignment parameters are simultaneously re�ned based upon constraints derived from
known aspects of the global sensor and target geometry. Here, an algorithm for performing
coregistration is presented. In addition, matching algorithms utilizing coregistration to establish
globally consistent matches between 3D target and sensor features are presented and demonstrated
on real data.

This more geometrically precise 3D framework for ATR promises more accurate match mea-
sures, and consequently, more robust target identi�cation. Since the associated computational
demands are considerable, less expensive detection [BDHR94] and hypothesis generation [Bev92b]

algorithms are being used to provide focus of attention. Thus, it is assumed that the coregistration
algorithms are being asked to rank and resolve quite speci�c hypotheses generated by up-stream
processing. An example of such a hypothesis: `there is an M113 at aspect 30 degrees and elevation
10 degrees at the following position in the scene'.

The scope of what we are undertaking is large, and only recently have the many pieces begun
to fall together into a working, testable, system. Several key components had to be developed
simultaneously before we could even begin testing on real data.

Dynamic Model Feature Generation: From stored 3D target models, derive for each hypoth-
esized target instance the 3D features appropriate for matching to both range and optical
imagery.

Model-Driven Feature Detection: Extract locally optimal linear edge features from highly
cluttered, low resolution, optical imagery of camou
aged vehicles.

Coregistration: Re�ne the 3D pose (position and orientation) of a target model relative to
both range and optical sensors while simultaneously re�ning the image-to-image registration
between these sensors.

Correspondence-Space Search: Use local search in the space of discrete correspondence map-
pings between model and sensor features to �nd near optimal matches between 3D target
features and sensor image features.

Coregistration-Space Search: Use local search in the space of coregistration parameters to
�nd near optimal matches between 3D target features and sensor image features.

Experimentation with the complete system is in its early stages and has primarily focused
upon careful study of test cases. In this paper, results for two target models and pairs of range

2



and optical images are presented. While it is still too early to have statistical results over a large
set of cases, these early results are suggestive of what these new 3D techniques can accomplish.

2 Motivation & Background

Our general, or conceptual, motivation derives from the belief that model-based algorithms which
test for global consistency using alignment should and can be extended to multi-sensor domains.
The more immediate motivation, and the one that has shaped the particulars of our problem
formulation, are derived from the need to develop robust target veri�cation algorithms for a
sensor suite possessing separate LADAR, color and IR sensors.

2.1 Conceptual Motivation

A long tradition of work on object recognition has emphasized �nding matches between object
and image features for which there is a single globally consistent alignment of features. For
example, Lowe utilized this approach subject to orthographic projection [LB85] and later demon-
strated object tracking under perspective projection [Low91]. Huttenlocher [HU90] demonstrated
alignment-based recognition under orthographic projection. Grimson's work [Gri90] on constraint
base matching has emphasized local feature compatibility to prune tree search and thus minimize
tests of global alignment.

Our past work [BWR90; BWR91; Bev93; BR95] emphasized global alignment as a basis for
match ranking and optimal matching to CCD sensor data. Local search through the match
space constructs a globally consistent match by �nding a sequence of successively better match
hypotheses until one which is locally optimal is found. For a given match hypothesis, the �t
error is based upon alignment using Kumar's [Kum89; KH94] pose algorithm. Random trials of
steepest-descent local search on CCD matching problems demonstrate that the technique �nds,
with high probability, matches which are both globally optimal and globally consistent [Bev93;
BR95].

To extend this type of globally consistent matching for multisensor recognition, a global align-
ment or coregistration algorithm is needed. As an initial step, we investigate a combination of
proven single sensor error formulations. Kumar [Kum89; KH94] has developed a succession of sin-
gle sensor algorithms for a typical `pin-hole' camera model which takes perspective into account.
Section 6.1.1 gives a more complete description of Kumar's formulation and explains our decision
to base our measure on Kumar's earlier, rather than later, error formulation. Horn [Hor86] details
a technique for aligning two sets of 3D points. Each of these is a least-squares algorithm based
upon known correspondence mappings between features. This paper describes a joining of these
two least-squares problems into a single coupled least-squares optimization problem.

Others have worked on problems similar to the coregistration problem discussed in this paper.
Herbert [HKK90] presents least-squares mechanism for computing the rigid transform between
range and color CCD sensors based upon corresponding image points in the two sensor images.
However, this work does not explicitly recover the associated pose of the 3D points relative to
the sensors. Both Eason [EG92] and Hel-Or [HOW93] developed least-squares multisensor pose
algorithms. However, these algorithms only solve for the six-degrees-of-freedom pose estimate.
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They do not support simultaneous adjustment of the sensor registration parameters. In terms of
constraints, all of these methods assume a known sensor-to-sensor registration.

More recent work by Hel-Or and Werman [Y. 94; Ho93] adds degrees of freedom to account
for articulated objects and nicely handles variable constraints in a single extended Kalman �lter
formulation. Their general Kalman �lter approach could be applied to the coregistration problem
formulated here. However, for reasons of e�ciency we have intentionally used what Hel-Or and
Werman call the parametric approach. Since our coregistration algorithm is being developed to
be run within the inner loop of an iterative local search matching procedure, e�ciency takes
precedence over generality. In future work, we will test the relative merits of our approach
compared to the more general formulation of Hel-Or and Werman as well as more traditional
photogrammetric approaches.

Aggarwal [Agg90] summarizes past sensor fusion work and makes two points particularly
relevant to this paper. Aggarwal notes that past work on sensor fusion emphasized single modality
sensors, with comparatively little work on di�erent sensor modalities. The implied explanation
is that relating data from di�erent modalities is more di�cult. While Aggarwal [MBCA85] and
others [SG87] have examples of successful mixed-modality fusion, this is still a young research
area.

Aggarwal also notes that to properly perform mixed-modality sensor fusion, coordinate
transformations between images need to be adaptively determined. Coregistration,
as presented in this paper, is a working example of precisely the kind of tool needed to support
such an adaptive process. We believe that knowledge of sensor and object geometry should be
used to constrain and adapt both the object pose and sensor-to-sensor coordinate transformations
as part of object recognition.

2.2 Practical Motivation

While we expect coregistration to be important in many domains, the problem arises for us in
the context of the RSTA (Reconnaissance, Surveillance and Target Acquisition) function of the
UGV (Unmanned Ground Vehicle) program. In this application, a FLIR sensor for acquiring IR
data, a color CCD sensor, and a LADAR sensor are to be mounted on a common pan-tilt head
riding atop a HMMWV. The FLIR and color sensors have been �elded, but the LADAR sensor
is still under construction. To �ll in while no LADAR sensor is on the vehicle, we went to Fort
Carson with Lockheed Martin in the Fall of 1993 and collected a large set of range, color and IR
imagery [BPY94], and it is this data which is considered here. The overall goal is to utilize these
three sensor modalities to improve the reliability of target identi�cation algorithms.

Most of the prior work on target identi�cation uses a �xed set of image-based templates or
probes [Bev92b; VDL95; DVD93]. These techniques have their place, and we are using the Alliant
Techsystems probing algorithms [Bev92b] to provide initial object-and-pose hypotheses. However,
as the �nal step in veri�cation, unless precise 3D coregistration is performed1, it is neither possible
to perform �nal cross-sensor model alignment nor is it possible to exploit precise 3D geometric
relationships. Thus, the coregistration work presented here is our �rst step in developing a new
generation of recognition algorithms which go beyond matching in single-sensor image spaces and
instead geometrically couple 3D object models and sensors.

1We assume here applications in which precise pixel registration is unknown
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3 A Quick Look at Some Real Data.

