
Computer Science
Technical Report

An Information Gathering Agent for Querying
Web Search Engines �

Daniel Dreilinger Adele E. Howe
Computer Science Department, Colorado State University

Fort Collins, CO 80523
email: fdreiling,howeg@cs.colostate.edu

url: http://www.cs.colostate.edu/�fdreiling,howeg

Technical Report CS-96-111

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This research was supported in part by ARPA-AFOSR contract F30602-93-C-0100 and NSF Research Initi-
ation Award #RIA IRI-930857



An Information Gathering Agent for Querying Web

Search Engines �

Daniel Dreilinger Adele E. Howe

Computer Science Department, Colorado State University

Fort Collins, CO 80523

email: fdreiling,howeg@cs.colostate.edu
url: http://www.cs.colostate.edu/�fdreiling,howeg

Abstract

Information gathering agents have attracted much attention of late. As a new

application, they are attractive because the need for intelligent assistance in nav-

igating the World Wide Web and large databases is acute. Information agents

provide an open-ended and complex, yet easily accessible environment in which

ideas from many areas can be integrated. We have developed an information gath-

ering agent called SavvySearch for intelligently searching multiple search engines

on the Web. SavvySearch tracks responses from existing search engines to manage

resource usage and submit queries only to the most appropriate search engines.

To implement SavvySearch, we adapted simple ideas from machine learning, in-

formation retrieval and planning and tested two issues in the designs: Can search

engine selection knowledge be acquired to improve performance? Do users �nd

that high quality results are being returned early within the limited parallelism

provided by SavvySearch? Current results indicate that automated acquisition

does lead to good selection performance and restricting resources through ordering

parallel searches can still produce satis�ed users.

�This research was supported in part by ARPA-AFOSR contract F30602-93-C-0100and NSF Research

Initiation Award #RIA IRI-930857



1 Information Gathering on the Web

Without help, �nding a speci�c site or particular information among the deluge of
informally connected sites on the World Wide Web is di�cult. Tools for searching the
Web, such as Lycos [15] and DejaNews [14], match user queries to Web resources of inter-
est. These programs act as directories and indexes to the Web, considerably alleviating
the navigational di�culties. However, to some extent, they push the problem back one
level; now one needs to navigate the search engines: know their location, their language
or user interface and their areas of expertise.

Each search tool is limited by the sub-corpus of documents known to it and by its
ability to �nd relevant documents within that corpus. It has been suggested that search
engines should not attempt to thoroughly index the entire Web space, as that will lead
to much repeated e�ort [16]. A user with a speci�c information need will often need to
query several search engines before �nding relevant documents.

To address the problem of navigating the search engines, we have developed a meta-
search agent, called SavvySearch, that directs queries to search engines judged to be
most appropriate. The agent balances expected resource consumption against the ex-
pected bene�ts of submitting queries to multiple search engines. To do so, the agent
collects, maintains and integrates knowledge about the current and past function of the
search engines and the Internet. Because the application of meta-search is relatively new,
SavvySearch was designed to provide a framework for investigating the merits of various
approaches; it is easily extensible to other search engines and has a modular design that
expedites replacing components.

In this paper, we describe the architecture and one of the implementations of Savvy-
Search which borrows, in a simple way, ideas from machine learning, information retrieval
and planning. We tested two issues in its design: Can search engine selection knowledge
be acquired to improve performance? Do users �nd that high quality results are being
returned early within the limited parallelism provided by SavvySearch?

2 Approaches to Information Gathering

Agent-based information retrieval research is becoming incredibly popular. Last
year's Spring Symposium on Information Gathering included a large number of papers
on diverse agents [10]. Some of the agents focused on the Web as an information source;
agents have been designed for �ltering, browsing [2,13], and traversing the Web [1], as
well as searching speci�c information on it (e.g., FAQ �les for newsgroups [9]) and het-
erogeneous sources [17].

Agents often reference domain dependent databases and utilize a complex logical or
semantic domain model [17,11,6]. For example, [6] describes a distributed purchasing
agent that aids in location and pricing of products. An internal predicate logic repre-

1



sentation relates product descriptions to information domains. Using output from one
information source as input for another is a common technique in domain-speci�c sys-
tems. These systems divide their functionality among diverse agents, exploit parallelism
where appropriate, and gracefully deal with the imminent failures and changes associ-
ated with widely distributed processing. While these are all concerns for our system, our
application is much less comprehensive (i.e., does not model goals or treat information
gathering as just one task in a larger one) and so does not require as complex a solution.

