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Abstract

This technical report summarizes the intrinsic sensor parameters for the range, IR and

color sensor used in the Fort Carson data collection and explores sensor-to-sensor image

mapping under di�erent assumptions regarding relative sensor placement. The default

case is to assume perfectly boresight aligned placement, and then the implications of

di�erent deviations from this perfect placement are considered. Included in this report

is a description of the calibration process used to recover the color sensor parameters.

A key result shown in detail is the relative equivalence of planar sensor translation and

small angle pan and tilt for points of known depth. This simplifying approximation has

signi�cant implications when fusing data from separate range and optical sensors.

�This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) Image Understanding Program
under grants DAAH04-93-G-422 and DAAH04-95-1-0447, monitored by the U. S. Army Research O�ce
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1 Introduction

In mapping data from an optical sensor onto a range sensor, such as a LADAR, intrinsic sensor calibration
as well as extrinsic sensor pose must be taken into account. This paper looks at various aspects of the
relative geometric transformations between sensors which are nearly, but not completely, boresight aligned.
The practical motivation for this work is to explore the how these mapping change given di�erent types
of deviation from the perfect case and from this exploration draw some conclusions about when certain
simplifying assumptions can be used without introducing excessive error into the sensor-to-sensor pixel
mapping.

The intention is to present this material at a detailed, nearly tutorial level. All but the section on
calibration should be readily understood by any reader who possesses basic knowledge of trigonometry
and linear algebra. Consequently, there is a risk the presentation may appear a bit labored to the reader
intimately familiar with these issues. Those with such backgrounds either do not need this background or
should read quickly.

Several highly practical considerations have brought this paper into existence. First, much of the work
at Colorado State on multi-sensor fusion [SB94, BHP95, J. 96, Ant96] has been implicitly using assumptions
eshed out and tested in this paper. The foremost such assumption is that changes in pixel mappings
between sensor induced by small rotations of one sensor relative to another may, under a limited set of
conditions, be expressed as planar translation of one image relative to another. To many familiar with the
geometry involved the conclusion is self evident. However, it is important to understand just how good
an approximation this is and thus what magnitude of error to expect under di�erent practical operating
conditions. One way to view this technical report is as a long tutorial working up to Section 6 which answers
this question.

Another motivation for this technical report is to better record and understand the characteristics of the
sensors used in the Fort Carson data collection [BPY94]. In November of 1993 Colorado State University, Al-
liant Techsystems and Martin Marrietta jointly collected a set of range, IR and color data at the Colorado Na-
tional Guard Facility at Fort Carson, Colorado. Over 400 range images were collected in such a manner as to
approximate 3 boresighted sensors. This technical report contains estimates of the intrinsic sensor parameters
for the Fort Carson data and these sensors are used for illustration throughout the report. This data is now
publicly available and may be down-loaded from our web site: http://www.cs.colostate.edu/�vision/.
Anyone using this data may �nd this report helpful.

2 Overview

Section 3 reviews and de�nes the intrinsic parameters of a perspective or pin hole camera model. It also
presents two ways of deriving these intrinsic parameters. The �rst and obviously superior way is through
calibration and Section 3.2 presents details on the exact calibration technique used to recover the intrinsic
parameters for the color data collected at Fort Carson. The second way is to compute them from information
commonly provided by a manufacturer, and this is reviewed in Section 3.3.

Section 4 lays to rest a key detail relating to some range sensors including the one used in the Fort Carson
data collection. Based upon the physics of the actual range sensor, we have been told that a spherical mapping
is a more accurate description of the image, i.e. the pixels spacing uniform in angle. In this section the
spherical mapping is compared to the most closely equivalent pin hole camera model and it is concluded the
di�erence in pixel mappings for common points in the world never exceeds 0:15 pixel units for the LADAR
used at Fort Carson. Based upon this analysis, we conclude that the pin-hole model is perfectly acceptable
for this sensor and that the distinction does not matter for the �eld of view and pixel resolution in question.

Section 5 takes up the key question of how do di�erent deviations from perfect bore-sight alignment alter
the mapping between sensor image planes. If one sensor rotates about the about the optical axis relative to
the other, the mapping between sensors remains 2D a�ne for all points in the world. When the horizontal
and vertical scale factors are identical no warping is involved and the rotation angle is preserved in the 2D
mapping. If one sensor translates forward or backward relative to the other, there is no single 2D a�ne
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mapping for all 3D points. There is a mapping involving scaling and translation in the image plane where
the translation is independent of depth and the scaling is dependent upon depth. If one sensor translates
relative to another in a common image plane, again the 2D mapping is not independent of the depth of
points in the world. In this case, there is scale change which is independent of depth and the translation
term depends upon depth to the points. Finally, the case of one sensor rotating about the horizontal and
vertical axes relative to another is considered. Under these conditions, the 2D mapping between images
becomes quite complex and dependent upon the full 3D coordinates of the point being viewed. Unlike the
previous cases, it is not longer helpful to attempt to derive a 2D mapping between images.

Understanding that minor shifts in pan and tilt angles of one sensor relative to another introduce a
quite complicated mapping between image spaces, it becomes interesting to ask under what conditions such
rotations may be reasonably approximated by the much simpler case of translation in a common image plane.
Section 6 works up an analysis which allows us to answer this question. In this analysis, two sensors are
coupled so as to track a common reference point at a �xed depth. To accomplish this, one rotates and the
other translates. As is perhaps not surprising, the translation approximates the rotation almost perfectly
for points at the tracking depth. When working within a narrow depth of �eld about the tracking depth,
the approximation is likewise very good and actual values are presented in Section 6. Finally, for all depths
beyond the tracking depth, the approximation introduces error. However, this error grows quickly and then
begins to approach an upper bound. Thus, for points beyond the tracking point, the pixel-to-pixel error for
practical purposes is bounded.

