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Abstract

Our purpose in the present paper is to investigate the structural properties of the newly proposed
Cayley networks of constant node degree 4. We show that the graph contains rings of maximal length
in presence of multiple faults. Our results provide further evidence to the usefulness and robustness
of these network graphs.

1 Introduction

Cayley graphs have drawn considerable interest in the recent past for designing interconnection net-

works because of many desirable properties like low diameter, low degree, high fault tolerance etc.

Cayley graphs are based on permutation groups and include a large number of families of graphs, like

star graphs [AK89, AK87], hypercubes [BA84], pancake graphs [AK89, QAM94] and others [Sch91,

DT92]. All Cayley graphs are regular, but almost none of the Cayley graphs studied so far offer con-

stant node degree (where node degree does not change with size or dimension of the network). There

are a number of applications where we need such constant degree networks; in VLSI design we need
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them for area efficient layout [CAB93]; there are applications where the computing nodes can have only

a fixed number of I/O ports[SP89]. Constant degree network graphs are of considerable practical im-

portance since De Bruijn graphs are being used for designing a 8096 node multiprocessor at JPL for

the Galileo project [Pra91]. There exist graphs in the literature with bounded node degree; most pop-

ular among them are De Bruijn graphs [PR82], Moebius graphs [LS82], and Cube-Connected Cycles

[PV81]. Most of these graphs, except Cube-Connected Cycles, are not regular and they offer low vertex

connectivity (fault tolerance); for example, almost all nodes in a De Bruijn graph have a node degree of

4 while the vertex connectivity of the network is only 2. Recently authors in [VS96] have developed a

new family of Cayley graphs of constant degree 4 where they have shown that the graph is regular, has

a logarithmic diameter and has a vertex connectivity 4 (thus, maximally fault tolerant); an optimal rout-

ing algorithm has also been developed. It is to be noted that these graphs seem to be similar to butterfly

network with wraparound [ABR90]. Note that Cube-Connected Cycles are also regular Cayley graphs,

but the graphs TCNn in [VS96] have a higher vertex connectivity (hence higher fault tolerance) and it

accommodates a larger number of nodes than cube-connected cycle graph for the same diameter.

Our purpose in the present paper is to further investigate the topological properties of these tetravalent

Cayley networks (we call TCNn). Specifically, it is important to be able to simulate cycles of different

lengths. Embedding of rings of maximal lengths is essential to run parallel algorithms developed for

arrays and vectors. The presence of a Hamiltonian in TCNn shown in [VS96, Sto87]. An important

related question is “is a cycle of length N � c, where N is the number of nodes in the graph and c

is a constant, contained in the graph, in the presence of a single arbitrary faulty node”. The question

is answered affirmative for hypercubes [CL91]; we do not know of any constant node degree graph

with that property. We develop structural properties of TCNn, enumerate cycles of different lengths in

TCNn, show that TCNn always has a Hamiltonian and then show that the graph TCNn (where N =

n� 2n) does contain a cycle of length N � 2 in presence a single arbitrary node failure and a cycle of

length at least N � 4 in presence of two arbitrary node failures. Thus, we show that the graph TCNn

is not only an attractive alternative to De Bruijn graphs for VLSI implementation in terms of regularity

and greater fault tolerance without additional cost, but also is competitive with hypercubes in terms of

embedding fault tolerant rings of maximal length.
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2 Tetravalent Cayley Networks TCNn

Tetravalent Cayley Networks TCNn is defined as a graph on n� 2n vertices for any integer n, n � 3;

each vertex is represented by a circular permutation of n symbols in lexicographic order where each

symbol may be present in either uncomplemented or complemented form. Let tk, 1 � k � n denote the

k-th symbol in the set of n symbols (we use English alphabets as symbols; thus for n = 4, t1 = a, t2 = b,

t3 = c and t4 = d). We use t�
k

to denote either tk or �tk. Thus, for n distinct symbols, there are exactly n

different cyclic permutation of the symbols in lexicographic order and since each symbol can be present

in either complemented or uncomplemented form, the vertex set of TCNn (i.e. the underlying group �)

has a cardinality of n:2n (for example, for n = 3, the number of vertices in G3 is 24; abc, cab, �cab are

valid nodes while acb or bac are not). Let I denote the identity permutation t1t2 � � � tn. Since each node is

some cyclic permutation of the n symbols in lexicographic order, then if a1a2 � � �an denotes the label of

an arbitrary node and a1 = t�
k

for some integer k, then for all i, 2 � i � n, we have ai = t�(k+i) mod n+1.