In this paper, we will be presenting our algorithms' performance on real ATR images. These
images, as is common in the ATR domain, are di�cult. The background consists of high texture
clutter, such as grass and shrubs, which can partially occlude the target. Also, the goal of the
vehicle designers is to paint them with similar colors and textures, inducing additional clutter. In
addition, the objects being recognized are generally at a signi�cant distance, and hence do not
cover much of the image. This results in lower quality and less data.

From the set of hundreds of images collected at Fort Carson [BPY94], we selected three pairs
of range and color. These were selected to represent some di�erent qualities of the ATR domain.
Shots 18 and 20 represent relatively close examples (approximately 50 meters) of two di�erent
vehicles, the M60 and M113, respectively. Shot 31 represents the M113 at about 160 meters. This
image is signi�cantly more di�cult, due both to the small number of pixels on target and to the
angle at which the vehicle is viewed, nearly head on.

Figures 1, 2 and 3, contain color and LADAR imagery for the two types of vehicles. The
LADAR imagery is drawn as a set of 3D polygons at range sample depth. The visualization
algorithm allows the 3D data to be rendered interactively from a di�erent viewpoints, and provides
a better feel for the characteristics of the data than the typical 2D range intensity image [GBSF94;
GBSF95].

4 Deriving Target Model and Sensor Features

4.1 Dynamic Model Feature Generation

Highly detailed models of the vehicles in our Fort Carson dataset exist in the CAD model format
known as BRL/CAD [U. 91]. Algorithms to reduce the model complexity to a level more closely
related to the sensor granularity have already been developed [SBG95; Ste95]. From these simpler
models, features to be used in the matching process are then obtained.

Common approaches to model feature generation have centered around an o�-line model anal-
ysis in which visible features are determined for all viewpoints[PD87; Pla88]. The results are then
grouped into regions of constant topology [KD87] and stored in an aspect graph representation
[KvD76; KvD79]. The aspect graph is used at runtime to obtain the list of visible features for a
given pose [SD92].

As an alternative to o�-line compilation of the stored graph representation, our approach
instead exploits the power of modern graphics hardware to achieve real-time generation of relevant
model features [Ste95]. Two sets of model features are generated based upon an estimate of the
target's position and orientation. The �rst set represents the model silhouette lines appropriate
for matching to optical imagery. The second set represents the 3D sampled surface information
for matching to the range data.

Not only is the on-line generation of 3D silhouette features novel in an ATR algorithm, it is
also essential to the success of coregistration. Were silhouettes to be reduced to 
at 2D templates,
the ability to make subtle adjustments in appearance associated with small rotations of the target
would be lost. The mapping from the target model to features appropriate for matching to range
imagery is more obvious and less original. A simulation of the range sensor geometry is used to
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a. Color Image

b. Front View of LADAR Image

c. LADAR from another angle d. LADAR from another angle

Figure 1: Data set for Shot 18, Array 5 (M60)
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a. Color Image

b. Front View of LADAR Image

c. LADAR from another angle d. LADAR from another angle

Figure 2: Data set for Shot 20, Array 5 (M113)
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a. Color Image

b. Front View of LADAR Image

c. LADAR from another angle d. LADAR from another angle

Figure 3: Data set for Shot 31, Array 8 (M113)
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generate a sampled surface. The sampling parameters are chosen so that aspect and resolution
re
ects the actual data.

4.1.1 Generation of 3D Silhouette Edges

To determine what parts of the target model produce the silhouette, a unique color �rst is assigned
to each face in the target model. This color acts as an index into a hash table of 3D faces.
The model is then rendered from the hypothesized viewing angle. Rendering is performed on a
hardware Z-bu�er, and hence is very quick. Running on a Sparc 10 with a ZX accelerator, this
process takes roughly 1:2 seconds for a target model containing 250 faces. The colors of resulting
pixels indicate which faces are visible. Pixels adjacent to the background color, which is also
unique, contribute to the target silhouette. Thus, if the background color appears in a pixel's
eight-connected neighborhood, the associated face lies on the silhouette.

Further search determines which speci�c face boundaries (edges) generate the silhouette. An
edge is a possible silhouette edge if only one of the two bounding faces is visible [SD92]. This step
may leave some edges which are actually internal as hypothesized silhouette edges. It also does
not deal with self-occlusion. A clipping algorithm is then used to discover and discard those edges,
and portions of edges, which are not part of the silhouette. Because an orthographic projection
is used to render the model, parametric end-point values measured in the rendered image during
clipping may be applied directly to the corresponding 3D edges.

The �nal result is a list of 3D edges representing the silhouette of the target model for a
given viewing angle. Using a user de�ned minimum line distance threshold, shorter lines can be
discarded. Figure 4a shows a sample color image, and Figure 4b shows the silhouette obtained
using this method.

4.1.2 Generation of Range Sampled Surfaces

A 3D sampled surface is generated in a manner which simulates, in simple terms, the operation of
the actual range sensor. The target model is transformed into the range sensor's coordinate system
using the initial estimate of the target's position and orientation. Based on the characteristics
of the range device, rays are cast into the scene and intersected with the 3D faces of the target
model. The results of the rendering step used to extract the silhouette are used here to limit ray
intersections to only those faces known to be visible. The closest face intersection is stored as the
depth the current position. By design, noise factors are neglected when generating model features:
the intention is to generate a high quality model. Noise is dealt with later when matching the
model features to the sensor features.

4.2 Model-Directed Linear Feature Detection

Traditional methods for locating objects in optical imagery typically use edge detection algo-
rithms. [MH80; Hil83] locate local edges which may then be grouped into larger features such
as straight line segments [BHR86; LB83]. These linear features are, in turn, matched to linear
features of stored object models [Low85; Low91; HU87; HU88; HU90; GH91; BWR89; BWR90;
BWR91; BR92a; BR92b; Bev92a; Bev93; BR94; BHP94b; BR95]. These bottom-up feature extrac-
tion algorithms are prone to error [Cla89; BGK+89], and often produce extraneous line segments,
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fragmented segments, and sometimes over-grouped segments. Our past work in other problem
domains [Bev93] demonstrated local search, coupled with sound and e�cient tests of global align-
ment, could overcome signi�cant amounts of fragmentation, over-grouping and clutter. However,
the features produced by the Burns algorithm [BHR86] on the Fort Carson imagery are of such
poor quality that we have adopted a top-down rather than a bottom-up approach in the work
developed here. This poor feature quality is a byproduct of the high texture content of the back-
ground and the vehicle camou
age, as well as the color similarity between the target and the
background.

To realize a robust, model-driven, edge detection capability, two ideas from the literature
have been combined: model-driven edge detection [FL87; FL88] and directionally tuned gradient
�lters [Can86]. The quality of a straight line segment denoting an extended edge is de�ned to
be a function of the gradient magnitude under that edge. A gradient mask tuned to the speci�c
expected orientation of the segment is used. The placement of the segment is perturbed until a
locally optimal placement is found.

4.2.1 Placing Silhouette Edges in the Image

This model-driven approach is initialized by projecting the 3D silhouette edges into the color
image. Projection is possible because both the intrinsic sensor parameters and the approximate
pose of the target are known. The parameters for the color sensor have been determined o�-line
using calibration targets [BHP94a]. Thus, for each silhouette feature generated from the target
model, a search is initiated in the image for the best corresponding line segment.

The �rst step in this search is to construct a gradient mask tuned to the particular expected
orientation of each silhouette edge. This mask is formed by rotating the �rst derivative of a
Gaussian to match the orientation of the current silhouette edge. There are many precedents for
tuned edge masks including Canny [Can86] and Torres [TP86]. Others to develop and use such
masks for bottom-up edge detection include [Shu94; FA91]. An example of such a �lter, displayed
as an image, is shown in Figure 4c.