3 Optical Sensor Geometry

Let us review the basics of 3D projection as performed with a projective camera. The key mapping is between
3D points and their projection on the 2D image plane. Many texts treat this topic [FD82]. One of the most
compact and simplest ways of expressing the 3D to 2D relationship closely follows concepts developed in
projective geometry. The following is a general equation for projection.

I = P W

=
su 0 tu
0 sv tv
0 0 1

X

Y

Z

(1)

where I is a point on the projective image plane, P is the projection matrix and W is the 3D point being
imaged.

There is a marvelous trick implicit in this technique which makes the non-linear perspective mapping
amenable to a simple linear algebraic form. This trick is actually quite proper and rigorous in terms of
projective geometry and is nicely explained in [Fau93]. From a mechanical standpoint, simply observe that
expanding out the matrix multiplication yields:

I =
suX + tuZ

svY + tvZ

Z

(2)

The 2D point I is represented in projective coordinates in which there are an in�nite number of ways to
express a single point.

P = �P 8� (3)

Given this redundancy, a normalized form is selected in which the third element must equal 1. Applying
this normalization to I yields

I =
su

X
Z
+ tu

sv
Y
Z
+ tv
1

(4)
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The X
Z
and Y

Z
may now be recognized as the ratios which are commonly used to de�ne or explain perspective

projection.
The four terms su, sv, tu and tv de�ne the intrinsic characteristics of the optical camera. The terms su

and sv are typically called the scale factors and they encode both the focal length of the sensor as well as
the pixel sampling dimension. It is equally correct to interpret these parameters as the size of the horizontal
and vertical focal lengths measured in pixel units [Fau93]. The terms tu and tv represent the coordinates of
the point where the optical axis pierces the image plane as measured in pixel units. The issue of recovering
these intrinsic parameters from known calibration targets is taken up in in the following section.

3.1 Calibration from Calibration Targets

The calibration work for the color imagery was performed by Zhongfei Zhang at the University of Mas-
sachusetts using a method developed earlier at UMass by Yong-Qing Cheng et al [CCHR94]. The resulting
intrinsic parameters are presented in Table 1. There is a minor inconsistency between the imagery used
for calibration and that typically distributed with the Fort Carson dataset: the latter has been cropped to
the center 720x480 pixels. This does not alter the scale factors, but does alter the image center by half the
cropping margin. This adjustment is reected in the last row of Table 1.

Image Scale Factor Principal Point
Resolution su sv tu tv
767� 512 978.081 947.117 368.536 243.794
720� 480 " " 345.036 227.794

Table 1: Scale factors and image center for Fort Carson Imagery

3.2 Details of The Calibration Method

This section describes briey how these parameters were estimated. Sensor calibration is a rather complicated
topic and this section will not attempt the same level of tutorial presentation used elsewhere in this report.
Readers unfamiliar with calibration are encouraged to see [Gan84, LT86, STH80].

As laid out above, the camera model used in this work is assumed to be pinhole and the underlying
mathematical model is a perspective transformation. Consider the case with m camera positions and n

3D points ~P1(x1; y1; z1), ... , ~Pn(xn; yn; zn) in the world coordinate system. For jth position, there are n

corresponding image points ~Q
(j)
1 (u

(j)
1 ; v

(j)
1 ), ..., ~Q

(j)
n (u

(j)
n ; v

(j)
n ) (j = 1,2, ... , m).

Assuming that the relationship between the world coordinate system and the camera coordinate system
at camera position j is:

~P
(j)
ci = Rj ~Pi + ~tj (5)

where ~P
j
ci = (xjci; y

j
ci; z

j
ci)

T is the 3D coordinate vector of the ith point at jth camera coordinate system,

Rj = (~rj1; ~r
j
2; ~r

j
3)
T is the rotation matrix from the world coordinate system to the jth camera coordinate

system, and ~tj = (tjx; t
j
y; t

j
z)
T is the translation vector from the world coordinate system to the jth camera

coordinate system. Given the above assumptions, together with equation 1, lead to the following set of
constraint equations:

û
(j)
i =

(Su~r
(j)
1 +tu~r

(j)
3 )�~Pi+Sut(j)x

+tut
(j)
z

~r
(j)
3 �~Pi+t(j)z

v̂
(j)
i =

(Sv~r
(j)
2 +tv~r

(j)
3 )�~Pi+Svt(j)y

+tvt
(j)
z

~r
(j)
3 �~Pi+t(j)z

(6)
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where û
(j)
i and v̂

(j)
i are image projections of the corresponding 3D points. The camera internal parameters

are Su; Sv; tu; tv, and the external parameters are ~rj1; ~r
j
2; ~r

j
3; t

j
x; t

j
y; t

j
z . Thus, taking the di�erence between

projected and actual observed image points, we form the following general aggregate sum-of-squares of the
residuals over m images:

�m =

mX
j=1

nX
i=1

8<
:
 
u
(j)
i � û

(j)
i

�
u
(j)

i

!2

+

 
v
(j)
i � v̂

(j)
i

�
v
(j)

i

!2
9=
; (7)

where �u and �v are deviations along the two image axes, and they are set to 1 in all the tests.

The function �m depends nonlinearly on ~Pi, ~Q
(j)
i , and the 4 + 6�m parameters in ~� where

~� = (tu; tv; Su; Sv; ~r
(1)
1 ; ~r

(1)
2 ; ~r

(1)
3 ; t(1)x ; t(1)y ; t(1)z ; : : : ~r

(m)
1 ; ~r

(m)
2 ; ~r

(m)
3 ; t(m)

x ; t(m)
y ; t(m)

z )T (8)

Note that although ~r
(j)
1 ; ~r

(j)
2 ; ~r

(j)
3 has nine parameters in total, they only count as three independent param-

eters, since there are six constraints imposed on the nine parameters in order to form a rotation matrix. See
Appendix A of [Kum92] for the details of those constraints.