The edges of TCNn are defined by the following four generators in the graph:

g(a1a2 � � �an) = a2a3 � � �ana1

f(a1a2 � � �an) = a2a3 � � �an�a1

g�1(a1a2 � � �an) = ana1 � � �an�1

f�1(a1a2 � � �an) = �ana1 � � �an�1

Remark 1 Figure 1 shows the proposed degree four Cayley graph TCN3 of dimension 3. The set of

four generators, 
 = ff; g; f�1; g�1g closed under inverse; in particular g is inverse of g�1 and f is

inverse of f�1; thus the edges in TCNn are bidirectional.

This graph TCNn, n � 3 is regular with node degree 4, has a diameter b3n
2
c (logarithmic in number of

nodes) and is maximally fault tolerant (vertex connectivity is 4); see [VS96] for the details as well as an

optimal routing algorithm.
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Figure 1: Example Graph for n = 3 (24 nodes)

3 Fault Tolerant Ring Embedding in TCNn

Since TCNn is a Cayley graph, it is vertex symmetric [AK89], i.e., we can always view the distance

between any two arbitrary nodes as the distance between the source node and the identity permutation by

suitably renaming the symbols representing the permutations. Thus, in our subsequent discussion about

the distance between a source node and a destination node, the destination node is always assumed to

be the identity node I without any loss of generality.

Definition 1 [VS96] Consider an arbitrary node s = a1a2 � � �an in TCNn. There exists an unique

integer k such that ak = t�1. We define left distance DL(s) and right distance DR(s) of the node s
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(from the identity node) as follows:

DL(s) = 2(k �m1 � 1) + (n� k + 1)

DR(s) = 2(n� k �m2) + (k � 1)

where

m1 = max
m

f9(i; j) j (1 � j � k) ^ (1 � i � n�m+ 1) ^ ajaj+1 � � �aj+m�1 = titi+1 � � � ti+m�1g

m2 = max
m

f9(i; j) j (k � j � n) ^ (1 � i � n�m+ 1) ^ ajaj+1 � � �aj+m�1 = titi+1 � � � ti+m�1g

Then, we define the distance of the node s (from the identity node) as

D(s) = minfDL(s); DR(s)g

Example 1: Consider the node s = f�ghija�bcd�e in TCN10 (the identity node is abcdefghij). Here,

k = 6, since a6 = \a" = t1, m1(s) = 3 (due to the substring “hij”), m2(s) = 2 (due to the substring

“cd”), DL(s) = 9 and DR(s) = 11. Hence D(s) = 9.

Theorem 1 [VS96] For an arbitrary node s = a1a2 � � �an in TCNn, D(s0) = D(s) � 1, where s0 =

�(s) and � 2 fg; f; g�1; f�1g.

Definition 2 Any cycle in TCNn consisting of only the f -edges (induced by the symmetric functions f

or f�1) is called an f -cycle. Similarly, any cycle in TCNn consisting of only the g-edges (induced by

the symmetric functions g or g�1) is called an g-cycle.

Theorem 2 All of the n:2n nodes of TCNn of dimension n are partitioned into vertex disjoint g-cycles

of length n; number of g-cycles in TCNn is 2n.

Proof : Consider an arbitrary node v = a1a2 � � �an in TCNn. For any i, i � 1, let gi(v) = g(gi�1(v)),

where g1(v) = g(v). It is easy to observe that gn(v) = v. Also, gi(v) 6= gj(v) for 1 � i; j � n and

i 6= j. Thus, from an arbitrary vertex v if the g function is repeatedly applied, a cycle of lengthn is traced

in the graph TCNn. That these g-cycles are vertex disjoint follows from the fact that g(v1) = g(v2), if

and only if v1 = v2. 2
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Remark 2

� Consider the symbol set ft1; t2; � � � ; tng for TCNn. For all k, 1 � k � n, each g-cycle in TCNn

has a unique node starting with t�
k

(either t1 or �t1, but not both).