2.1 Searching the Web

Finding a Web resource is not always a trivial task. The naive approach is to start
with your home page and follow links that intuitively seem to lead you in the direction
of the resource you are looking for. This is roughly analogous to wandering around the
country side hoping to �nd an address by following road signs, but lacking a map. In fact,
the WebWatcher project [1] addresses just this problem by assisting users in following
links from starting at a general subject Web page (e.g., a Machine Learning page with
links to other sites) to �nding the required, related information. WebWatcher learns to
predict links likely to be of interest to a user by passively \watching" the user traverse
links and o�ering suggestions.

Alternatively, if you have used the World Wide Web, you have no doubt encountered
some of the myriad search services, such as Yahoo [7] and Web Crawler [18]. These
powerful search engines can aid the process of searching on the Web. Search results
are displayed in the form of another Web document consisting of a list of links that
are deemed relevant to the search query. Unfortunately, the search engines only search
some subset of the millions of Web documents and thus any given search engine may
not return all desired references. For example, the Web Crawler searches a very large
database of automatically retrieved and indexed URL references for every occurrence of
the query. Yahoo, on the other hand, searches a manually created index of high level
Web documents. Thus, Yahoo's results are typically more relevant, but at the cost of
returning only a fraction of the quantity that Web Crawler returns.

The availability of many search engines leads to the text-database discovery problem
[8]. In most information retrieval, a corpus of documents is the target of queries; in
the text-database discovery problem, the corpus of documents is reached through other
databases. Thus a query is matched not to a set of documents but rather to a set of
databases or, in this case, search engines.

The GlOSS (Glossary-of-Servers Server) project [8] has suggested a solution to the
text-database discovery problem. A meta-index is constructed by integrating the indexes
of each of the databases. For each database and each word, the number of documents
containing that word is included in the meta-index. When a query is submitted to GlOSS,
relevant databases are selected by using the meta-index to anticipate the ones that will
probably produce relevant results.

2



A disadvantage with GlOSS is that each of the search engines must cooperate with the
meta-searcher by supplying up-to-date index information. This may add a prohibitive
amount of administrative complexity as the number of databases increases. While our
solution involves a meta-index similar to that described in [8], it di�ers in that no assump-
tion is made about the availability of search engine indexes, which are often unavailable.
Instead, information for the meta-index is accumulated incrementally by learning from
data on actual user queries and the results returned by the search engines.

2.2 Searching the Web in Parallel

The natural response to the problem of too many places to search is an additional level
of abstraction [3], which we call meta-search. One variety of meta-search tool is simply a
list of pointers to possible search sites, e.g. [12,4]. These indexes are useful in that they
increase the user's awareness of where they can search, but they are inconvenient. The
decision of where to search is relegated to the user, who has to enter and submit their
query repeatedly. Furthermore, the user must interpret the heterogeneous results which
appear in the native formats of the various search engines.

These shortcomings motivate true meta-search engines, such as SavvySearch (the sys-
tem described here) and MetaCrawler [20]. MetaCrawler distributes user queries in paral-
lel to all search engines within its knowledge base. The full text of each result is retrieved
from the Web and then ranked using conventional information retrieval techniques. An
added bene�t of retrieving the documents is the ability to apply a sophisticated query
language. MetaCrawler is very successful at pruning irrelevant results and imposing a
standardized ranking.

One important issue of parallel meta-search is where speci�cally to send the query;
it is conceivable that just a handful of databases must be selected from hundreds. Other
issues include how to deal with failure, how to evaluate the results, and how to facilitate
extensibility.

3 SavvySearch

The goal of SavvySearch is to assist Internet users in �nding relevant information by
submitting their queries to multiple search engines1. This operation must be performed
in the presence of two goals: minimizing resource consumption and maximizing search
quality. Resource limitations make it impractical to send every query to every known
search engine and programs that did so would be considered to be poor citizens of the Web
[5]. Furthermore, it is undesirable; users are better served with a small set of results (less
than 30) from related search engines rather than being inundated with quasi-relevant
information, and having to wait for the privilege. On the other hand, too few search

1SavvySearch can be accessed on the Web at http://savvy.cs.colostate.edu:2000/.