The function �m may be expressed as the second-order Taylor series expansion

�m(~� +�~�) = �m(~�) + ~!T�~�+
1

2!
�~�TH�~� (9)

where ~� is the initial guess and �~� is an small correction to ~�, ~! = @�
@~�

is the gradient of the objective

function �m with respect to ~�, and H = @2�
@~�@~�T

is the second derivative matrix (Hessian matrix) of the
objective function �m.

Here, the Levenberg-Marquardt algorithm which is a robust algorithm to solve nonlinear systems devel-
oped by Levenberg and Marquardt [Mar63, PFTV88], is used to compute the camera parameters ~�. In the
Levenberg-Marquardt method, we have

�~� = �(H + �I)�1~! (10)

where � is a conditioning factor and I is an identity matrix.
Due to tracking in the image, without using special patterns, some 2D-3D measurements and correspon-

dences may be incorrect. In these cases, the underlying noise in the 2D and 3D data may not be Gaussian.
Hence, gross errors or outliers may occur. In order to deal with gross errors or outliers in the 2D and 3D
data, the following least median of squares (LMS) estimator is used. It has been proved that the following
minimization always leads to a solution [RL87]

Minimize �m
(i) = mediani

8<
:
 
u
(j)
i � û

(j)
i

�
u
(j)
i

!2

+

 
v
(j)
i � v̂

(j)
i

�
v
(j)
i

!2
9=
; (11)

Since the median is not di�erentiable, �
(i)
m must be minimized using combinatorial methods such as

subsampling. The algorithm based on least median of squares technique is proposed as follows:

(a) Select \l" random subsets of size \k" from the input data.

(b) For each subsample Si, determine the camera parameters � by using the Levenberg-Marquardt al-
gorithm. Estimate the residual error ei for all \n" points given the camera parameters and �nd the
median square error.

(c) Select the camera parameters which gives the minimum median error �
(i)
m and compute the scale \s"

using equation:

s = mediani

� jeij
0:6745

�
(12)

4



(d) Filter out points as outliers whose squared residual error from the camera parameters is greater than
(as)2; a is an algorithm parameter and is set equal to 1.5 for all tests.

(e) Minimize the error function given in equation 11 on the remaining points using the above algorithm
and return the estimated camera parameters as the �nal output.

The calibration procedure is as follows. We take three images of a �xed calibration pattern with di�erent
depth distances from the camera. Then we extract a set of points in each image, and measure the 3D
coordinates of those points relative to some arbitrary 3D coordinate system. Finally, the 2D image points
and 3D world points are input into this algorithm to compute the internal parameters. In this case (one of
the images is shown in Figure 1), the (0; 0; 0) point is the lower corner of the intersection between the two
boards, and the known quantities are the radius of the circles and the spacing between the circles (in 3D).
The internal parameters estimated for the Fort Carson image data using this method are recorded in Table
1.

Figure 1: Geometric Camera Calibration Target for Fort Carson Data.

To have a comparison between the performance of this algorithm and those of the others, we use the
same data points for Ganapathy's [Gan84] and Crowley et al's [CB93] algorithm. The following table lists
the total error projected back to the image plane for each algorithm, respectively. The total error is the sum
over all the points used in the calibration procedure (n = 18), of the error in each point.

Total Errors for the Same Point Set

unit: pixel

Ours Ganapathy Crowley
0.620 1.230 6.399

3.3 Intrinsic Parameters from Field of View and Image Size

Calibration as described above is clearly superior to simply estimating intrinsic parameters based upon
general information provided by manufacturers. However, there are times when calibration is impractical
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and one must make an intelligent guess based upon commonly provided information such as the vertical and
horizontal �eld of view alone.

The mapping is rather straight forward, but for the sake of completeness it is presented here. Table 2
presents the conclusions drawn from this section relating �eld of view, image size and intrinsic parameters
for each sensor used in the Fort Carson data collection. Table 2 lists the �elds of view, pixel dimensions
of the images, and the intrinsic parameters de�ned earlier. For the color and IR sensors, two entries are
listed. The �rst entry for color lists the parameters derived from the calibration procedure described in the
previous section. The second are parameters derived from the speci�cations of the color sensor. Speci�cally,
the knowledge that the �lm is 36mm wide, 12mm high, and a 50mm lens was used.

FOV fu FOV fv Dimensions Scale Center
Sensor Rad. Deg. Rad. Deg. du dv su sv tu tv

Color (from Cal.) 0.705 40.4 0.496 28.4 720 480 -978 947 345.0 227.8
Color (from Specs.) 0.691 39.6 0.471 27.0 720 480 -1000 1000 359.5 239.5
FLIR (Visual Cal.) 0.434 24.9 0.401 23.0 256 256 -580 630 127.5 127.5
FLIR (from Specs) 0.419 24 0.419 24 256 256 -602 602 127.5 127.5
range 0.271 15.5 0.060 3.4 120 24 -440 400 59.5 11.5

Table 2: Intrinsic Sensor Parameters for Fort Carson Color, IR and Rang.

The �rst of the two entries for the FLIR are based upon the manufacturers speci�ed �eld of view for the
FLIR. The second incorporates a correction generated by hand based upon visual appearance of modeled
3D objects in both range and IR. This was done interactively using our own multi-sensor visualization
software [GBSF95, GBSF94]. With this software, it is possible to �rst align a 3D object model with range
data and also with IR using the manufacturers speci�cations for the IR sensor. Then a user can adjust the
scale factors so as to make the projection of the object model more precisely match the appearance of the
object in IR. This process is certainly not assured of generating the true intrinsic parameters, but it will
generate compatible range and IR parameters for objects at similar depth.

The parameters for the LADAR range sensor are based upon �eld calibration using calibrated imagery.
To calibrate the horizontal angular pixel resolution, the sensor was �eld tested viewing a pair of survey
markers 50 feet apart at 184 feet from the sensor. To calibrate the vertical angular resolution, the senosr
viewed two vertical markers 3:7 feet apart at 157 feet. The maximum range measured by the LADAR is
1074 feet, and hence multiplying a raw pixel value by the ratio 1074=4095 yields a range measurement in
feet. The � on the range meaurement is approximately 1 foot [Bel93]. More will be said about the geometry
of the LADAR in the following section.