The second step is to measure the overall gradient response under the segment. A commonly
used graphics anti-aliasing technique known as Pineda Arithmetic [Pin88], is used to determine
with subpixel accuracy where the projected line crosses the sensor image. A weighting term is
created (see Figure 4f) to scale the gradient at each pixel, and obtain the gradient for a single
line. The gradient response under the line segment, Ĝ, is normalized to lie in the range [0; 1]:

ĜLine(i) =

LinexbX
i=Linexa

LineybX
j=Lineya

jGradient(i; j)j � w(i; j)

MaxResponse �
LinexbX

i=Linexa

LineybX
j=Lineya

�w(i; j)

(1)

Gradient(i; j) is the gradient magnitude measured using the directionally tuned mask at pixel
(i; j), w(i; j) is a weighting term proportional to the distance of the pixel from the true line, and
MaxResponse is the largest expected gradient in the image. The summations are de�ned over an
extents box about the current position of the line segment, and w(i; j) is 0 for pixels lying outside
the radius of the line segment.
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a. Original Image b. Image with Silhouette

c. Mask

d. Silhouette Line

e. Gradient Response f. Weight

Figure 4: Optical Data Error Function
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To �nd the best placement for each line segment, the segment parameters are perturbed until
a locally optimal placement is found. Perturbations consist of small translations and rotations
of the line about its current position. Once a local optimum is reached, the perturbed edge is
returned as the best segment in the image for the given model line.

5 Two Ways to Find Matches: An Overview

The previous section has provided a means to derive corresponding features from a target model
and sensor data. This section outlines, in general terms, two quite di�erent ways to go about
determining whether there exists a good match between these features.

Consider an error function which evaluates the quality of a match between a target model and
sensor data:

Ematch(c;F) > 0 8c 2 C; F 2 <8 (2)

The �rst argument to this function, c, represents a particular correspondence mapping between
model and sensor features. The second argument, F , represents the coregistration of the sensors
relative to the target model.

In the most general case, the correspondence space C is the power set of all possible pairs of
sensor and model features. Observe that C denotes correspondences between the target model
and features derived from both range and optical imagery. Thus, c indicates the pairing between
corresponding sampled surface features on the target model and sensed range points in the LADAR
imagery. The mapping c also indicates corresponding features for the optical imagery.

The coregistration F represents the geometric relationship between the sensors and the target
model. In the development below, this is an eight place vector: six values encode the pose of
the target relative to the optical sensor (3 rotation and 3 translation), and two encode the planar
translation of the optical image plane relative to the range sensor's image plane. The rationale
for this choice is presented below.

Matching seeks to �nd the correspondence c� and coregistration F� which together minimize
the match error:

Ematch(c
�
;F�) � Ematch(c;F) 8 c 2 C; F 2 <8 (3)

Since c and F are clearly related, it would seem that a choice of one leads to an obvious choice
for the other. This intuition suggests two alternative approaches to matching.

Consider �rst the case in which one selects a speci�c set of corresponding features c. A �tting
procedure can be imagined which determines an F� such that:

Ematch(c) � Ematch(c;F
�) � Ematch(c;F) 8 F 2 <8 (4)

In this formulation, correspondence c serves as an independent variable and F a dependent vari-
able. Finding the best match may now be conceptualized as the process of searching C for the c�

which minimizes equation 4. As a shorthand, this approach will be called correspondence-space
search. The coregistration algorithm developed below is precisely the type of �tting procedure
required to perform correspondence-space search.

The converse may also be done. Select a speci�c coregistration F , and use a local assignment
procedure to determine a c� such that:

Ematch(F) � Ematch(c
�
;F) � Ematch(c;F) 8 c 2 C (5)
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Now F is the independent variable and c the dependent one. Finding the best match may be
framed as the problem of �nding the coregistration F� which minimizes equation 5. The term
coregistration-space search will be used as a shorthand for this approach.

6 Coregistration & Correspondence-Space Search

In the speci�c formulation developed here, a coplanarity constraint limits the freedom of movement
of the range sensor relative to the optical sensor. Thus, the range reference coordinate system may
translate in the common x-y image plane of the two sensors, but otherwise the two sensors move
together. This may, at �rst, seem an odd choice of constraint. Given two sensors on a common
platform, it is their relative pointing angles, not their relative spacing, which is most likely to vary.
Why should we use translation to express variability introduced by small rotations? The answer
is that the pixel-to-pixel movement between the two image planes is virtually indistinguishable
in the two cases when rotations are small. The advantage of the translation formulation is that
it does not introduce a second rotation term into the coregistration formulation, which would in
turn add unnecessary nonlinearities.

6.1 Coregistration

The explicit coregistration error term, its partial derivatives, and the resulting update equations
for the coregistration algorithm are presented in Section 6.1.1. The range-to-model error is simply
the squared Euclidean distance between corresponding features. The optical-to-model error is
measured using a squared error between planes de�ned by image line segments and points on the
3D object model.

This measure of optical-to-model error is the �rst measure developed by Kumar [Kum89;
KH94]. Kumar subsequently showed this measure to be sensitive to fragmentation noise in the im-
age segments. To correct this weakness, Kumar subsequently developed a measure using 3D model
features to de�ne planes. We earlier observed an analogous result for 2D line �tting [BWR89].
While Kumar's later formulation is better when fragmentation occurs, we avoided it for two rea-
sons. First, to use the more recent measure requires an additional renormalization of terms after
each iteration. Second, our coregistration process is using a top-down approach to �nd segments in
the optical imagery which will not induce fragmentation. Were fragmentation of optical segments
to be an issue, investigation of Kumar's latter measure would be appropriate.

6.1.1 Deriving the Coregistration Update Equations

In our coregistration �t error, we consider a set of image data with independent Gaussian noise
applied to the position information of each de�ning point. That is, point data in the range image
is normally distributed about its true position and the endpoints of optical lines are individually
perturbed. By assuming independent noise processes, we can de�ne our �t error as the sum

Efit(F) = �fitEfit;o(c;F) + (1� �fit)Efit;r(c;F) (6)

The constituent parts of Efit are illustrated in Figure 5. The �rst term, Efit;o, measures distance
between corresponding optical and model features. This term is precisely the point-to-plane error
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criterion de�ned by Kumar [Kum89; KH94] for computing camera-to-model pose. The second,
Efit;r, is simply the sum-of-squared Euclidean distances between corresponding model and range
points. The coregistration parameters themselves are denoted by F .

While the �t errors are dependent upon both the correspondence, c, and the coregistration
parameters, F , here we will be considering the case where c is �xed and an optimal F is being
sought. This corresponds to the case in equation 4. For a more compact notation in this section,
we will just write Efit, leaving the �xed c and variable F implied.

Xc

Yc

Zc

ˆ N 

Xl

Yl

Zl

CCD LADAR

CCD 
Image LADAR 

Image

Xm

Ym

Zm

Model

Pl

Pm1 RmcPm1 + Tmc + Tcl − Pl

ˆ N • RmcPm1 + Tmc( )

Figure 5: Illustrating distance errors which de�ne optimal coregistration.

We use the weighting term 0 � �fit � 1 to control the relative importance of the optical and
the range data. Since each of the error terms, Efit;o and Efit;r, generally falls in the range [0; 1],
we assume that Efit also falls in this range. This normalization help us compare data from two
separate sources.

