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Abstract

A robust and general local search matching
algorithm is used match fragmentary horizon
lines. A horizon line model is extracted from
a rendered terrain map and is then matched
to features extracted from CCD imagery. Such
matching is one means of automating vehicle
orientation correction: a problem of practical
signi�cance for the UGV program. Currently,
�nal orientation correction relating vehicle co-
ordinates to terrain map coordinates must be
performed manually. Results are presented for
actual terrain and image data collected at the
UGV Demo C test site.

1 Introduction

When a vehicle navigating with GPS and inertial guid-
ance stops, small errors in pointing angle lead to large er-
rors in pixel registration between imagery and stored ter-
rain maps. For the Semi-Autonomous Vehicles (SSVs)
developed for the Unmanned Ground Vehicle (UGV)
Program, orientation estimates can be o� by 1 or more
degrees [Ray95b]. The resulting uncertainty precludes
terrain guided visual search and target recognition.
Thus, a human must hand select registration features
before these activities are carried out.
Here, local search matching is tested as a tool for au-

tomating registration. Local search matching refers to a
body of algorithms we have developed which �nd, with
high probability, the optimal correspondence mapping
and geometric transformation between a model and im-
age data [BWR90, Bev93, BHP95]. To match terrain
and image data, we anticipate a four step process:

� Render 3D terrain using the estimated vehicle pose.

� Extract matchable features from the rendered ter-
rain and actual imagery.
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� Optimally match the two sets of features.

� Use matched features in place of hand selected con-
trol points to correct the orientation estimate of the
vehicle.

Results for steps 1 through 3 are presented on actual
data collected at the UGV Demo C test site using the
SSV's CCD camera. Step 4, it is assumed, will succeed
if matches are comparable to those selected by a per-
son. This assumption is a fair starting point, but future
work should address sensitivity of orientation to errors
in image space matching.

2 Related Work

In some early terrain feature matching, Clark [CCE+80]
matched line segments representing dominant image
features. Levitt [LLCN87] proposed a way to select
salient landmarks from terrain data [LLCN87] for nav-
igation. Stein [Fri92] uses panoramic horizon curve
matching for vehicle localization. Thompson and Suther-
land [THC+93, Tho93, Sut94] have built a sophisticated
expert system with a domain speci�c image feature ex-
traction algorithm for abstracting structural terrain de-
scriptions.
While most of these works address the general prob-

lem of vehicle localization anywhere on a map, this paper
considers the much simpler problem of orientation cor-
rection. Our work is distinguished by: 1) reliance upon
the known position to reduce the problem to 2D match-
ing, 2) use of a robust and general matching technique
to overcome feature fragmentation, and 3) use of narrow
FOV imagery.

3 Step 1: Terrain Rendering

The 5m digital elevation map (DEM) for the Demo C
test site was obtained from Lockheed-Martin. This site
was selected because test imagery taken directly from
the SSV is available along with ground truth indicat-
ing vehicle position and pointing angle relative to �xed
targets [Ray95a].
A terrain rendering system has been developed using

Open-GL which simulates the FOV of the CCD sensor



used on the SSV. A simple lighting model is used and
terrain is rendered from positions at which the vehicle
actually acquired imagery. The vehicle pointing angle
is derived from recorded vehicle and target positions:
the targets are other military vehicles. Because target
ground truth is being used to derive pointing angles, only
images with targets near the image center are used. Fig-
ures 1a and 1b show two rendered terrain images for
which matching is tested below.

4 Step 2: Extracting Features

The local search algorithm matches one set of line seg-
ments to another, and for this problem the model and
data segments are extracted from the rendered and ac-
tual images respectively. We use our own implementa-
tion of the Burns algorithm [BHR86] 1. High frequency
texture in these scenes prevents horizon features from
being extracted unless the imagery is �rst smoothed: a
7x7 smoothing kernel has been used here. Even with
smoothing, the horizons are still sometimes di�cult to
extract, and signi�cant fragmentation occurs. Figures 1c
and 1d show the images themselves along with the seg-
ments extracted by the Burns algorithm.

5 Step 3: Matching

5.1 Review and Overview

A complete explanation of local search matching appears
in Beveridge's dissertation [Bev93] and 3D matching re-
sults appear in [BR95]. A controlled performance anal-
ysis of 2D matching appears in [BRG95]. To brie
y re-
view the approach, an iterative generate-and-test strat-
egy moves from a randomly selected initial match to one
that is locally optimal. A global least-squares �tting
process always aligns model and data for any correspon-
dence tested. Thus, global geometry implicitly directs
search. A match error takes account both of spatial �t
and omission: how much model is un-matched.
Search is conducted over a space of correspondence

mappings C: C is the powerset of possibly matching
features S. Most other algorithms consider one-to-many
matches [Gri90] while our C includes many-to-many
matches. Without many-to-many mappings, properly
matching piecewise approximations to curves with non-
coincident breakpoints is impossible. This point is im-
portant here because horizon lines involve such non-
coincident breakpoints.
While at �rst the initialization of search from ran-

domly chosen matches may seem foolish, it is a strength
of the approach. By running multiple trials from in-
dependently chosen initial matches, the probability of
seeing the best (or near best) at least once may be
made arbitrarily high. Past experience has demon-
strated 100 trials is adequate to solve most di�cult prob-

1This version has a simple single Glyph interface and is
publicly available from our ftp site: ftp.cs.colostate.edu,
/pub/vision

lems [BR95, BRG95]. Another bene�t of multiple trials
is the structure and frequency of alternative solutions
tells us much about the di�culty of a particular prob-
lem.