In going back and forth between alternative ways of describing a sensor, a minor point where confusion
can arise concerns the exact 'position' of a pixel. The convention used here is that the pixel centers are
points on the U; V image plane with integer coordinates. When drawing an image as a grid, this convention
means the pixels centers fall at intersections of grid lines. This relationship is illustrated in Figure 2.

When going from a speci�cation of the �eld of view and image dimensions, an assumption about the
optical center must be made. Considering an image with dimensions (du; dv), the obvious default assumption
is to place the optical center at the center of the image.

C =
cu
cv
1

=

du�1
2

dv�1
2

1

(13)

The terms tu and tv in the projection matrix de�ned in equation 1 are the coordinates of the image center
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V

U

X

Y

Pixel (0, 0)

Pixel (5, 3)

Figure 2: Illustrating pixel coordinate conventions.

and therefore two of the four intrinsic parameters are now known.

tu
tv
1

=
cu
cv
1

(14)

So long as the optical center and image centers, the scale factors are also easily computed. The key
observation is that half the pixels span have the �eld of view angle, and therefore:

fu = 2arctan

�
du

2su

�
fv = 2arctan

�
dv

2sv

�
(15)

Inverting this relationship yields expressions for the scale factors in terms of the dimensions and �eld of view.

su =
du
2

tan fu
2

sv =
dv
2

tan fv
2

(16)

This is the clearest and simplest way to solve for the scale factors. However, it does not completely address
the relationships between points in 3D and their mappings to points in the UV image plane. There is an
alternative derivation which, while more cumbersome, also adds some additional insight into the relationships
involved.

Consider the mapping between the corners of the image and the corresponding 3D points which project
to the corners. The �eld of view determines the minimum and maximum X and Y values visible to the
sensor at a given depth Z.

Xmin = � tan
�
fu
2

�
Z Ymin = � tan

�
fv
2

�
Z

Xmax = tan
�
fu
2

�
Z Ymax = tan

�
fv
2

�
Z

(17)

The choice of Z in equations 17 will not matter when projecting points to the image plane. For the sake of
simplicity, points on the Z = 1 plane may be selected as the 3D corners.

The corners in the UV image plane may also be expressed in terms of upper and lower bounds.

umin = cu � du�1
2

vmin = cv � dv�1
2

umax = cu +
du�1
2

vmax = cv +
dv�1
2

(18)
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To determine the scale factors it is su�cient to map one corner on the Z = 1 plane to its corresponding
corner on the UV image plane. We will select the bottom left corner (umin; vmin) yielding the constraint:

umin

vmin

1
=

su 0 tu 0
0 sv tv 0
0 0 1 0

Xmax

Ymin

1
1

(19)

Note that the lower bound on U is being mapped to the upper bound on X . This ips the sign of the U
axis relative to the X axis. The reversal is made so that objects may be viewed forward of the camera, i.e.
with positive Z values while at the same time allowing the image plane to have a natural origin at the lower
left corner. This reversal of direction is illustrated in Figure 2.

Solving equation 19 for the scale factor using values from equations 17 and 18 yields

su = �(umin�tu)
tan( fu2 )

sv = (vmin�tv)
tan( fv2 )

(20)

These expression simplify to those already presented above when it is noted that when the optical centers
and image centers are coincident

umin � tu =
du

2
vmin � tu =

dv

2
(21)

Thus leading �nally to

su = �
du
2

tan fu
2

sv =
dv
2

tan fv
2

(22)

Equations 16 and 22 are identical up to the change in sign on su which reverses the U axes relative to the
X axis.

4 LADAR Range Sensor Geometry

The imaging geometry for the LADAR range sensor is similar, but not identical to that of a perspective
camera. The key distinction is that the LADAR has a constant sampling angle per pixel. This is not true
of a projective sensor, in which pixels subtend increasingly large angles as they move away from the image
center.

The radial mapping between a pixel (u; v) in a LADAR range image and the point in the world sampled
by that pixel depends upon the angles (�; �) encoded by the pixel coordinate. There is a 2D scale and
translation transformation between the angles (�; �) and pixel coordinates (u; v) which moves the image
center and changes the units from radians to pixels.

u

v

1
=

ru 0 tu
0 rv tv
0 1

�

�

1
=

ru� + tu
rv�+ tv

1
(23)

The mapping from 3D Cartesian coordinates to the image plane involves both this 2D a�ne transformation
as well as a spherical to Cartesian coordinate transformation. The angles (�; �) are the azimuth and elevation
of a ray projecting out from the LADAR focal point to a point in the scene a distance D from the focal
point. As such, (�; �) represent rotation about the vertical and horizontal axes respectively.

To derive the spherical to Cartesian transformations it helps to view (�; �) as representing rotation about
the vertical and horizontal axes respectively. Consider a new measurement speci�c coordinate system L0 in
which the Cartesian coordinate of the point being viewed is de�ned as the point D units out the Z axis.

PL0 =
0
0
D

(24)
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The coordinate transformation we seek maps L0 into the canonical LADAR system L. To accomplish
this transformation, a point PL0 must �rst be rotated about the X axis by an amount � representing the
elevation of the point above the horizontal. Next the point must be rotated about the Y axis by an amount
� representing the panning of the sensor in the XY plane. Composing these two rotation matrices in the
proper order de�nes the relationship between the two coordinate systems.