The model-to-optical �t error, Efit;o, measures the distance between endpoints of 3D line
segments on the object model and 3D planes de�ned by corresponding line segments found in the
optical image. These planes are de�ned by three points: the two endpoints of the optical line
segment and the focal point of the optical sensor. If we have no model-to-optical correspondences,
we write the model-to-optical �t error as:

Efit;o =
1

2no� 2mo

P
i �oi

noX
i=1

2X
j=1

�oi

�
N̂oi �

�
Rmo

~Pmij + ~Tmo

��2
(7)

where N̂oi is the normal to the plane de�ned by the ith image line, Rmo is the rotation from model
to optical sensor coordinates, ~Pmij is the jth endpoint of the ith model line segment in model

coordinates, and ~Tmo is the translation from model to optical sensor coordinates. The six free
variables de�ning the rigid 3D transformation indicated by Rmo and ~Tmo constitute the �rst six out
of eight values in the coregistration vector F . The weighting term �oi is typically 1, but can be used
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to bias some features over others. For example, �oi can be used to weight lines based on inverse
distance to perform a normalization similar to that considered in Kumar's later measures [Kum89;
KH94].

The weighting term 1
2no�2mo

P
i
�oi

normalizes the Efit;o measure based upon the assumption that

the image line endpoints fall within �mo of the associated model line. That is, we can set �mo to
be 2 times the standard deviation of the Gaussian noise process. This will guarantee 98% of the
points due to the model will fall within �mo of the perfect model projection. Notice that this
�mo is in Euclidean units (such as meters) rather than in pixels. An exact upper bound can be
found based upon a pixel-based � , but the formulation is linear in the number of correspondences,
rather than constant time. Hence, the simpler �mo, based on an estimate of total noise on target is
computationally necessary in the current implementation. Also notice that while this normaliza-
tion does not absolutely guarantee that Efit;o will remain in the range [0; 1], it does guarantee it
assuming that the correspondence does not contain any pairs with image endpoint-to-model-line
distances greater than the tolerance �mo (i.e., outliers).

For range data, 3D Cartesian points are formed by back-projecting range pixels into the scene.
The model-to-range �t error, Efit;r, is de�ned to be the squared Euclidean distance between each
back-projected range point and its corresponding model point. We write this as:

Efit;r =
1

nr�
2
mr

P
i �ri

nrX
i=1

�ri

�����~Pmoi + ~Tor

�
� ~Pri

����2 (8)

~Pmoi = Rmo
~Pmi + ~Tmo

where ~Pmoi is the ith model point mapped into optical sensor coordinates, ~Pri is the corresponding
ith measured range point, and ~Tor (which is of the form

�
tolx ; toly ; 0

�
) is the optical-to-range sensor

registration parameter with the coplanarity constraint built in. The two non-zero elements in ~Tor

constitute the remaining two values in the coregistration vector F .
The lack of a rotation parameter between mc mapped points and the range sensor coordinate

system constrains the sensor-to-sensor orientation. Notice that these constraints retain the same
degree of nonlinearity (degree 2) found in the original Kumar [Kum89; KH94] and Horn [Hor86]

equations. This is desirable, since increasing the nonlinearity of a system of equations tends to
increase the instability of the solution. Again, we use a weighted form based on a threshold �mr,
which keeps us generally in the range [0; 1].

If we treat Rmo as a 3 � 3 rotation matrix, solving for Rmo by minimizing Equation 6 and
allowing all 9 terms to vary independently violates the constraint that Rmo be a rotation matrix.
While the matrix terms (rmc1;1 . . . rmc3;3) could be constructed in such a way as to allow only
rigid rotations, this would increase the degree of nonlinearity in the equation. Kumar [Kum89;
KH94] suggests a better approach: Rodriguez's formula, which is an approximation appropriate
for small rotations. To rotate a point ~Pmi by an amount Rmo, we decompose Rmo into an estimate
R

e
mo and a small update, �~!mo.

Rmo
~Pmi = R

e
mo

~Pmi + �~!mo �
�
R

e
mo

~Pmi

�
= ~P

e
mi + �~!mo � ~P

e
mi (9)

(Note: to provide a more compact notation the vector ~P e
mi is introduced as the current estimate of
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the transformed model point.) �~!mo is the small rotation update represented as a unit rotational
axis scaled by the rotational magnitude.

The error terms in equations 7 and 8 may now be rewritten as follows.

Efit;o =
1

2no� 2mo

P
i �oi

noX
i=1

2X
j=1

�oi

�
N̂oi �

�
~P
e
mij + �~!mo � ~P

e
mij + ~T

e
mo +�~Tmo

��2

Efit;r =
1

nr�
2
mr

P
i �ri

nrX
i=1

�ri

�����~P e
mi + �~!mo � ~P

e
mi + ~T

e
mo

�
+�~Tmo + ~T

e
or +�~Tor � ~Pri

����2

In order to minimize Efit in equation 6 with respect to �~!mo, �~Tmo and �~Tor, the partial
derivatives with respect to each are set to zero and the resulting system of equations solved for
the coregistration update parameters. These partial derivatives are shown in Table 1. In these
equations, we simplify these by rewriting the weighting terms as

wmo = �fit

1

2no� 2mo

P
i �oi

wmr = (1� �fit)
1

nr�
2
mr

P
i �ri

The following matrix Mmoi is introduced to simplify the expressions.

Mmoi =

0
BBB@

0
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CCCA (10)

The matrix Mmoi is the vector product with ~P
e
mi. In other words: Mmoi

~V = ~V � ~P
e
mi. It is also

the partial derivative of �~!mo � ~P
e
mi with respect to �~!mo.

Setting the partial derivatives in Table 1 to zero yields 9 linear equations in 9 unknowns. These
linear equations may be written as:

0
B@

A B C

D E F

G H J

1
CA
0
B@

�~!mo

�~Tmo

�~Tor

1
CA =

0
BB@

~K

~L

~M

1
CCA (14)

where the constants A throughM are de�ned in Table 2. Since �or has the form
�
�tolx ; �toly ; 0

�
,

we can drop the rightmost column and bottom row of the 9� 9 matrix in equation 10. The result
is an 8 � 8 linear system which is used to iteratively solve for the optimal set of coregistration
parameters.

Each time through the loop, the resulting updates (� ~!mo, � ~Tmo, and � ~Tor) are added to the

current estimate (Re
mo, ~T e

mo, and ~T e
or). The constants in Table 2 are recomputed each time through

the loop. The algorithm converges when the amount by which Efit drops between successive
iterations falls below a preset threshold. Unsuccessful termination occurs if the total number of
iterations exceeds a maximum number of iterations. The Levenberg-Marquardt [PFTV88] method
has been found to be robust in our past single sensor pose work [BR92b; BR94], and it is used
here to �nd the optimal coregistration parameters.
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Table 1: Partial derivatives of coregistration error with respect to free variables

A = wmo

Pno
i=1

P2
j=1 �oi

�
~P
e
mij � N̂oi

� �
~P
e
mij � N̂oi

�T
+ wmr

Pnr
i=1 �riM

2
moi (15)

B = wmo

Pno
i=1

P2
j=1 �oi

�
~P
e
mij � N̂oi

�
N̂

T
oi + wmr

Pnr
i=1 �riMmoi (16)

C = wmr

Pnr
i=1 �riMmoi (17)

D = wmo

Pno
i=1

P2
j=1 �oi

�
N̂oi

�
~P
e
mij � N̂oi

�T�
+ wmr

Pnr
i=1 �riMmoi (18)

E = wmo

Pno
i=1

P2
j=1 �oiN̂oiN̂

T
oi + wmr

Pnr
i=1 �riI3 (19)

F = wmr

Pnr
i=1 �riI3 (20)

G = wmo

Pnr
i=1 �riMmoi (21)

H = wmo

Pnr
i=1 �riI3 (22)

J = wmo

Pnr
i=1 �riI3 (23)

~K = �wmo

Pno
i=1

P2
j=1 �oi

�
N̂oi �

�
~P
e
mij + ~T

e
mo

�� �
~P
e
mij � N̂oi

�
�wmr

Pnr
i=1 �riMmoi

�
~P
e
mi + ~T

e
mo + ~T

e
or �

~Pri

�
(24)