5.2 Matching Results

Results for two pairs of terrain and image features
are presented. Two constraints limit the space of possi-
ble matches between horizon model and image line seg-
ments. The �rst assumes that the horizon lies somewhere
in a band 1=2 the height of the image centered about the
true position. The second assumes the relative orienta-
tion between segments must be less than 17 degrees for
them to match. Even with these constraints, the sets
of potentially matching features were very large: 1183
for image 1 and 1577 for image 2. The resulting search
spaces C contain 21183 and 21577 states respectively.
To explore the space of possible matches, 500 trials of

subset-convergent local search were run on each prob-
lem. The best match found in each case is shown super-
imposed in black in Figures 1e and 1f. In both cases,
visual inspection shows these to be essentially correct
matches. For images 1 and 2, the best matches were
found in a single trial with probabilities 0:056 and 0:036
respectively. Based upon this probability, it follows this
match may be found with better than 95% con�dence
running 59 and 90 trials respectively. Being conserva-
tive, 100 trials is more than su�cient.
These problems are some of the largest, in terms of

search space, for which local search matching has been
tested. To �nd these matches reliably, the current C
implementation running on a Sparc 20 requires on the
order of 20 minutes for image 1 and an hour for image 2.
Clearly, either some domain speci�c tuning or use of par-
allel hardware is required to bring run-times down. Both
of these are very reasonable options for future work. Use
of a better feature extraction algorithm would dramati-
cally simplify the combinatorics and parallel local search
is trivial due to the independence of trials.
One general problem with horizon line matching is

starting to be evident in Image 2: ambiguous horizon
structure leads to ambiguous matches. While the best
match shown here is correct, the model for Image 2 is
essentially a radial curve. Consequently, it can match
the image data at multiple points. Slight changes in
the parameterization of the match error uncovered this
sensitivity, resulting in shifts and scalings of the true
horizon.
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a. Image 1: rendered terrain b. Image 2: rendered terrain                        

c. Image 1: extracted features d. Image 2: extracted features                        

e. Image 1: horizon match f. Image 2: horizon match

Figure 1: Results of local search matching on 2 horizon images

3



ladar. In Paul S. Schenker and Gerard T. Mc-
Kee, editors, Proceedings: Sensor Fusion and

Networked Robotics VIII, Proc. SPIE 2589,
pages 2 { 11, October 1995.

[BHR86] J. B. Burns, A. R. Hanson, and E. M. Rise-
man. Extracting straight lines. IEEE Trans.

on Pattern Analysis and Machine Intelligence,
PAMI{8(4):425 { 456, July 1986.

[BR95] J. Ross Beveridge and Edward M. Riseman.
Optimal Geometric Model Matching Under
Full 3D Perspective. Computer Vision and

Image Understanding, 61(3):351 { 364, 1995.
(short version in IEEE Second CAD-Based Vi-
sion Workshop).

[BRG95] J. Ross Beveridge, Edward M. Riseman, and
Christopher Graves. Demonstrating polyno-
mial run-time growth for local search match-
ing. In Proceedings: International Symposium

on Computer Vision, pages 533 { 538, Coral
Gables, Florida, November 1995. IEEE PAMI
TC, IEEE Computer Society Press.

[BWR90] J. Ross Beveridge, Rich Weiss, and Ed-
ward M. Riseman. Combinatorial Optimiza-
tion Applied to Variable Scale 2D Model
Matching. In Proceedings of the IEEE In-

ternational Conference on Pattern Recognition

1990, Atlantic City, pages 18 { 23. IEEE, June
1990.

[CCE+80] C.S. Clark, D.K. Conti, W.O. Eckhardt,
T.A. McCulloh, R. Nevatia, and D.Y. Tseng.
Matching of Natural Terrain Scenes. In
ICPR80, pages 217{222, 1980.

[Fri92] Fridtjof Stein and Gerard Medioni. Map-
based Localization using the Panoramic Hori-
zon. In Proceedings of the 1992 IEEE Inter-

national Conference on Robotics and Automa-

tion, pages 2631 { 2637, Nice, France, May
1992.

[Gri90] W. Eric L. Grimson. Object Recognition

by Computer: The Role of Geometric Con-

straints. MIT Press, Cambridge, MA, 1990.

[LLCN87] T.S. Levitt, D.T. Lawton, D.M. Chelberg,
and P.C. Nelson. Qualitative landmark-based
path planning and following. In AAAI-87,
pages 689{694, 1987.

[Ray95a] Ray Rimey. RSTA Sept94 Data Collection Fi-
nal Report. Technical report, Martin Marietta
Astronautics, Denver, CO, January 1995.

[Ray95b] Ray Rimey and Darrell Hougen. Discussion
of SSV Orientation Correction with Lockheed-
Martin RSTA Group. Personal Correspon-
dence, 1995.

[Sut94] Sutherland, K.T. and Thompson, W.B. Lo-
calizing in Unstructured Environments: Deal-
ing with the Errors. Robotics and Automation,
10:740{754, 1994.

[THC+93] W.B. Thompson, T.C. Henderson, T.L.
Colvin, L.B. Dick, and C.M. Valiquette.
Vision-Based Localization. In Proceedings:

Image Understanding Workshop, pages 491{
498, Los Altos, CA, 1993. ARPA, Morgan
Kaufmann.

[Tho93] Thompson, W.B. and Pick, Jr., H.L. Vision-
Based Navigation. In Proceedings: Image Un-

derstanding Workshop, pages 127{131, Los Al-
tos, CA, 1993. ARPA, Morgan Kaufmann.

4