X

Y

Z

=
cos � 0 sin �
0 1 0

� sin � 0 cos �

1 0 0
0 cos� sin�
0 � sin� cos�

0
0
D

=
cos� sin �D
sin�D

cos� cos �D
(25)

The inverse mapping from Cartesian coordinates X;Y; Z to pixel coordinate �, � and depth D is expressed
by the following equations:

D =
p
X2 + Y 2 + Z2 (26)

� = arctan
X

Z
(27)

� = arcsin
Y

D
(28)

Combining these equations with the angular scale factors in equation 23 yields the expression for the UV
LADAR coordinates of a 3D point.

u = ru arctan

�
X

Z

�
+ tu (29)

v = rv arcsin

�
Yp

X2 + Y 2 + Z2

�
+ tv (30)

4.1 Parameters for the Fort Carson LADAR

The LADAR used to collect the Fort Carson data was calibrated before the data collection by collecting
imagery of surveyed features and measuring the angular resolution. This yields measured r values:

ru = �438:6
�
Pixels
radian

�
rv = 383:1

�
Pixels
radian

�
(31)

As already reported, the LADAR images contain 120x24 pixels. The �eld of view values reported in
Table 2 are derived from the images size and scale factors ru and rv as follows:

fu =
120� 1

438:6
(32)

= 0:271 Radians (15:5 Degrees)

fv =
24� 1

383:1
(33)

= 0:060 Radians (3:4 Degrees)

In the absence of precise calibration it is assumed that the image center for the LADAR is just the center
of the bounded image plane and hence the translation terms tu and tv using the pixel center method of
Figure 2, are as follows:

tu = 59:5 Pixels (34)

tv = 11:5 Pixels (35)

9



4.2 Spherical Versus Perspective Mappings and Image Displacement

While the Spherical Mapping de�ned in equation 25 for the range sensor is a better model of what actually
takes place in LADAR, it is fair to ask whether over typical �elds of view and sampling resolutions the
di�erence is signi�cant relative to a perspective mapping.

One way to answer this question is to plot the Euclidean o�set between the UV mapping from spherical
projection versus the UV mapping from perspective projection for the same 3D points over the sensor �eld
view. Using the perspective matrix from equation 1, the mapping for perspective projection is

up = su
�
X
Z

�
+ tu vp = sv

�
Y
Z

�
+ tv

= �435:9 �X
Z

�
+ 59:5 = 383:0

�
Y
Z

�
+ 11:5

(36)

Substituting the intrinsic spherical parameters in equations 31, 34 and 35 into equations 29 and 30 yields
the following spherical mapping from 3D points to the UV LADAR image plane.

us = ru arctan
�
X
Z

�
+ tu vs = rv arcsin

�
Yp

X2+Y 2+Z2

�
+ tv

= �438:6 �X
Z

�
+ 59:5 = 383:1

�
Yp

X2+Y 2+Z2

�
+ 11:5

(37)

It is now possible to ask how these two mappings di�er over the sensor �eld of view. For points at
Z = 100, the visible points have X values ranging from �13:65 to 13:65 and Y values ranging from �3:0
to 3:0. By plotting the Euclidean distance between the two image mappings for corresponding 3D points
one can see the extent to which the two mapping di�er over di�erent portions of the image. The Euclidean
di�erence � may be written as:

�(X;Y ) =

q
(up � us)

2
+ (vp � vs)

2
(38)

This di�erence measured over all visible points is shown as a surface plot in Figure 3. Observe the di�erence
never exceeds 0:15 over the entire image. Hence, while the spherical mapping is more correct given the
sensor design, the di�erence between the two with respect to relative pixel mappings in the image planes
never varies more than by 15% of the width of a single pixel.

4.3 Spherical Versus Perspective Mappings and Range Displacement

The previous section showed that relative to the displacement between pixel coordinates, the di�erence
between spherical and perspective projection is not signi�cant for the speci�c case of the Fort Carson LADAR.

This section takes up a di�erent question: what if range data is back-projected into the scene assuming
perspective when it has in fact been collected using spherical projection. To test this case, the same �eld of
planar points at Z = 100 will be considered. This time, these will be imaged using the spherical projection,
and then back-projected into the scene using perspective.

The mapping for points in the world to pixels using spherical projection was already expressed in equa-
tion 37. Let us introduce the convention of writing down a range pixel l as a coordinate-value pair:

l =

0
@ u

v

1
; D

1
A =

0
B@

ru arctan
�
X
Z

�
+ tu

rv arcsin
�

Yp
X2+Y 2+Z2

�
+ tv

1

;
p
X2 + Y 2 + Z2

1
CA (39)

where u and v are the image coordinates of a point in 3D and D is the recorded depth to that point.
The projected point can then be back-projected into the scene using the perspective rather than spherical

mapping. Figure 4 shows the error introduced by mixing the projection schemes. The graph has been
generated for pixels at 100m. Note the error is quite small relative to the large change in Z.
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Figure 3: Pixel Mapping � over viewable points (X;Y ). � is Euclidean distance between spherical and
perspective projections. The di�erence is least alone the line Y = 0 and never exceeds 0:15.

5 Deviations from Perfect Boresight Alignment

Consider transformations between three distinct 3D coordinate reference frames: a world reference W and
two sensor reference frames A and B. De�ne the 3D transformation from frame W to frame A as:

MWA = SWARWATWA (40)

where SWA is a scale transformation, RWA is a rotation and TWA is a translation. Hence, the standard
mapping of points from one frame of reference to another is accomplished by pre-multiplying the point by
the transformation.

A = MWAW (41)

where W is a point in reference frame W and A is the same point expressed in the range sensor reference
frame R. An analogous transformation MWB maps points from the world to reference frame B.

These transformations are often described as the extrinsic sensor parameters. In the case where MWA =
MWB, the sensors have identical references frames and pixel mappings will di�er only as a function of the
sensor parameters. Equality of extrinsic parameters between two sensors may be thought of as the condition
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Figure 4: Reconstructed Z 0 for viewable points (X;Y; 100) when Perspective and Spherical Projection are
mixed. Here, the X-axis (on the right) and Y -axis (on the left) are in meters at the target. The Z-axis is
Z 0 in meters, with the plane at 100 meters representing the true depth, Z. Note characteristic shape similar
to pixel displacement, but tiny absolute deviation from true 100 meters. Greatest deviation is roughly 2
millimeters in Z over 25 meters in X .

which arises when two sensors are perfectly bore-sight aligned. In other words, they have coincident focal
points and coincident optical axes.