~L = �wmo

Pno
i=1

P2
j=1 �oi

�
N̂oi �

�
~P
e
mij + ~T

e
mo

��
N̂oi

�wmr

Pnr
i=1 �ri

�
~P
e
mi + ~T

e
mo + ~T

e
or �

~Pri

�
(25)

~M = �wmr

Pnr
i=1 �ri

�
~P
e
mi + ~T

e
mo + ~T

e
or �

~Pri

�
(26)

Table 2: Constant matrices and vectors in linear update equation.
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6.1.2 Coregistration Sensitivity Analysis

The robustness and accuracy of the coregistration algorithm is tested on a controlled set of syn-
thetic data. This data approximates the viewing of vehicle-sized objects at 500 meters and thus
re
ects the expected RSTA conditions. The synthetic optical sensor has a 4� �eld of view and
generates a 512 � 512 image; the range images, 6 pixels per meter at 500 meters. The sensors
are separated by 1 meter. Each model is located 500 meters from the sensors along the focal axis
of the optical sensor. The ground truth image data for these tests is obtained for each sensor by
synthetically projecting the appropriate model features (lines for optical, points for range) onto
the sensor.

Algorithm tuning parameters such as error weighting terms and convergence criteria are con-
stant throughout both experiments. The weights in the coregistration error, �oi, �ri, wmo and
wmr

2, are all set to 1:0. The convergence threshold for Efit is 10
�4. The maximum number of

iterations is 20.
Two sets of experiments were conducted: I) sensitivity to noise in initial coregistration es-

timate, and II) sensitivity to noisy image data. Both tests were run on four synthetic models.
The models exhibit di�erent geometric characteristics including planarity or lack of planarity,
symmetry or lack of symmetry, and few versus many features. The image features were simply
projections of the vertices and edges.

The goal of test I is to probe the sensitivity of the algorithm to noise in the initial coregis-
tration estimate. The convergence properties of the algorithm are tested with regard to both the
number of iterations and the quality of the �nal solution for a set of noisy initial coregistration es-
timates. Noise is introduced into the model-to-sensors orientation estimate, the model-to-sensors
translation estimate, and the relative translation between the sensors.

In test I3 we observe that, given perfect data and a reasonable initial hypothesis, our system
accurately recovers the true pose. In test II we �nd that the system is relatively stable for small
amounts of noise. We also �nd that the sensitivity of the system to Gaussian noise in the data
is dependent upon the Euclidean error introduced rather than the pixel error. Combined, these
tests indicate that, when applying coregistration to real data, the hypothesis doesn't need to be
perfect, if the extracted features are valid. They also motivate the use of Euclidean � weights.

6.2 Correspondence-Space Search

The process of generating the best correspondence can be de�ned to be a combinatorial opti-
mization problem. Consider expanding all of the possible combinations of the potential corre-
spondences, performing coregistration on this subset, and choosing the correspondence with the
lowest error. This is impractical, as it is combinatorially explosive. Median �ltering, and more
sophisticated local search techniques, can be thought of as searching the space of possible corre-
spondence mappings C for one which is best. Median �ltering, as performed here, does this by
sampling the space of small subsets with the expectation that the best one will probably consist
of good correspondences. Local search, as developed in section 6.2.3,is more general in two ways.
First, a match error is developed which evaluates coverage of the model as well as quality of �t.

2The weights are the combined threshold and �fit term described in [SB94]
3A more detailed analysis of the results from test I and II is available in [SB94].
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Second, the de�nition of a discrete neighborhood of alternate solutions guides the search to a
local optimum, increasing the chance of �nding a good solution in a large combinatorial space
over unguided random sampling.

6.2.1 Building Matches: Median Filtering

Least-squares methods, such as our Efit measure, assume that the data has Gaussian random
noise added to it. If, however, the correspondence data contains outliers, our method will behave
unstably. Median �ltering is a robust statistic for detecting and removing outliers [RL87].

Median �ltering handles outliers by �tting to the subset of the data which minimizes the
ensemble median error value. It is a robust statistic when there are less than 50% outliers. This
is in contrast to the mean around which least-squares algorithms are based, where a single outlier
can radically shift the statistic. The subset which minimizes the median error must contain no
outliers, otherwise it would skew the error, increasing the median. And since the median is
insensitive to up to 50% outliers, so is median �ltering.

The down side is that, for non-di�erentiable error functions, a combinatorial search of the
subset space needs to be explored. To approximate the complete combinatorial search, we can
select a number of small subsets, assuming that we have a high probability of sampling at least
one subset which contains no outliers. This yields the optimal �t, and allows us to throw out all
data not accounted for by the Gaussian assumption (i.e., outside of two standard deviations of
the best �t function, since this will contain 98% of the data e�ected by Gaussian noise).

The subsets need to be at least large enough to cover the degrees of freedom, so we would need
to select at least 3 optical lines and 1 range point. However, Kumar [Kum92] found that selecting
a minimal number of features caused the solution to be sensitive to the Gaussian noise that we
assume is overlaid onto the true data. As a consequence, it is better to select a larger subset to
stabilize the optimal pose against noise. If we select too large a subset size, however, we greatly
reduce our chances of selecting a subset with no outliers. A compromise must be made between
probability and stability.

Once we have minimized the error, we need to select a cuto� point, above which we will
consider correspondences to be outliers. We can achieve this either by selecting some a priori

threshold or by computing one based upon the median. We choose the latter method. Assuming

a normal distribution, we can set cutoff = (a � s)2 where s =
min ~Efit

0:6745
is an approximation of

the standard deviation for a Gaussian distribution based upon the interquartile range. Setting a
to 2:0 �lters out data which lies more than two standard deviations above the error, so that the
majority of the Gaussian data will be retained.

6.2.2 Results Using Median Filtering

Three images were used to demonstrate typical behavior of our median �ltering matching. The
images were presented in Section 3. Parameters were not tuned to speci�c images, and unless
there were speci�c reasons to do otherwise, defaults re
ecting a lack of a priori knowledge were
selected.

For the �t error, we weighted the CCD and LADAR data equally, since we have no a priori

knowledge of sensor importance. The only two values we actually set using our test set were the
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thresholds �mo and �mr from equations 7 and 8. We set the CCD threshold �mo = 0:25 meters,
since this is about how far o� the worst line features are in any of our test suites. Similarly
we use �mr = 5:0 meters, since there can be such large errors when scanning a surface nearly
perpendicular to the view plane, such as the M113's roof in shot 20. We run median �ltering
on subsets of 10 correspondences for stability reasons. This, however, would indicate that huge
number of subsets would need to be examined for initial correspondences of several hundred, such
as we are considering. For tractability reasons, we only consider subsets of 300, hypothesizing
that most of the data is outlier-free.

When we generate the initial correspondence set, we assume that the pose is nearly correct
in the LADAR, but that there is some error in the CCD. We include a pair of model and CCD
lines if they have an average distance of less than 30 pixels and are within 15� of each other. For
the range correspondences, we consider a signi�cantly narrower band, looking for points that are
within 0.5 pixels of each other in both x and y. In the range, however, we have set our threshold
to 10 meters. The range tolerance is set to a relatively large value in order to �nd, with reasonable
certainty, corresponding points even when they lie on oblique surfaces.

For each of the three images considered, we matched it to its appropriate model: shot 18 to the
M60 and shots 20 and 31 to the M113. For these runs, the initial pose is shown in �gure 6. These
are nearly perfect poses, due to the parameters used to generate the initial correspondence. Some
of them contain slight rotations that are corrected for. We will see in section 7 that coregistration
space search can deliver nearly this quality of initial hypotheses.