3



engines might produce no results, subjecting the user to the inconvenience of retrying
and waiting.

Search engine selection decisions are based upon information that can be dynamic in
nature. Characteristics of search engines change over time as indexes are updated and
algorithms are improved. Consequently, the association between expertise and search
engine is likely to change as well. Other qualities modulate even more frequently (e.g.,
average response time for a given server might be faster at night and slower during the
early afternoon).

Information gathering on the Web can be viewed as a simple planning problem in
which the goal is to �nd sites satisfying speci�c criteria and where the actions are queries
to search engines. Search plans are constrained by the resources available: how much
time should be allocated to the query and how much of Internet resources should be
consumed by it. Consequently, in this view, a plan to gather information for a speci�c
query consists of a sequence of parallel queries to search engines where the user gets to
decide at intermediate points whether further searching, and thus resource consumption,
is necessary or desirable.

Figure 1 shows the results interface for this design and the plan for the query: bach
cello suite. A query consists of a set of terms that express the information desired and
selection of a query operator (AND, OR, Adjacency) to be inserted between all terms.
We opted for a simpli�ed query language to maintain simplicity in the interface and to
expedite connection to as many search engines as possible. When the query is submitted,
SavvySearch constructs a plan, a sequence of parallel searches, and executes the �rst step.
The user can view the results of the �rst step and decide whether to execute a later step
or follow a link in the current results. The following subsection will describe how this
example plan is created.

We learned from an earlier design that users should be able to exert some control over
the search engine selection. They may be resolving ambiguities, have some knowledge
that SavvySearch does not or may simply wish to be \in control". As a consequence,
while the information gathering plan is started automatically, further execution requires
user selection.

3.1 Architecture

Our agent-based view of a meta-search tool architecture comprises three types of
agents: dispatch, display, and search engine interface (Figure 2). Of these agents, the
interface agents use HTTP to communicate with remote, Web-accessible search engines;
otherwise, the agents communicate only with each other and the user. The purpose of the
interface agents is to facilitate incorporating a variety of search engines; each interface
agent is designed to accommodate its target search engine's user interface and failure
modes.

SavvySearch relies on considerable knowledge about current conditions and relation-

4



Figure 1: User interface from experimental version showing presentation of results of a

query.

5



Display Agent 

Results

Query

Feedback

Agent

WWW

KnowledgeUser Interface

Dispatch Agent

Agent
Lycos DejaNews FTP Search
Agent . . .

Interface Agents

Figure 2: Multiple agent architecture for processing queries.

ships between queries and search engines. The core of that knowledge is the meta-index
which tracks the e�ectiveness of each search engine in responding to previous queries.
Each word that has been used in a query has an entry in the meta-index; that entry
summarizes previous performance of search engines that have been queried using that
word. Higher values represent more responses to a query containing that word. The
acquisition of the supportive knowledge will be described in section 3.2.

3.1.1 The Dispatch Agent

The dispatch agent uses the query and information from a knowledge base to rank the
set of interface agents and determine an initial group to which the query is �rst submitted.
Given a query, a list of search engines, and some knowledge about the search engines
and network conditions, the dispatch agent produces a rank-ordering of search engines
with respect to their �tness to the query and impact on network conditions. Resource
reasoning is included to balance network resource consumption against response quality
[21]. Much information can be obtained from a query; for example, we can look at
properties of speci�c search terms used, or we can introduce ancillary query components,
such as the general nature of information sought.

The dispatch agent in this version of SavvySearch creates a search plan in a two step
process: �rst, search engines are ranked with respect to the query and current network
conditions { those predicted to perform the best are ranked highest. Then concurrency,

6



term Lycos Web Crawler Yahoo DejaNews

bach 4 21 3 0
cello 2 1 0 1
suite unde�ned

Search Engine Total 500 1000 140 200

Table 1: Example of Meta-Index Data

or the number of search engines to search at the same time, is computed.

1. Search engines are ranked by predicting which are most likely to return useful
results. This is done by combining a query score with current data on the expected
waiting time and number of results.