How minor deviations from perfect bore-sight alignment alter the relative mapping between sensor pixels
is of key interest when doing sensor fusion. The remainder of this section will consider how 3D points map
to the respective pixel coordinates of sensors A and B

5.1 The Base-Case: Perfect Bore-Sight Alignment

In the case of perfect bore-sight alignment, the transformations MWA = MWB are equal and hence may
be neglected. Therefore, the projection matrixes de�ned above operating on the same 3D point allow us to
derive points A and B in the respective image coordinates of the two sensors A and B.

A0 =
s�u 0 t�u
0 s�v t�v
0 0 1

X

Y

Z

B0 =
s�u 0 t�u
0 s�v t�v
0 0 1

X

Y

Z

(42)
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The prime notation A0 emphasizes that this linear algebraic expression produces a point equivalent up to a
scale factor and that the true u� and v� coordinates are indicated in the normalized form A where the third
element is 1.

Carrying out the indicated linear multiplication yields:

A0 =
s�uX + t�uZ

s�vY + t�vZ

Z

B0 =
s�uX + t�uZ

s�vY + t�vZ

Z

(43)

and after normalization, the following are the coordinates of a point (X; Y; Z) in the UV� and the UV�
planes.

u� = s�u
�
X
Z

�
+ t�u u� = s�u

�
X
Z

�
+ t�u

v� = s�v
�
Y
Z

�
+ t�v v� = s�v

�
Y
Z

�
+ t�v

(44)

Our goal is a linear mapping from UV� to UV� . This can be readily computed by equating the common ratio
terms X

Z
and Y

Z
in the above equation and solving for the UV� coordinates in terms of the UV� coordinates.

u�
v�
1

=

s�u
s�u

0 0

0
s�v
s�v

0

0 0 1

u�
v�
1

+

t�u � s�u
s�u

t�u
t�v � s�v

s�v
t�v

1

(45)

5.2 Rotation About the Optical Axis

Consider now the above case with minor modi�cation: sensor B is rotated about the Z, the optical axis, by
an amount �. The transformation and projection equation are:

A =
s�u 0 t�u
0 s�v t�v
0 0 1

X

Y

Z

B =
s�u 0 t�u
0 s�v t�v
0 0 1

cos� sin� 0
� sin� cos� 0

0 0 1

X

Y

Z

(46)

In a manner similar to that shown above, one can equate the ratios X
Z
and Y

Z
and solve for a linear mapping

from UV� to UV� .

u�
v�
1

=

s�u
s�u

cos�
s�u
s�v

sin� 0

� s�v
s�u

sin�
s�v
s�v

cos� 0

0 0 1

u�
v�
1

�
s�u
s�u

cos�
s�u
s�v

sin� 0

� s�v
s�u

sin�
s�v
s�v

cos� 0

0 0 1

t�u
t�v
1

+
t�u
t�v
1

(47)

In the special case that the horizontal and vertical scale factors for sensor A are equal, as are the scale
factors for sensor B, then and only then does this reduce to a 2D rotation plus a translation. To see this, let

s� = s�u = s�v
s� = s�u = s�v

and k =
s�

s�
(48)

and note that equation 47 simpli�es to

u�
v�
1

= k

cos� sin� 0
� sin� cos� 0

0 0 1

u�
v�
1

+

t�u � s�u
s�u

cos�t�u � s�u
s�v

sin�t�v
t�v +

s�v
s�u

sin�t�u � s�v
s�v

cos�t�v
1

(49)

When the scale factors are unequal, then the mapping between UV� and UV� is a general 2D a�ne
transformation.

B = M A (50)

13



where

M =

�
s�u
s�u

cos�
� �

s�u
s�v

sin�
� �

t�u � s�u
s�u

cos�t�u � s�u
s�v

sin�t�v

�
�
� s�v
s�u

sin�
� �

s�v
s�v

cos�
� �

t�v +
s�v
s�u

sin�t�u � s�v
s�v

cos�t�v

�
0 0 1

(51)

The basic conclusion to be drawn from this section is that there is still an exact 2D a�ne mapping
between UV� and UV� and subject to equal horizontal and vertical scaling the rotation angle maps directly
into 2D. However, in the more general case, the full 6 degrees of freedom associated with the 2D a�ne
transform are needed to represent warping induced by rotation about unequally sampled axes.

5.3 Translation Along the Z axis

Consider again a perfectly bore-sight aligned pair of sensors and now ask what happens if sensor B is
translates ahead or behind sensor A along the common optical axis. Under these conditions, the projection
equations for a common point are:

A0 =

s�u 0 t�u 0
0 s�v t�v 0
0 0 1 0
0 0 0 1

X

Y

Z

1

B0 =

s�u 0 t�u 0
0 s�v t�v 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 Tz
0 0 0 1

X

Y

Z

1

(52)

Clearly the coordinates on the UV� plane are the same a derived in equation 44. The coordinates of the
same point in the UV� plane are

u� =
s�uX + t�uZ + t�uTz

Tz + Z
(53)

v� =
s�vY + t�vZ + t�vTz

Tz + Z
(54)

The denominator Tz + Z complicates the task of comparing coordinate systems. However, X and Y can
be expressed in terms of the other variables for each transformation and then these common expressions
themselves may be equated. Thus, coordinates in UV� may be expressed in terms of coordinates in UV� so
long as the depth values Z is assumed to be known.