In our results, we show the range features which are not included in the correspondence as
hollow, red for model and dark blue for image data. The color lines not in the correspondence are
also red and dark blue. The model features in the correspondence are rendered in yellow, while
the the data features in the correspondence are colored light blue. The correspondence between
individual features is not explicitly shown.

In �gures 7, 8, 9 we can see that median �ltering constructed a match suitable for recovering
an accurate coregistration. With respect to the LADAR data, the planar faces of the M113 (shots
20 and 31) are well aligned, even in shot 31 (�gure 9) where there are relatively few pixels on
the target faces. In shot 18, we can see that the curvature of the turret and the planar surfaces
of the body match well between model and data. This corrects for some initial rotational error,
since the initial pose was a head-on view, coming down the hill, while the correct pose was slightly
turned towards the left.

In the CCD images, features which arose from background processes (e.g., grass) were removed
from the matches. Due to the small number of CCD features, which account for half of the �t
error, a single outlier will produce a large error in the coregistration parameters. As a result, the
removal of these features (such as the line below the M60 tread in �gure 7) accounts for much of
the signi�cant improvement.

While the extreme outliers in the CCD data were removed from the match, so were some
which would be expected to remain (such as the line along the top of the M60's turret in �gure 7).
It is important to remember that, when the median �ltering is actually being performed, the
coregistration parameters are being recovered from a small sample (10 correspondences). While
an in�nitely large sample of data may display a perfect Gaussian error distribution, a �nite
sample will only approximate this. As a result, the small sample, while drawn from a Gaussian
population, only approximates the true statistics to an accuracy re
ected by the sample size.
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Figure 6: Initial poses for median �ltering.
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Figure 7: Median Filtering Results on Shot 18, Array 5 using the M60 model.
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Figure 8: Median Filtering Results on Shot 20, Array 5 using the M113 model.
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Figure 9: Median Filtering Results on Shot 31, Array 6 using the M113 model.
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Shot Array Model Efit Final Features

18 5 M60 0.0513775 351
20 5 M113 0.045898 393
31 6 M113 0.00483954 74

Table 3: Median �ltering results.

These small samples, therefore, are likely to produce slightly incorrect poses, even though they
contain no outliers. When the �nal coregistration is reconstructed from the �ltered correspondence
set, we are considering a signi�cantly larger sample population. As a result, the coregistration
parameters will be slightly di�erent, resulting in the exclusion of some features which should have
been included in the match. This is not intolerable, since 1) we are searching for a near optimal
correspondence from which we can recover accurate coregistration parameters and 2) if we want
a more optimal correspondence, we can use local search in correspondence space to �ll out the
match. The �rst of these is considered next, and the second is discussed in section 7.1.

The �delity of the �nal match is re
ected in the quality of the �t error: Efit. Actual �nal
values for Efit generated by median �ltering are given in table 3. Typical values for Efit tend to
around 0:5 when outliers are included in the subset. In contrast, good subsets typically generate
near or below 0:05. This suggest a general rule of thumb for discriminating good matches from
bad.

6.2.3 Local Search in Correspondence-Space

This section introduces a more general framework for search in correspondence space. It sets
forth a general de�nition of the problem and relates it to our own previous work in this area.
While this approach has yet to yield signi�cant results, it is presented for completeness, as a
counterpoint to the coregistration search presented below, and �nally because with some modest
enhancements, it is expected to become a signi�cant and useful tool. These enhancements are: a
local neighborhood in which pairs of features may be added as well as deleted, and some initial
grouping of range features.

To begin, the process described above in Section 6.2.2 demonstrates a process by which prox-
imity constraints may be used to de�ne a set of potentially matching features S. In the notation
introduced in Section 5, once S is determined, the space of possible matches C is the power set of
S. While Median �ltering as described above is not typically thought of as an optimal matching
algorithm, it can be thought of that way, since it partitions S into two sets: correct feature pairs
and outliers. As such, it selects an element of the correspondence space C. The objective function
is the median �t value over set of features S based upon the di�erent subsets used to de�ne the
coregistration.

A more general formulation of the correspondence problem is to �nd the best c 2 C based upon
a more general measure of optimality than �t alone. Fit, as the sole measure, is not adequate,
and one way to see this is to consider the null set. By �t alone, the null set is optimal: you cannot
have less than 0 squared error. To correct this failing, a match error may be de�ned which weights
both quality of �t and quality of model coverage.

Ematch;sensor(c) = Efit;sensor(c) + Eom;sensor(c) (27)
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We have made extensive use of this �t-plus-omission formulation in prior work on matching to
optical image features [Bev93]. The term Efit;sensor measures how well the features �t. Here it
is de�ned to be a function of the residual error from the coregistration process. The omission
error measures how many of the target features are matched to features in the sensor data: more
matches are better.

A simple and general strategy for attempting to �nd the correspondence c� which minimizes
equation 27 is to pick an initial correspondence cstart and then iteratively re�ne it by adding and
removing individual pairs of features. Search stops when no further progress can be made. This
constitutes a local search algorithm in correspondence space. For matching problems using line
segments derived from models and optical images, we've shown this to be a general and e�ective
technique [Bev93].

A �rst pass algorithm for minimizing the error de�ned in equation 27 has been implemented.
This algorithm is highly restricted: pairs of features may be removed but not added. Not sur-
prisingly, this restriction limits the algorithms usefulness. Our immediate goals are to extend this
neighborhood de�nition to include addition and deletion of paired features. It is also important
that some form of grouping be applied to the range features. Using raw points quickly leads to a
combinatorial explosion in the correspondence space.

7 Coregistration-Space Search

As outlined in Section 5, instead of letting the structure of the correspondence mappings between
features drive the search, an alternative is to search directly in the space of coregistration param-
eters. Coregistration parameters F are perturbed about a current estimate in order to test for
better estimates. The process repeats until no improvement is possible. This general approach
has been used by others, including some recent work by Sullivan [SWF95] in which vehicles are
tracked in video imagery.

Since the space of coregistration parameters is continuous, gradient methods suggest them-
selves. Sampling about the current estimate might be likened to sampling the gradient, but this
interpretation is problematic. The reason is that the error function is neither continuous nor
smooth. Here, a simple local search strategy of sampling about the current estimate is used.
Future work will explore whether more gradient descent-like methods are more e�cient in this
space.

Coregistration-space search has one great advantage over correspondence-space search. For
correspondence-space search, increased numbers of potentially matching features exponentially
increase the size of the correspondence space. In contrast, the coregistration space is �xed:
<8 for the case treated here. The use of raw sampled range points exacerbates this problem
because the absolute numbers of such features tends to be large. Consequently, opening up the
uncertainty bounds that de�ne potentially matching features quickly leads to intractably large
search spaces. Future work will explore grouping range features to reduce this problem. Until this
is done correspondence-space search is limited to problems with very accurate initial coregistration
estimates.

In contrast, our early experiments using coregistration-space search suggest an ability to correct
quite large errors in the initial coregistration parameters. If any failing has been observed so far,
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it is a weakness in generating the �nal highly precise match. In other word, search leads to a
much better but not perfect coregistration estimate. This suggests a complementarity between
the two approaches which will be examined further in future work.

7.1 A Match Error for Coregistration-Space Search

Once the features expected to be visible for a given pose are generated from the target model
data base, they can be used to determine an error function expressing how well these features �t
the sensor data. The error function is broken down into two distinct pieces: an error term for
the optical data and an error term for the range data. They are combined together using the
equation:

Ematch(F) = �matchEmatch;o(F) + (1� �match)Ematch;r(F) (28)

where �match weights the relative importance of the error terms derived from the optical and
range imagery. The optical image error term Ematch;o and range image error term Ematch;r are are
discussed in the next two sections.