� The query score is determined by looking up the meta-index feedback weight
for each search engine and query term pair. The weights are divided by the
total feedback of their respective search engines. Finally, the weights for each
search engine are added to compute initial search engine scores. Thus, the
query score for search engine s and query string q is

Qs;q =
X

t � q

Wt;s

Ts
;

where Wt;s is the meta-index entry corresponding to a single query term (t)
and search engine s; and Ts is the sum of all meta-index feedback weights for
search engine s.

For example, Table 1 shows simpli�ed meta-index entries for the terms bach,
cello, and suite, as well as the sum of all meta-index data for each of four
search engines. Using the query score formula, we can compute the score for
query bach cello suite and search engine Lycos (QLycos;q) by adding the scores
for the three terms: 4

500
+ 2

500
+ 0

500
= 0:012. Similarly, QWeb Crawler;q = 0:022,

QY ahoo;q = 0:0214, and QDejaNews;q = 0:005.

� Scores are �ne tuned by adding recent performance information for each search
engine. The �ve most recent queries for search engine s are used to compute
the average number of hits (Hs) and average response time (Ts). The perfor-
mance information for search engine s is combined in the fraction

Ps =
Hs

100 � Ts
:

7



The denominator is multiplied by an arbitrary constant 100 to make the per-
formance data an order of magnitude smaller than the score data. The desired
e�ect was to rank the better search engines utilizing meta-index data alone,
then rank the search engines with no meta-index data using externally observ-
able search engine characteristics.

The two computations just described are combined to determine the overall rank
Rs;q, for search engine s and query q:

Rs;q = Qs;q + Ps:

2. The purpose of concurrency calculation is to reduce the resources demanded by
SavvySearch in periods of high network and machine demand. So concurrency is
inversely proportional to estimated query cost: the more it costs to submit search
engine queries at present, the fewer search engines will be queried. Concurrency is
computed from three cost variables: expected network load, local CPU load, and
query discrimination value. Each of these contributes to a concurrency sum by
adding some value up to two.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22

Figure 3: Relative tra�c throughout the day.

� Ideally, the expected network load should estimate the current tra�c on the
Internet; since this is di�cult to assess, we estimate it based on the tra�c we
have seen on our nodes (number of queries per unit time) in the past at this
time of day. So expected network load is computed statically from the log
�les produced by our Web server (as in Figure 3) by looking up typical load
for this time of day. During periods of low network load (e.g., 3 AM), a high
value (up to 2) is contributed to the concurrency, and vice versa.

8



� The local CPU load is computed from current system load; the output from the
UNIX uptime command is mapped from the interval 0 : : : 3 onto the interval
2 : : : 0. It is important to incorporate both types of load (CPU and net tra�c)
because the local CPU load 
uctuates constantly and therefore is not a good
indicator of the overall network activity.

� The discrimination value addresses how much search e�ort is likely to be
needed to �nd a satisfactory response by measuring how speci�c or general
the query is. If a term has a relatively large amount of meta-index data, for
example bach in Table 1, the query presumably represents an area that many
search engines cover, and thus, we suspect fewer search engines will need to
be queried. If the term has little or no data, for example cello or suite, our
current knowledge of search engine expertise in this area may be inadequate
or it may be a topic area not covered by many search engines, and thus we
will need to search more places to �nd relevant documents.

The discrimination value is calculated by dividing the total number of refer-
ences counted for the term (i.e., the sum of a row in Table 1) by the number
of references of the most frequently referenced term in the database (i.e., the
same sum but for the most dominant term in the meta-index). An average is
used for multi-term queries.

3.1.2 Interface Agents

Interface agents translate the query to a form appropriate for its speci�c Internet-
accessible search engine, submit it and retrieve the results. Each search engine has a
di�erent interface and capabilities. For example, some systems require query terms to be
joined with boolean operators (i.e., AND, OR), while other systems implement this as a
check-box option on the search form.

We build one interface agent for each search engine that we can query. These agents
are designed to gracefully respond to exceptional conditions such as errors or unexpected
results. Results are forwarded to the display agent in a standardized internal format.