B = M A (55)

where

M =

�
s�u

(Tz+Z)s�u

�
0

�
t�u � s�ut�uZ

(Tz+Z)s�u

�
0

0
�

s�v
(Tz+Z)s�v

� �
t�v � s�vt�vZ

(Tz+Z)s�v

�
0

0 0 1 0
0 0 0 1

(56)

The depth of a point Z changes the scaling applied to the point in mapping between UV� and UV� . Under
the highly restricted case of viewing points all lying in a plane of constant Z, the scaling is constant for
all points and the matrix M reduces to a simple 2D a�ne transformation. However, in general no single
2D a�ne transformation can capture the UV� to UV� mapping if sensor B is translated ahead of or behind
sensor A.
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5.4 Translation in a Common Image Plane

Again, starting with the perfectly bore-sight aligned con�guration, consider what happens when sensor B
translates in a common XY image plane. The projection equations for this case are:

A0 =

s�u 0 t�u 0
0 s�v t�v 0
0 0 1 0
0 0 0 1

X

Y

Z

1

B0 =

s�u 0 t�u 0
0 s�v t�v 0
0 0 1 0
0 0 0 1

1 0 0 Tx
0 1 0 Ty
0 0 1 0
0 0 0 1

X

Y

Z

1

(57)

The coordinates of the projection of the point (X; Y ; Z) in the UV� plane are

u� =
s�u (X + Tx)

Z
+ t�u (58)

v� =
s�v (Y + Ty)

Z
+ t�u (59)

Taking the same approach as in the previous section, the coordinates of a common point projected to the
UV� plane expressed in terms of its coordinates in the UV� plane can be shown to depend upon the depth
of the point Z.

B = M A (60)

where

M =

s�u
s�u

0
�
s�uTx
Z

� s�ut�u
s�u

+ t�u

�
0

s�v
s�v

�
s�vTy
Z

� s�vt�v
s�v

+ t�v

� (61)

Unlike the translation in Z case, the dependency on depth in this case modi�es the translation of one plane
relative to the other. In simple and intuitive terms, this means that for points all at a common depth Z

there is a 2D a�ne mapping between UV� and UV�.
In general, the 2D scale change between systems is identical to that for perfect bore-sight aligned sensors.

The relative 2D translation is similar to the bore-sighted case but with one additional term which depends
upon the depth of the points Z and the planar translation Tx; Ty between the two sensors. As should come
as no surprise, the apparent 2D translation between UV� and UV� gets larger for points near the sensors
and less for points far from the sensor.

5.5 Rotation About the Horizontal and Vertical Axes

The case of rotation about the X and Y axes is considerably more complicated than those previously
considered. It is no longer practical to solve a direct mapping between the UV� and UV� image planes. The
mapping is no longer well expressed as a 2D a�ne transformation, even allowing for simple parameterization
in say the depth value Z. The relationship between image spaces is coupled through the angles of rotation
and dependent upon all three point coordinates: (X; Y; Z).

It is relatively simple, though, to express the mapping from points in the world to the UV� image plane.

B0 =

s�u 0 t�u 0
0 s�v t�v 0
0 0 1 0
0 0 0 1

cos�y 0 sin�y 0
0 1 0 0

� sin�y 0 cos�y 0
0 0 0 1

1 0 0 0
0 cos�x sin�x 0
0 � sin�x cos�x 0
0 0 0 1

X

Y

Z

1

(62)

The coordinates of the projection of the point (X; Y; Z) may now be written as

u� =
s�u (�y � Vxzy)

�y � Vzyx + t�u (63)

v� =
s�v (�x � Vyz)
�y � Vzyx + t�v (64)
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where

�x =
cos�x
sin�x

(65)

�y =
cos�y
sin�y

(66)

Vyz =
Y

Z
(67)

Vzy =
Z

�Y (68)

Vxzy =
X

�x � Vzy (69)

Vzyz =
�x � Vzy
�X (70)

6 Approximating Small Pan/Tilt Errors with Translation

Much of the previous development has been working up to answer the following question. Given two sensors,
one range and one optical, which are nearly bore-sight aligned, how much error is introduced if small rotations
about the X and Y axes are modeled as translation in a common image plane?

To address this question, �rst there is the matter of whether to model the range sensor as a spherical or
a perspective projection sensor. While we know spherical is more consistent with the actual construction of
the sensor, Section 4 demonstrated that little error is introduced for a sensor with parameters such as were
used in the Fort Carson data collection. The greatest error in relative pixel mappings over the sensor �eld of
view was 0:15 pixels. Therefore, because it will make our task slightly simpler, both the range and optical
sensors will be assumed to be projective.

The equations relating a general point (X; Y; Z) to the image plane of a sensor assuming translation
versus rotation have already been presented in equations 58, 59, 63 and 64. Here let us restate these equation
with the following change. Let sensor A rotate about X and Y and let sensor B translate in the common
XY plane.

u� =
s�u (cos�yX + (cos�xZ � sin�xY ) sin�y)

(cos�xZ � sin�xY ) cos�y � sin�yX
+ t�u (71)

v� =
s�v (cos�xY + sin�xZ)

(cos�xZ � sin�xY ) cos�y � sin�yX
+ t�u (72)

u� =
s�u (X + Tx)

Z
+ t�u (73)

v� =
s�v (Y + Ty)

Z
+ t�u (74)

There are two steps involved in analyzing the degree to which the translation mapping can stand in for
the rotation mapping. The �rst addresses the question of sensor parameters. The comparison is most direct
if identical sensor parameters are assumed. For the comparison, we will use the following intrinsic parameters

s�u = su
s�v = sv
s�u = su
s�v = sv

t�u = 0
t�v = 0
t�u = 0
t�v = 0

(75)

the image center translation terms, once equal, will drop out of any comparison, and therefore might as well
be set to zero.

16



The next matter is how to determine what degree of translation Tx; Ty to introduce in order to approx-
imate a rotation �x; �y. The goal shall be to track a common point at depth D. More precisely, consider
the point (0; 0; D) in the coordinate reference frame for sensor A. Determine a translation for sensor B
such that this point projects to the center of the UV� image plane.

