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Abstract

Low-level edge detection in optical imagery

can be problematic in the ATR domain where

highly complex scenes are the norm. Feature

detection algorithms typically take a global ap-

proach, resulting in the discovery of many frag-

mented lines which are not directly related to

stored model information. For this domain, we

have taken a top-down approach which searches

an optical image for the locally optimal fea-

tures based on the current hypothesized object

pose. The resulting linear features can then be

matched against a CAD model.

1 Introduction

Edge detection in the Automatic Target Recognition

(ATR) domain should be driven by the expectation of

which model features are assumed to be visible in a given

image. Using a hypothesized model pose to predict vis-

ible features from a CAD model [Mar96, Ste95], a local

optimization procedure is used to �nd the corresponding

and consistent data features in the image.

The process di�ers from the traditional low-level

bottom-up edge detection process [MH80, Hil83] which

can be highly error-prone [Cla89]. The main problem

with bottom-up detection is the inability to deal with

large amounts of scene complexity and clutter. Color

imagery in the ATR domain often contains many di�er-

ent structural events taking place simultaneously (cam-

ou
age on military vehicles set against natural terrain

is an excellent example). Current edge detection algo-

rithms [BHR86, LB83, FL88] do not deal well with these

type of scenes and will produce many small fragmented

line segments which can easily distract a model-based

matching system.

Furthermore, most ATR algorithms require that the

edges supplied have some physical signi�cance relative
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to the vehicle in the scene [Cla89]. The model match-

ing process will be more robust if there is a one-to-one

correspondence between extracted data lines and model

features. Our experience suggests bottom-up feature ex-

traction can not meet the requirements of this domain.

Consequently, we take a top-down approach in which

the current set of model features drives the search for

line segments in color images. Using a method to predict

visible model lines for a hypothesized pose [Mar96], the

model features can be projected into a given image using

known sensor characteristics [BHP94]. Local search then

maximizes the segment orientation and position based on

the current gradient response. A similar approach has

been applied using gradient descent to perturb the line

segment [SWF95].

2 Local Search

The model-driven approach is initialized by projecting

the predicted 3D model edges [Mar96] into the color im-

age. An error function uses a gradient mask oriented to

the direction of the model edge to determine the underly-

ing changes in pixel intensity. The error function is then

used to guide a local search algorithm in the selection of

a better edge position.

2.1 Oriented Gradient Mask

The gradient mask is constructed by rotating the �rst

derivative of a bi-variate Gaussian to match the orienta-

tion of the current model edge. There are many prece-

dents both for using tuned edge masks [Can86] and the

�rst derivative Gaussian [TP86]. Others have also used

di�erent methods to obtain gradient estimates based

on steerable �lters [Shu94, FA91] for use in bottom-

up edge detection. However, contrary to other ap-

proaches [FL88], we are not searching for the maximum

gradient of a line of an arbitrary orientation, but rather

the gradient for the orientation of the current model

edge.

The horizontal �rst derivative of a bi-variate Gaussian

is given by:
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a. Silhouette Line b. Gradient Mask c. Gradient Response d. Weight Mask

Figure 1: Gradient Mask and Response

where (a; b) represents the current position in the �lter

coordinate system. In order to maximize the response to

an arbitrary orientation, the function is rotated to the

orientation of the given model line:

a = i cos�+ j sin� (2)

b = �i sin�+ j cos� (3)

where � is the angle of rotation required, and (i; j) are

the gradient mask positions being calculated. Figure 1a

shows a model edge projected into a color image, along

with the gradient mask used (Figure 1b) to obtain the

gradient response (Figure 1c).

2.2 De�ning the Error Function

The weight mask (shown in Figure 1c) for the current

model edge is then convolved with the response to the

gradient mask for each pixel lying under the line:

ĜLine(k) =

LinexbX

i=Linexa

LineybX

j=Lineya

jGrad(i; j)j � w(i; j)


 �
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where (Grad(i; j)) is the gradient mask response, and

w(i; j) is a weighting mask based on the distance of the

pixel from the true line, thus allowing the computation

of ĜLine(k) with sub-pixel accuracy [Pin88]. A threshold

for w(i; j) neglects pixels lying outside some radius. The


 term is the largest expected gradient possible for the

current mask, and will normalize ĜLine(k) to the range

[0; 1] for each line segment. The gradient response is

then converted to an error term:

ELine(k) = (1� ĜLine(k)) (5)

2.3 De�ning the Neighborhoods

The local search algorithm uses the set of moves shown

in Figure 2 to perturb each model edge. The error,

ELine(k), for each move is calculated, and the best move

in the set becomes the new model edge position. The

initial step and rotation sizes are set manually. Once

a local optimum is achieved, the move sizes are halved

and the process continues. Once they fall below a certain

threshold, and no further improvement can be made, the

current position of the edge is returned as the data line

corresponding to the current model edge.

3 Results

The local search algorithm is currently being used in

a multi-sensor object recognition algorithm here at Col-

orado State University [Ant96]. The results of the search

are shown in Figure 3. Figure 3a shows the predicted

model edges thought to be visible in the image for the

given pose hypothesis. Figure 3b shows the data seg-

ments extracted for matching to those model features.

As can be seen, several of the data lines do not cor-

respond directly to the features desired for matching.

However, they are good enough to move the model closer

to the desired location, where a new correspondence can

be generated. As the model moves closer to the correct

position, the local search will �nd better features in the

data for matching.

References

[Ant96] Anthony N. A. Schwickerath and J. Ross Beveridge. Coregis-
tering 3D Models, Range, and Optical Imagery Using Least-
Median Squares Fitting. In Proceedings: Image Understand-

ing Workshop, page (to appear), Los Altos, CA, February
1996. ARPA, Morgan Kaufman.

[BHP94] J. Ross Beveridge, Allen Hanson, and Durga Panda. In-
tegrated color ccd, 
ir & ladar based object modeling and
recognition. Technical report, Colorado State University and
Alliant Techsystems and University of Massachusetts, April
1994.

[BHR86] J. Brian Burns, Allen R. Hanson, and Edward M. Rise-
man. Extracting Straight Lines. IEEE Transactions on

Pattern Analysis and Machine Intelligence, PAMI-8(4):425{
455, July 1986.

[Can86] John Canny. A Computation Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine In-

telligence, PAMI-8(6):679{697, November 1986.

[Cla89] James J. Clark. Authenticating Edges Produced by Zero-
Crossing Algorithms. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, PAMI-11(1):43{57, January
1989.

2



a. +X Shift b. -X Shift c. +Y Shift d. -Y Shift e. +Begin Rotation
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Figure 2: Various Line Movements

a. Model Lines b. Data Lines

Figure 3: Linear Features Detected
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