Along with the query, the interface agents can also be given (or maintain internally)
additional information including dynamic qualities of their target search engine like aver-
age response time, and resource constraints that limit the number of retries in the event
of failure. Interface agents employ basic failure coping abilities such as retrying a query
in the event of a remote failure.

3.1.3 The Display Agent

The display agent organizes the results from all the interface agents and displays
them in an easily interpreted manner to the user. One trade-o� that must be addressed
is response time versus organization of results.

9



At present, the display agent is simple. The top k results, where k defaults to 10,
for each search engine are displayed in the order in which they arrive. As results are
collected and processed from each search engine, the results are displayed in the order
suggested by the search engine. Interleaving was avoided because it requires waiting for
results from all search engines before beginning the display. Since part of the purpose of
the resource reasoning was to create an iterative process in which the user decides when
to search further, waiting was deemed inappropriate.

Alternatively, we can wait until all results have arrived, then impose a ranking func-
tion based on variables such as scores given by target search engines and local quality
measures of the search engines for a particular query. It is conceivable to retrieve the
full text of all referenced documents and perform additional conventional information
retrieval on them. This is a particularly appealing approach if waiting time is not a
priority and has been implemented e�ectively in the MetaCrawler system [19].

3.2 Acquiring Supporting Knowledge

The supporting knowledge includes static and dynamic knowledge about costs and
the successes of queries. Thus far, we have measured cost based on network load, local
CPU usage, and expected quality of information. We collect statistics regarding typical
usage on our server during di�erent periods during the day and use that pro�le for CPU
usage.

The knowledge of query success is constructed from passively accumulated user feed-
back and is stored in a meta-index. The meta-index is an n � t matrix, where n is the
number of search engines and t is the number of terms that have been used. Each entry
measures the e�ectiveness of a speci�c search engine-term combination. This structure
is used extensively in classical Information Retrieval in the context of mapping keywords
to documents.

E�ectiveness values in the meta-index were determined from a log of about 50; 000
queries acquired by an earlier version of the system. Using the heuristic that if a user
follows a link it is relevant, the weight matrix was adjusted by incrementing the word
values of the query terms for the particular search engine(s) that produced the relevant
result. An increment of one was used for all search engine-term feedback events, regardless
of query length.

For example, the meta-index entry for the word bach (shown in Table 1) indicates
that 4 documents returned by Lycos for queries containing the word bach were deemed
relevant by users (i.e., resulting links were selected for further perusal), 21 links produced
by Web Crawler, 3 from Yahoo, and none from DejaNews. While the meta-index will
be constantly updated during normal usage, it was held constant for our experiments to
re
ect both new and changing information.

10



4 How Well Does the Design Work?

As with any system involving a user, the ultimate test is user utility. We have
measured utility in a variety of ways: unsolicited user comments, the number of links
followed for given queries and explicitly requested user feedback. We wanted to test
whether their underlying techniques improved user utility.

In most general terms, SavvySearch has been a great success. It has been available
since April 1995 in the form described here and a previous design. In that time, we have
received dozens of favorable comments and the daily use has steadily increased to an
average of about 20,000 queries per day.

In our evaluation, we choose to stress determining what aspects of this design seem
to work. We view the current design as evolving; we will continue to improve it based on
what we learn from experiments after this. We also intend that others should learn about
what works and what does not from our experiences so that they can build their own Web
information gathering agents. At present, SavvySearch is one of a few meta-search agents
(another notable one being MetaCrawler), and MetaCrawler is signi�cantly di�erent in
its focus; thus, we have avoided a \who's best" comparison as being too coarse to learn
anything meaningful about how such systems should be designed.

We expect that information quantity results directly from resource expenditure, but
that information quality also results from careful deployment of resources (i.e., queries to
search engines). Two aspects of the current design contribute to resource deployment:
the allowable resource calculation and the selection of search engines. Plan size is directly
proportional to the current resource demands, and plan sequencing depends critically on
the search engine selection process.

We ran a series of experiments to determine whether characteristics of the current
design a�ected the quality of the information displayed to the user. We measured quality
in two ways: number of links followed per query (link-ratio) and reported user satisfac-
tion. Of the two, we think that link-ratio is the more reliable measure because it tracks
what interested the user enough to follow up, it requires no additional e�ort on the user's
part, it should be less susceptible to user bias (e.g., users might give positive feedback
just to be nice or negative to encourage us to further improve the system), and because
most users did not know that we were collecting this data.