To accomplish this transformation, observe that the coordinates in the world reference frame W of the
point to be tracked P 0 may be expressed in terms of the rotation of sensor A.

0
0
D

1

=

cos�y 0 sin�y 0
0 1 0 0

� sin�y 0 cos�y 0
0 0 0 1

1 0 0 0
0 cos�x sin�x 0
0 � sin�x cos�x 0
0 0 0 1

X 0

Y 0

Z 0

1

(76)

The world coordinates of the point P 0 are therefore

X 0

Y 0

Z 0

1

=

� sin�yD
� sin�x cos�yD
cos�x cos�yD

1

(77)

Setting equations 73 and 74 equal to zero for the point to be tracked provides an expression for the
translations necessary to keep the point at depth D in the center of view of the translating as well as the
rotating sensor.

Tx = sin�yD Ty = cos�y sin�xD (78)

Substituting these back into equations 73 and 74 yields a general mapping from world reference frame W to
the UV� image plane subject to the constraint that the translating sensor track the point at depth D viewed
by the rotating sensor A.

(79)

u� =
su (X + sin�yD)

Z
(80)

v� =
sv (Y + cos�y sin�xD)

Z
(81)

Recall also the simpli�cations from equation 75 have been employed.
It is now possible to de�ne a simple expression which is a function of a points placement in the world,

(X; Y; Z) and sensor A's rotation (�X ; �y) which represents the Euclidean distance between projections of
equivalent 3D points on the two UV� and UV� image planes.

� =

q
(u� � u�)

2 + (u� � u�)
2 (82)

(83)

Using equation 82 it is possible to examine a variety of scenarios and determine how much pixel error
between corresponding 3D points is introduced when XY sensor translation is used to approximate XY

sensor rotation.

6.1 Scenario 1: Points at Constant Dept

Consider a plane of points at depth Z = 100 meters. The tracking point will therefore be assumed to lie
at depth D = 100 as well. Set the azimuth �y and the elevation to �x speci�c values and plot � as a
function of independent variables X and Y . The plots in Figures 5a and 5b shows this plot for the color
sensor parameters: row 2 of Table 2. The di�erence between the two is Figure 5a uses smaller rotations than
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Figure 5: Pixel Coordinate Di�erences � over a plane Z = 100. a) color sensor and rotation (�y ; �x) =
(1=5; 1=10) degrees, b) color sensor and (1; 1=2) degrees, c) FLIR sensor and (1; 1=2) degrees, d) LADAR
sensor and (1; 1=2). Vertical axis �, left bottom axis X and right bottom axis Y .
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Figure 5b. Figure 5c and 5d show � for the FLIR (row 4 of Table 2) and range sensor. The reduced �elds
of view and pixel resolution lead to much smaller absolute � values for these sensors.

To really understand the plots in Figure 5 it is important to understand the choice of bounds for X and
Y both in this and other examples. The idea is to select bounds which match that portion of 3D space
visible to the sensor. To accomplish this, the bounds must depend upon two things. First they depend upon
the width W and height H of the area in view at depth Z. They also depend upon the translation used to
track the center point being viewed by both sensors: (Tx; Ty).

W = 2 tan
fu

2
Z

H = 2 tan
fv

2
Z

Hence the bounds on X and Y are:

Xmax = Tx +W=2 Xmin = Tx �W=2
Ymax = Ty +H=2 Ymin = Ty �H=2

(84)

6.2 Scenario 2: Limited Deviation from Target Tracking Depth

The next question to consider using � from equation 82 is how the rotation versus translation approximation
holds up over a limited range of depth values centered about the tracking depth. To give this some practical
motivation, assume an object 2 meters wide is viewed by sensors A and B with A rotated about the vertical
axis by an amount �y = 1=5 degree.

Figure 7 shows � as a dependent variable of X and Z. For the intrinsic camera parameters, the values for
the color sensor in Table 2), row 2, are used. The other variables in equation 82 are constrained as follows.

Z 2 [99; 101] (85)

X 2 [Xmin; Xmax] (86)

D = 100 (87)

�x = 0:0 (88)

�y = 1=5(degrees (89)

Y = �Ymax + (1� �)Ymin (90)

The term � allows movement of the point being viewed vertically with � = 0:5 specifying the center of the
image.

6.3 Scenario 3: Wide Variation in Depth

It is clear that translation very well approximates rotation for a depth �eld about the tracking depth D.
Another question is just how signi�cantly does the approximation of Z values di�er from D.

Figure 7 shows � as a dependent function of rotation angle �y and point depth Z. For the intrinsic
camera parameters, the values for the color sensor in Table 2), row 2, are again used. The other variables in
equation 82 are constrained as follows.

Z 2 [50; 1050] (91)

�x 2 [0:0; 3:0] degrees (92)

X 2 Xmax +Xmin

2
(93)

Y 2 Ymax + Ymin

2
(94)

D = 100 (95)
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Figure 6: Pixel Di�erences � over small variations in Depth. a) Viewing the image center (� = 0:5), b)
Viewing a point 60% up the image (� = 0:6). Vertical axis �, left bottom axis Z and the right bottom
axis X .
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Figure 7: Pixel Di�erences � over large variations in Depth for a center pixel as a function of Z and �y. a)
surface plot with � vertical, Z facing and �y back into page. b) contour plot of same data with �y vertical
and Z horizontal.
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Thus, Figure 7 show essentially the deviation between the center pixel for sensor B relative to sensor A as
true depth to the point varies. Figure 7a show presents the data as a surface plot and Figure 7b as a contour
plot.

While the surface plot is more suggestive of shape, the contour plot may be thought of as delineating
pairs of values (Z; �y) such that the maximum pixel error � does not exceed a threshold.

Figure 7b shows the accuracy modelling small errors in rotation with planar translations. Using the
assumption the sensors are near-boresight aligned, the error introduced while using the translation mapping
are quite small. As is to be expected, as the near boresight constraint is relaxed, increasing amounts of error
are introduced.
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