� For each g-cycle in TCNn, the unique node starting with t�1 is called the leader node. Since there

are n symbols and the leader nodes start with t�1 (either t1 or �t1), there are 2n leader nodes in

TCNn which is equal to the number of g-cycles in TCNn.

� Consider an arbitrary leader node t�1t
�

2t
�

3 � � � t
�

n
(of some g-cycle); each leader node maps to a n

bit binary number by assigning 0 if t�
i
= �ti and 1 if t�

i
= ti for 1 � i � n. This gives us a

convenient way to number all the 2n g-cycles in TCNn from g0 to g2n�1.

Theorem 3 For any arbitrary vertex v in TCNn such that f(v) = u and g(v) = w, there exists a vertex

x such that g(x) = u and f(x) = w; furthermore, the nodes v, u, w and x are all distinct and nodes u

and x belong to the same g-cycle.

Proof : Consider an arbitrary vertex v = a1a2 � � �an. Then u = f(v) = a2 � � �an�a1 and w =

g(v) = a2 � � �ana1. Choose the node x as x == g�1(u) = �a1a2 � � �an. Thus, g(x) = u and f(x) =

a2 � � �ana1 = w. That these four nodes are distinct are also obvious from the fact that the different

symbols in the nodes are distinct. 2

Corollary 1 Similarly, for any arbitrary vertex v in TCNn such that f�1(v) = u0 and g�1(v) = w0,

there exists a vertex x0 such that g(u0) = x0 and f(w0) = x0; nodes v, u0, w0 and x0 are all distinct and

nodes u0 and y0 belong to the same g-cycle, but different from the g-cycle containing nodes u and y of

Theorem 3.

Definition 3 Two g-cycles, say gi and gj, are said to be adjacent if there exists a vertex v 2 gi and a

vertex u 2 gj such that v = f(u) or u = f(v).

Theorem 4 If two g-cycles gi and gj are adjacent, then there are two f-edges connecting gi and gj.
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Figure 2: The reduced graph of TCN3

Proof : Since gi and gj are adjacent, there exists a vertex v 2 gi such that f(v) = u, where u 2 gj.

Let g(v) = w. Then by Theorem 3 f�1(w) = y = g�1(u); thus y is a node in gj. Thus there are two

f -edges between the two g-cycles gi and gj . 2

Theorem 5 Each g-cycle in TCNn is adjacent to n different g-cycles.

Proof : Consider an arbitrary g-cycle with the leader v = a1a2 � � �an, where a1 = t�1. Now, f(v) =

a2a3 � � �an�a1 = y0 and the node y0 belongs to the g-cycle with leader �a1a2a3 � � �an. In general, consider

the nodes yi, 1 � i < n, such that yi = f(vi)where vi = gi(v). We have yi = f(ai+1ai+2 � � �ana1a2 � � �ai) =

ai+2ai+3 � � �ana1a2 � � �ai�ai+1; this node yi belongs to a g-cycle with the leader a1a2 � � �ai�ai+1ai+2 � � �an.

Obviously, the nodes yi, 0 � i < n, belong to different f -cycles (they have different leaders) and hence

any g-cycle is adjacent to n different g-cycles in TCNn. 2

Corollary 2 Consider a g-cycle gi for a given i, 0 � i < 2n; i is a (n) bit binary number, say bn�1bn�1 � � � b0.

Then the g-cycle gi or gbn�1bn�1���b0 is adjacent to the following n g-cycles: g�bn�1bn�1���b0 ,

gbn�1�bn�1bn�2���b0 , � � �, gbn�1bn�1����b0 .

Definition 4 For a given TCNn compute the reduced graph RGn with respect to g-cycles in the fol-

lowing way: condense each g-cycle into a single node and label that node with the n bit binary number

corresponding to the g-cycle (see corollary 2); connect two arbitrary vertices by an undirected edge iff

the corresponding g-cycles are adjacent in TCNn.
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Remark 3 Figure 2 shows the reduced graphRG3 corresponding to TCN3. Each vertex in the reduced

graph RGn corresponding to TCNn has a binary label of length n and has a degree n; its neighbors

being all g-cycles whose labels are at a Hamming distance 1 from it by Corollary 2. Clearly, the reduced

graph RGn corresponding to TCNn is a hypercube of order n [SS88].