We learned from a pilot experiment that we cannot completely trust direct feedback
from the Internet community. As might be expected some users are unwilling to take
the time to provide direct feedback, and some users provide noisy feedback (e.g., ballot
stu�ng or apparently random selections). Unfortunately, we found that the diverse
Internet community cannot be directly responsible for making heavily weighted changes
to any aspect of the system (an earlier scheme tried a weighting system based on user
feedback) and must be eyed skeptically in determining system success. Consequently,
we will report the feedback summary data, but we did not use it as the primary quality
measure in the analysis.

11



We wished to answer two questions about the design:

� Does plan order matter? More precisely, are plan steps being ordered so that higher
quality results are returned early in the plan?

� Is the selection strategy adequate? More precisely, does quality depend upon which
search engines are included in each plan step?

If the current approach is appropriate, then ideally, users will �nd what they want early
in the process of executing the plan; if they do not, we need to know whether the plan
sequencing or the selection strategy are at fault.

To address these questions, we collected data on four variants of this design:

Approach A the basic design described in section 3,
Approach B basic design except that the step to be executed �rst is selected randomly,

thus the �rst display may be generated from any step in the plan,
Approach C basic design except that the search engines are randomly selected without

replacement for inclusion in each step of the plan,
Approach D basic design except that the �rst plan step executed is selected randomly

and the search engines are selected randomly.

So for the example given the plan in Figure 1, approach A would immediately execute
the �rst step and display the results from those three search engines; approach B would
immediately execute one of the steps as selected at random and display those results;
approach C would construct a di�erent search plan from A and B in which the search
engines are randomly ordered and would immediately execute the �rst step; and approach
D would construct a di�erent search plan from A and B in which the search engines are
randomly ordered and would immediately execute one of the steps selected at random.

These four versions vary along two dimensions: selection of the search engines and
plan ordering. Approach A is our target design; the other three are controls which allow
us to address the empirical questions. In all cases, the degree of parallelism was based
on load.

We conducted the experiments by adding a link from the primary SavvySearch page
(by now in common use) to what we described as our \new experimental search tool".
Thus, users were not surprised to �nd a di�erent version and self-selected whether they
wanted to participate. We ran each variant for about two days, enough time to collect
data on at least 2500 queries. The interface was identical for each one; users were told
that a search plan would be constructed in which expected usefulness of the steps was
displayed from left to right.

Data was collected on each query processed: number of steps in the plan, which steps
were executed, how many links were followed in executed steps, which search engines
were queried, whether it was a follow-up query and whether or not the user expressed
satisfaction with the query (lack of answer was separated from a negative response). For

12



Plan Length 3 4 5 7
Plan Step 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 7

Requests 296 32 19 1684 227 149 96 416 72 51 37 34 31 7 5 6 6 3 4
Visits 521 19 14 3234 289 71 42 744 92 71 27 15 50 11 10 4 11 2 4
Yes 40 7 1 252 30 16 15 51 5 5 3 2 5 2 1
No 8 2 82 13 20 15 18 2 2 2 3 1

Table 2: Approach A raw survey data on both performance measures. Blank cells indicate
no data available.

analysis, we summarized the data by the two quality measures and separated it by plan
length and plan step. Plan length indicates how many were required to query all the
search engines given the current level of parallelism; so if plan length was 5, each of the
plan steps contained 3 search engines except the last which had 2 (14 search engines were
included). Plan step indicated which step in the sequence was being executed.

Overall, we received 10,575 requests which resulted in users following 19,072 links.
Users followed 2.0 links per plan step for approach A, 1.76 links per step for approach B,
1.89 links per step for approach C and 1.55 links per step for approach D. We received
2,082 answers to whether the user found the results useful for about a 20% response
rate; self-reported satisfaction was 72% for approach A, 60% for approach B, 65% for
approach C and 60% for approach D. As an example of the numbers involved, Table 2
shows the raw data counts for approach A. On the summary numbers, the basic approach
(approach A) exhibits the highest quality performance on both measures. Presenting the
user with the results of what was expected to be a lower quality solution (approach D)
is the least satisfactory.