7.1.1 Optical Image Error Function

The model-driven technique for placing individual line segments described in Section 4.2 has a
weakness for which coregistration-space is a natural cure. Individual features projected from
a common target silhouette and independently optimized can 'wander-o�' into con�gurations
completely impossible given the global geometric constraints associated with the 3D shape of the
target.

Coupling all the features and perturbing them in ways consistent with movement of the target
as a whole solves the wandering feature problem. The evaluation for each line is combined into
one error term representing how well the silhouette lines �t the underlying image. The summation
normalizes the result based on the length of each of the line segments and is given by:

Ematch;o(F) =

X
i2lines

ELine(i) � Length(i)

X
i2eachline

Length(i)
(29)

where
ELine(i) = 1� Ĝline(i) (30)

and Ĝline(i) is the gradient response de�ned in equation 1 and Length(i) represents the Euclidean
length of each line. The coregistration which minimizes equation 29 maximizes the gradient
response under the project silhouette features of the target model.

7.1.2 Range Image Error Function

Using the same basic �t-plus-omission form introduced earlier, the range match error, Ematch;r(F),
is a function of a measure of spatial �t and a measure of omission:

Ematch;r(F) = �rangeEfit;r(F) + (1� �range)Eom;r(F) (31)
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A correspondence mapping c is generated between 3D sampled surface points generated from the
target model and 3D points in the range data based upon Euclidean distance between points.
Distance is measured with the model placed relative to the data using the current coregistration
estimate F . Model points are matched to their nearest neighbors in the range data unless the
nearest point is outside a sphere of radius � , in which case the model point is left unmatched.

Consequently, the �t error Efit;r(i)i2ModelPoints
for a single model point i may be written as:

Efit;r(i) =

(
NearestNeighbor(i) ifNearestNeighbor(i) < �

0 otherwise
(32)

where:

NearestNeighbor(i)i2ModelPoints = Min((ix � jx)
2 + (iy � jy)

2 + (iz � jz)
2)8j2DataPoints (33)

The average over all model points for which there is a corresponding data point is the �t error for
the range data:

Efit;r =

ModelPointsX
i=0

EFit(i)

N � �
(34)

where N is the number of non-omitted model points, and � is the minimum distance parameter.
Omission is based on the number of points, p, which do not fall below the minimum threshold

� . The omission term not only accounts for the omitted model points, but also the omitted data
points. The reason for the additional term is that the nearest neighbor approach allows many
model features to be matched to one data feature. For particularly bad pose hypothesis, all the
model features will be paired with a single data point. The omission is given by:

Eom;r =

(
1
2
� ( e

�p
�1

e��1
+ e�q�1

e��1
) � 6= 0
p � = 0

)
(35)

where the � is de�ned in terms of the attenuation parameter a:

� = 2ln(
2

a
� 1) (36)

p is the number of omitted model points, and q is the number of omitted data points.
Figure 10c shows the relationship of the model features generated for the model (Figure 10b),

as compared to the sensor data points (Figure 10a). The sensor points are shown as hollow
polygons in black. The model features are shown as the lightest gray and hollow. Model points
which were not omitted, along with the nearest neighbor data point, are shown rendered solid.
For this example � , the minimum distance parameter is set to 0:01m, all the hollow model points
shown add to the omission error term.

7.2 Local Search in Coregistration-Space

The goal of coregistration-space search process can be viewed as trying to �nd the optimum set of
transformations to move the model into the di�erent sensor coordinate systems (Figure 11a). As
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a. LADAR Sensor Image b. Sampled Surface c. Non-omitted points

Figure 10: Range Data Error Function

stated previously, we must account for eight degrees of freedom in the local search process. For
coregistration-space search, we will capture the rotations and translations of Figures 11c and 11d
in two sets of matrices: Mm;r and Mr;o. The matrix Mm;r relates the target model to the range
sensor, and the matrix Mr;o relates the range sensor to the optical sensor. This transformation
is restricted to permit only translation in the common image plane. The relationships between
these transformations, as well as the transformation between target model and optical sensor, are
shown in Figure 11b.

Model

Optical Range

m,o

o,r

m,r

M

MM

a. Transformations
Mm;r = Tm;rx;y;z

� Rm;rx;y;z

Mr;o = Tt;ox;y
b. Matrices

Y positive rotation
Y negative rotation

Z positive rotation

Z negative rotation

Y

X

Z

X positive rotation
X negative rotation

c. Rotations
Y

X

Z

Y negative translation
Y positive translation

Z positive translation

Z negative translation X negative translation
X positive translation

d. Translations

Figure 11: Degrees Of Freedom

The goal is to then optimize the match error relative to the eight degrees of freedom in the
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coregistration F . A coregistration may be written in terms eight values representing the three
rotations and �ve translations:

F 2 <8 = fTm;rx
; Tm;ry

; Tm;rz
; Rm;rx

; Rm;ry
; Rm;rz

; Tr;ox
; Tr;oy

g (37)

An initial coregistration estimate Finit is assumed. In the experiments below, this estimate
is produced using a LADAR boundary template matching algorithm. Given such an estimate,
the goal becomes somewhat less far reaching than that of �nding the globally best coregistration.
Instead, the goal is to �nd the best coregistration in some extended neighborhood relative to the
initial estimate. This can be done using local search.

As formulated below, local search repeatedly examines a discrete neighborhood of alternatives
de�ned relative to the current best estimate. The neighborhood is obtained by sampling a prede-
termined number of points along a bounded interval centered about the current estimate. This is
done for each of the 8 dimensions of the coregistration space. However, rather than consider all
dimensions together, search is divided into alternating steps in which improvement is �rst sought
in the <6 subspace representing the pose of the sensors relative to the target, and then in the <2

subspace representing translation (registration) between the optical and range sensors.
The outer bounds of these intervals along each dimension of the coregistration space may be

de�ned by homogeneous transformation matrices. Applying a matrix to the current estimate
generates a new coregistration at one of the outer boundaries of an interval in which local search
will seek a better estimate. De�nitions for these matrices are provided in equation 38. The
transformations are divided into two sets: Mpose and Mreg. This is done because these two sets
are used independently in the two alternating stages of the local search process.

Mpose 2 <
6 =

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

M1 = +Tm;rx
;

M2 = �Tm;rx
;

M3 = +Tm;ry
;

M4 = �Tm;ry
;

M5 = +Tm;rz
;

M6 = �Tm;rz
;

M7 = +Rm;rx
;

M8 = �Rm;rx
;

M9 = +Rm;ry
;

M10 = �Rm;ry
;

M11 = +Rm;rz
;

M12 = �Rm;rz

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

Mreg 2 <
2 =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

M13 = +Tr;rx;
M14 = �Tr;ox;
M15 = +Tr;oy ;

M16 = �Tr;oy ;

M17 = +To;rx;
M18 = �To;rx;

M19 = +To;ry ;

M20 = �To;ry

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(38)

The simplest way to use these moves to generate new states would be to apply them directly,
neglecting any intermediate states. This would generate a discrete neighborhood consisting of
only those coregistration values at the bounds of the intervals de�ned by the matrices in (38).
However, this can lead to missed chances for improvement when a better estimate lies within
the interval, but not at its upper or lower bound. To protect against such missed opportunities,
coregistration values internal to the interval are sampled. This modestly increases the size of the
discrete neighborhood, but greatly improves the performance of the algorithm.
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The speci�c strategy used to sample the intervals is loosely based upon binary search. The
underlying idea is that the sampling interval should be successively reduced by half as samples
approach the current estimate. This is done by starting with a move matrix in equation 38, and
repeatedly halving it. For translation matrices, this is done by simply multiplying the matrix by
0:5. This process stops when the spacing drops below an absolute threshold.