Theorem 6 The reduced graph RGn corresponding to TCNn has a vertex connectivity n.

Proof : RGn is a hypercube of dimension n; a hypercube of dimension n has a vertex connectivity n;

see [SS88]. 2

Consider two arbitrary adjacent g-cycles, say g1 and g2. By Theorem 3, there exist nodes v; w 2 g1 and

nodes u; y 2 g2 such that u = g(y) = f(v) and w = g(v) = f(y). A larger cycle can be constructed

involving all nodes of g1 and g2 by using these two f -edges as shown in Figure 3. This, coupled with the

facts that g-cycles in TCNn are vertex-disjoint and each g-cycle is adjacent to exactly n distinct other

g-cycles, immediately suggests a procedure to construct cycles in TCNn of length k � n, 1 � k � 2n.

Remark 4 Given any g-cycle (of length n), one can choose any two consecutive nodes, and apply The-

orem 3 to generate a cycle of length n+2; see Figure 3. Thus, for two adjacent g-cycles, either we can

combine the two g-cycles to generate a cycle of length 2n or we can combine one of the g-cycles with

two nodes to generate a cycle of length n+ 2.
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Remark 5 Combining the above two remarks, we have can identify cycles in TCNn of length kn+2k0

where k and k0 are positive integers and k + k0 � 2n.

Theorem 7 In presence of a single arbitrary faulty node the graph TCNn contains a cycle of length

N �1, if n is odd and of length N �2 if n is even, where N is the number of nodes in TCNn, N = n2n.

Proof : Let g� be the g-cycle containing the faulty node; label the nodes in g� as u1; u2; � � � ; un and

let u1 be the faulty node without any loss of generality. The reduced graph RGn without the g-cycle g�

is still connected and following the construction scheme discussed earlier, we have a cycle C of length

N�n consisting of all other g-cycles. The fault-free nodes in g� can now be paired as (u2; u3), (u4; u5),

� � �. Now, u3 = g(u2) and hence by Theorem 3, the nodes f(u2) and f�1(u3) belong to the same g-cycle

which is already in the large cycle C and hence the nodes u2 and u3 can be combined with C to produce

a larger cycle of length N � n + 2 (Remark 4). We do the same for all the pairs. When n is odd, all

fault free nodes of g� can be combined while if n is even the last node un cannot be combined. Thus,

the length of the resulting cycle is N � 1, if n is odd and is N � 2 if n is even. 2

Figure 5 shows the cycle of length 23 in TCN3 when the faulty node is bac.

Theorem 8 In presence of two arbitrary faulty nodes the graph TCNn contains a cycle of of length at

least N � 4, where N is the number of nodes in TCNn, N = n2n.

Proof : The proof is very similar to that of the previous theorem. If both faulty nodes belong to the

same g-cycle g�, we proceed as before to construct the large cycle containing all the rest of the g-cycles

and then connect the non faulty nodes from g� to the large cycle; if the faulty nodes are adjacent, the

length of the resulting cycle would be either N � 2 or N � 3, depending on whether n is even or odd. If

the faulty nodes are not adjacent, worst case length of the resulting cycle is N � 4. If the faulty nodes

belong to two different g-cycles g�1 and g�2 respectively, we can treat each as a separate case like in the

proof of the previous theorem. Note that the reduced graph RGn is connected without the two g-cycles

(connectivity of RGn is n) and each node in any g-cycle is connected to two different nodes in two

different g-cycles (by f and f�1 functions respectively). Thus, the argument is valid even when g�1 and

g�2 are adjacent and the worst case length of the resulting cycle is N � 4. 2
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Figure 5: Cycle in presence of single fault

4 Conclusion

We have investigated different topological properties of the newly proposed Cayley networks of con-

stant degree 4. Specifically, we have identified the cycle structure in TCNn, and showed that TCNn

contains a Hamiltonian. We have shown that TCNn contains a cycle of length N � 2 (N = n2n) in

the presence of a single arbitrary faulty node and contains a cycle of length at least N � 4 in presence

of two arbitrary faulty nodes. Thus, the Cayley networks TCNn are robust in terms of embedding fault

tolerant rings.
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