Does Plan Order Matter? We tested this question by analyzing whether the quality
of results depended on which plan step was executed. We analyzed separately the data
from each approach and from each plan length. For each approach and plan length, we
ran a chi-square contingency table test with quality as the dependent variable and plan
step as the independent.

We expected that quality would depend on plan step for approaches A and B, but
not for C and D because C and D simply selected the composition of steps randomly. In
fact, for all but one plan length for approaches A and all plan lengths for approach B, we
found a statistically signi�cant e�ect of plan step on quality (P < :01). For approach C
for all but one plan length, and D for two lengths, we found no signi�cant e�ect of plan
step on position (in these cases, the lowest was P < :20). The one exception in approach
A was plan length of seven in which every step included only two search engines; we
hypothesize that a plan length of seven with a parallelism of only two may force too

13



much emphasis on particular search engines. In both C and D, in the cases with the
most data (lengths 3 and 4), a decline in following links due to position was enough to
be signi�cant. Our best guess is a placebo e�ect of assuming that the ordering is good
and not looking too closely at the contents of later steps.

Is the selection strategy adequate? Addressing this question involves comparing
the approaches themselves. Because of the number of factors involved (plan length,
plan step and approach), we analyzed the data by comparing pairs of approaches while
holding constant the plan steps and lengths. We compared approach A to approach
C and approach B to approach D because each used the same method for determining
which plan step to execute �rst. To reduce the amount of analysis, we selected the most
common plan length for the comparison: plan length four. For each pair of approaches
and each plan step, we constructed a two by two contingency table with a row for each
approach, one column for number of queries and one column for links followed.

Quality was signi�cantly higher for approach A than for approach C on steps one, two,
and four (P < :01), but while higher on step three, the di�erence was not statistically
signi�cant (P < :37). For approaches B and D, quality was signi�cantly higher for three
steps (P < :05); for step 2 it was higher but not signi�cantly (P < :06).

5 Conclusion

The tool described in this paper is just one of a set of implementations that we have
tried and will be trying. A previous version relied solely on user-supplied categories,
as opposed to the terms in the query itself, for selecting search engines and submitted
queries to a �xed number of search engines.

Our current focus is on improving search engine selection and evaluating the role
of the user. We are in the process of designing and running experiments to test more
complex meta-index acquisition techniques. In particular, the newer schemes incorpo-
rate both positive and negative feedback and amortize term e�ectiveness by the number
of term in the query (i.e., longer queries receive less weight per word). These schemes
adapt information retrieval techniques from the standard paradigm of searching a corpus
to searching a set of searchers where the corpus is unknown. Additionally, we are inves-
tigating re-introducing categories as a simple mechanism for the user to disambiguate
word meaning.

More consideration has to be given to the user's role in the search process. For ex-
ample, two di�erent modes of Internet information acquisition should be accommodated:
searching for speci�c information, and browsing (a.k.a. \net sur�ng") for interesting in-
formation [2]. User's in the former mode might need to see results from a greater number
of search engines, while those in the latter model might be satis�ed with results from
fewer sources. Ideally, these two modes could be further decomposed. Approaches to this

14



might evaluate di�erent levels of interactivity (e.g., more parallel searching with more
sophisticated results presentation and followup) and di�erent styles of interaction (e.g.,
searching versus browsing).

In terms of experimentation, we still need to satisfactorily assess the e�ect of reducing
parallelism on user satisfaction. We know from the current data that on average users
execute only one to two plan steps. However, an experiment to gauge the exact e�ect of
reducing parallelism produced inconclusive results. We are formulating a new experiment
to address the e�ectiveness of current resource reasoning.

Meta-search clearly satis�es a need for searching the vast Web space. The architecture
described here is based on simple applications of machine learning, information retrieval
and planning. Studies such as ours expedite integrating diverse techniques by indicating
whether they are even worth consideration. For example, a planning framework seems
to be a useful paradigm for giving the user control and the agent-based architecture
facilitates extensibility and mitigates domain dependence. We intend to enhance the
current design with more sophisticated techniques. We expect that as search engines
proliferate and specialize, meta-search engines will continue to be important and will be
a useful resource for both human users and for other information gathering agents.