The upper and lower bounds for each dimension are determined heuristically based upon
experience with the domain. For translation of the sensors relative to the target, the distance
between the centroids of the sampled model and range sensor points is used to initialize this
bound 4. The upper bound on rotation depends upon the expected degree of error in the initial
estimate. Values of 10 and 45 degrees respectively were used in the experiments below. To capture
translation between sensors, an upper bound of 0:5 meters has been used below.

The local search algorithm uses the transformations de�ned in equation 38, along with the
internal sampling strategy just described, to generate alternative coregistration estimates which
are then evaluated using the match error de�ned in Section 7.1. As mentioned above, search
alternates between considering moves from Mm;r and moves from Mr;o. Once a local optimum
is found, new model features are developed using the algorithm described in Section 4.1. This
regeneration of features is critical to the overall success of this approach when local search is
correcting for signi�cant errors in the initial coregistration estimate.

7.3 Results

The Coregistration-space search has been applied to two sets of image from the Fort Carson data
set. While the results are preliminary, they are promising. The method is able to signi�cantly
improve the initial estimate provided by the range template matching system we are using to
generate our initial coregistration estimate. The estimates have signi�cant errors in both rotation
and translation which interfere with the model driven feature detection algorithms used to provide
features for the Correspondence-space search. Therefore it is essential to run the Coregistration-
space search to re�ne the estimates so more accurate features can be extracted from the data.

The left column of Figures 13 and 12 show the initial estimates provided by the template
matching algorithm. The model features are shown in red, and the data features in blue. The
right columns show the pose-re�nement achieved with the Coregistration-based search. The results
are not perfect: in both images local minima in the search space were reached which prevented
the algorithm from �nding the best global solution. However, the algorithm was able to correct
a signi�cant amount of rotation and translation error in the estimate. The re�ned pose re
ects a
more accurate estimate of where the vehicle is located in the image.

In order to achieve the results for Shot 20, �ve moves needed to be made. These moves are
summarized in Table 4. Figure 14 shows each error term versus the number of error evaluations.
The Figure also shows the error determined for the vehicle when hand placed in the desired
position. The main problem with the current search space is immediately obvious from Figure 4c.
The color error for the optimum position is not the global optimum for the image. We currently
believe the color error to be the weak link in the process, and it may be a result of relying
only on the model silhouette lines as the key model features. We are pursuing other methods of
extracting features based on vehicle illumination characteristics. While the results for this method

4A crude proximity heuristic is used to restrict attention to LADAR range points in the vicinity of the model.
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a. Hypothesized Orientation b. Re�ned Orientation

c. Hypothesized Color Position d. Re�ned Color Position

e. Hypothesized LADAR Position f. Re�ned LADAR Position

Figure 12: Coregistration-space Local Search Results for Shot 20
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a. Hypothesized Orientation b. Re�ned Orientation

c. Hypothesized Color Position d. Re�ned Color Position

e. Hypothesized LADAR Position f. Re�ned LADAR Position

Figure 13: Coregistration-space Local Search Results for Shot 18
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are preliminary, we believe they will improve the optical error function and allow search to �nd
better solutions.

The parameters used to achieve the results for Shot 20 were determined through empirical
study of how each a�ects the results of the search. It was found that Ematch;r was a more stable
error measure than Ematch;o, and so �match from equation 28 for Ematch(F) was set to 0:4. It was
also found that the omission term for Ematch;r had less e�ect than the �tness term, so �range from
equation 31 for Ematch(F), was also set to 0:4. The last three signi�cant parameters, the omission
attenuation, � , and the initial rotation were set to 1:0, 0:25, and 10� respectively.

Move Matrix Translation Rotation Ematch Ematch;r Ematch;o

1 �Tm;rz
10.06235 0 0.61161 0.35026 0.26135

�To;ry 0.2 0 0.60232 0.35026 0.25206

2 �Tm;ry
1.25779 0 0.54336 0.33850 0.20486

�To;ry 0.1 0 0.52261 0.33850 0.18411

3 �Tm;rz
0.62890 0 0.50679 0.32270 0.18409

�Tr;ox 0.1 0 0.49404 0.30995 0.18409
4 �Rm;ry

0 10.0 0.47701 0.28211 0.19490

�Tr;ox 0.1 0.46387 0.26897 0.19490
5 �Rm;ry

0 10.0 0.42104 0.22241 0.19864

�Tr;oy 0.2 0 0.40680 0.20817 0.19864

Table 4: Moves Made during Hypothesized Pose Re�nement Shot 20
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a. Match Error b. Range Error c. Color Error

Figure 14: Coregistration-space Local Search Results for Shot 20

On the Shot 18 data, four moves needed to be made, and they are summarized in Table 5.
Figure 15 shows each error term in relation to the error determined for the vehicle when hand-
placed in the image. Again problems exist with the color error term. The match found is visibly
o� in translation from the desired position, however it does re
ect a considerable re�nement from
the hypothesized pose. The parameters used to achieve this result are identical to that used in
the Shot 20 trial.

The �nal set of results show Coregistration-space search applied to an initial estimate in which
the incorrect vehicle type is hypothesized to be in the image. Figure 16 shows a M60 placed in the
image with the same pose estimate used for the M113. The search was able to move the vehicle
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Move Matrix Translation Rotation Ematch Ematch;r Ematch;o

1 �Tm;rz
10.71222 0 0.57800 0.31391 0.26409

�To;ry 0.2 0 0.53338 0.31391 0.21947

2 �Tm;ry
1.33903 0 0.48930 0.25251 0.23679

+To;ry 0.2 0 0.38923 0.25251 0.13673

3 �Rm;ry
0 22.5 0.32774 0.20419 0.12354

+Tr;oy 0.1 0.32555 0.20201 0.12354

4 �Rm;ry
0 22.5 0.30597 0.20206 0.10391

+Tr;oy 0.1 0 0.30179 0.19789 0.10391

Table 5: Moves Made during Hypothesized Pose Re�nement of Shot 18
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a. Match Error b. Range Error c. Color Error

Figure 15: Coregistration-space Local Search Results for Shot 18

closer to the correct position, but was not able to do anything else. A local minimum was achieved,
and the match error measure was signi�cantly higher. The search correctly distinguished between
the two vehicle types.

M113 M60
Move Matrix Ematch Ematch;r Ematch;o Matrix Ematch Ematch;r Ematch;o

0 �Tm;rz
0.61161 0.35026 0.26135 �Tm;rz

0.60395 0.38116 0.22279
�To;ry 0.60232 0.35026 0.25206 �Tr;oy 0.58675 0.36396 0.22279

1 �Tm;ry
0.54336 0.33850 0.20486 �Rm;rx

0.55671 0.35547 0.20124

�To;ry 0.52261 0.33850 0.18411 �Tr;oy 0.55320 0.35196 0.20124

2 �Tm;rz
0.50679 0.32270 0.18409

�Tr;ox 0.49404 0.30995 0.18409
3 �Rm;ry

0.47701 0.28211 0.19490

�Tr;ox 0.46387 0.26897 0.19490
4 �Rm;ry

0.42104 0.22241 0.19864

�Tr;oy 0.40680 0.20817 0.19864

Table 6: A comparison of Moves Made during Hypothesized Pose Re�nement
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a. Hypothesized Orientation b. Re�ned Orientation

c. Hypothesized Color Position d. Re�ned Color Position

e. Hypothesized LADAR Position f. Re�ned LADAR Position

Figure 16: Coregistration-space Local Search Results for Shot 20 with incorrect vehicle Hypothesis
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Figure 17: Coregistration-space Local Search Results for Shot 20
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