15



References

[1] Robert Armstrong, Dayne Freitag, Thorsten Joachims, and Tom Mitchell. WebWatcher:

A learning apprentice for the World Wide Web. In Craig Knoblock and Alon Levy,

editors, Working Notes of the AAAI Spring Symposium Series on Information Gathering

from Distributed, Heterogeneous Environments, Palo Alto, CA, 1995.

[2] Marko Balabanovi�c and Yoav Shoham. Learning information retrieval agents:

Experiments with automated web browsing. In Craig Knoblock and Alon Levy, editors,

Working Notes of the AAAI Spring Symposium Series on Information Gathering from

Distributed, Heterogeneous Environments, Palo Alto, CA, 1995.

[3] C. Mic Bowman, Peter B. Danzig, Udi Manber, and Michael F. Schwartz. Scalable

internet resource discovery: research problems and approaches. CACM, 37(8), August

1994.

[4] William Cross. All-in-one search page. http://www.albany.net/allinone/.

[5] David Eichmann. Ethical web agents. In Electronic Proceedings of the Second World

Wide Web Conference '94: Mosaic and the Web, 1994.

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/Agents/eichmann.ethical/ethics.html.

[6] Richard Fikes, Robert Engelmore, Adam Farquhar, and Wanda Pratt. Network-based

information brokers. In Craig Knoblock and Alon Levy, editors, Working Notes of the

AAAI Spring Symposium Series on Information Gathering from Distributed,

Heterogeneous Environments, Palo Alto, CA, 1995.

[7] David Filo and Jerry Yang. Yahoo home page. http://www.yahoo.com.

[8] Luis Gravano, H�ector Garc��a-Molina, and Anthony Tomasic. Precision and recall of gloss

estimators for database discovery. In Proceedings of the 3rd international Conference on

Parallel and Distributed Information Systems (PDIS'94), 1994.

[9] Kristian Hammond, Robin Burke, Charles Martin, and Steve Lytinen. FAQFinder: A

case-based approach to knowledge navigation. In Craig Knoblock and Alon Levy, editors,

Working Notes of the AAAI Spring Symposium Series on Information Gathering from

Distributed, Heterogeneous Environments, Palo Alto, CA, 1995.

[10] Craig Knoblock and Alon Levy, editors. Working Notes of the AAAI Spring Symposium

Series on Information Gathering from Distributed, Heterogeneous Environments, Palo

Alto, CA, 1995.

[11] Craig A. Knoblock. Integrating planning and execution for information gathering. In

Working Notes of the AAAI Spring Symposium Series on Information Gathering from

Distributed, Heterogeneous Environments, Palo Alto, CA, 1995.

[12] Martijn Koster. Con�gurable uni�ed search engine (cusi).

http://pubweb.nexor.co.uk/public/cusi/doc/about.html.

16



[13] Henry Lieberman. Letizia: An agent that assists web browsing. In Proceedings of the

Fourteenth International Joint Conference on Arti�cial Intelligence, pages 924{929,

Montreal, Canada, August 1995.

[14] Steve Madere. DejaNews research service. http://dejanews3.dejanews.com/.

[15] Michael Mauldin. Lycos, the catalog of the internet. http://www.lycos.com/.

[16] Michael L. Mauldin and John R. R. Leavitt. Web agent related research at the center for

machine translation. Presented at the SIGNIDR meeting, August 4, 1994 in McLean,

Virginia, August 1994.

[17] Tim Oates, M. V. NagendraPrasad, and Victor R. Lesser. Cooperative information

gathering: A distributed problem solving approach. Technical report, University of

Massachusetts, 1994.

[18] Brian Pinkerton. Web Crawler home page. http://webcrawler.com/.

[19] Erik Selberg and Oren Etzioni. The MetaCrawler WWW search engine.

http://metacrawler.cs.washington.edu:8080/home.html.

[20] Erik Selberg and Oren Etzioni. Multi-service search and comparison using the

MetaCrawler. In Proceedings of the 4th International World Wide Web Conference,

December 1995.

[21] Shlomo Zilberstein. An anytime computation approach to information gathering. In

Working Notes of the AAAI Spring Symposium Series on Information Gathering from

Distributed, Heterogeneous Environments, Palo Alto, CA, 1995.

17


