
Computer Science
Technical Report

Optimal Routing in Trivalent Cayley Graph
Network�

Premkumar Vadapalli and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523

Technical Report CS-96-114

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�To appear in Information Processing Letters



Optimal Routing in Trivalent Cayley Graph Network�

Premkumar Vadapalli and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523

Abstract

We develop an optimal routing algorithm as well as establish the actual value of the diameter of the newly
proposed trivalent Cayley network graphs in [VS95]

1 Introduction

Fixed node degree networks constitute an important and essential component in designing any distributed system.

Networks, in which degree of the nodes increases with the size of the network, are not suitable for applications in-

volving large number of nodes [CAB93]. Fixed node-degree networks are also needed from VLSI implementation

point of view [SP89]; there are applications where the computing nodes in the interconnection network can have

only a fixed number of I/O ports [CAB93]. There are a few network graphs in the literature [PR82, LS82, PN93]

where the node degree does not increase with network size; most popular among them are the De Bruijn graphs

[PR82] or the Moebius graphs [LS82], but they are not regular and they are also not maximally fault tolerant.

Very recently authors in [VS95] have proposed a new family of regular networks of degree 3; it has been shown

that the network has a has a logarithmic diameter in the number of nodes and has a vertex connectivity of 3, i.e.,

the graphs are maximally fault tolerant (vertex connectivity cannot exceed the node degree). Although a simple

routing algorithm was provided that gave an upper bound on the diameter of the network, optimal routing in the

network was left as an open problem. Our purpose in the present paper is to develop an optimal routing algorithm

as well as establish the exact value of the diameter of these trivalent Cayley network graphs.

2 Trivalent Cayley Graph Gn

In this section, we briefly recall the construction of the trivalent Cayley graphs Gn to facilitate our design of the

optimal routing algorithm in the next section; details about the topological properties and fault tolerance of these

graphs can be found in [VS95].

Gn is defined as a symmetric (undirected) graph on N = n�2
n vertices for any integer n, n � 2; each vertex

corresponds to a circular permutation of n symbols in lexicographic order where each symbol may be present in

�To appear in Information Processing Letters

1



either un complemented or complemented form. Let tk, 1 � k � n denote the k-th symbol in the set of n symbols

(we use English alphabets as symbols; thus for n = 4, t1 = a, t2 = b, t3 = c and t4 = d). We use t�
k

to denote

either tk or �tk. Thus, for n distinct symbols, there are exactly n different cyclic permutation of the symbols in

lexicographic order (disregarding the complements) and since each symbol can be present in either complemented

or un complemented form, the vertex set of Gn has a cardinality of n:2n. For example, for n = 3, the number of

vertices in G3 is 24; abc, cab, �cab are valid nodes while acb or �bac are not (since neither acb nor bac is a cyclic

permutation of the three symbols in lexicographic order). Let I denote the identity permutation t1t2 � � � tn. Since

each node is some cyclic permutation of the n symbols in lexicographic order, then if a1a2 � � � an denotes the label

of an arbitrary node and a1 = t�
k

for some integer k,

then for all i, 2 � i � n, we have ai = t�
(k+i) mod n+1

. The edges of Gn are defined by the following three

generators in the graph:

f(a1a2 � � � an) = a2a3 � � � an�a1

f�1
(a1a2 � � � an) = �ana1 � � � an�1

g(a1a2 � � � an) = a1a2a3 � � � �an

Note that The three generators are closed under inverse; in particular g is its own inverse (g = g�1) and f is

inverse of f�1; thus the edges in Gn are bidirectional. Also, For any n, n � 2, the graph Gn: (1) is a symmetric

(undirected) regular graph of degree 3; (2) has n� 2
n vertices; and (3) has 3n� 2

n�1 edges. Figure 1 shows the

trivalent Cayley graphG3 of dimension 3.

3 Diameter and Optimal Routing

Since Gn is a Cayley graph [VS95], it is vertex symmetric [AK89], i.e., we can always view the distance between

any two arbitrary nodes as the distance between the source node and the identity permutation by suitably renaming

the symbols representing the permutations. For example, let �cab be the source node and bc�a be the destination

node. We can map the destination node to the identity node abc by renaming the symbols as b 7! a, �b 7! �a,

c 7! b, �c 7! �b, �a 7! c and a 7! �c. Under this mapping the source node becomes �b�ca. Then the paths between the

original source and destination nodes become isomorphic to the paths between the node �b�ca and the identity node

abc in the renamed graph. Thus, in our subsequent discussion about a path from a source node to a destination

node, the destination node is always assumed to be the identity node I .

Definition 1 Consider an arbitrary node s = a1a2 � � � an in Gn. There exists an unique integer k such that ak =

t�1. We define left distance DL(s) and right distance DR(s) of the node s (from the identity node) as follows:

DL(s) = 2(k � 1�m1 � 1) + c1 + 2(n� k + 1)� c2 if (jL +m1 < k)

= 2(k � 1�m1) + c1 + 2(n� k + 1)� c2 otherwise

DR(s) = 2(n� k + 1�m2 � 1) + c2 + 2(k � 1)� c1 if (jR +m2 � n)

= 2(n� k + 1�m2) + c2 + 2(k � 1)� c1 otherwise

2



abc

bca-

cab
__

abc
_ __

bca
__

cab
_

abc

-

-

-

-

bca
__

cab
_ __

abc

bca

-

-

-

cab

cab cab

abc

abc

abc

abc

cab
cab

bca

bca
bca

bca

-

-

-

-

-

-

-

---

--

-

- -

Trivalent Cayley Graph of Dimension 3 with 24 nodes

Figure 1: Trivalent Cayley Graph G3

where

c1 = jfi j 1 � i < k ^ ai = �tp, for some pgj

c2 = jfi j k � i � n ^ ai = �tp, for some pgj

m1 = max
m

f9(iL; jL) j (1 � jL � k) ^ (1 � iL � n�m+ 1) ^ ajLajL+1 � � � ajL+m�1 = tiLtiL+1 � � � tiL+m�1g

m2 = max
m

f9(iR; jR) j (k � jR � n) ^ (1 � iR � n�m+ 1) ^ ajRajR+1 � � � ajR+m�1 = tiRtiR+1 � � � tiR+m�1g

Then, we define the distance of the node s (from the identity node) as

D(s) = minfDL(s);DR(s)g

Remarks:

� The symbol ak = t�1 divides the node symbol sequence a1a2 � � � an into two parts: a1a2 � � � ak�1 and

akak+1 � � � an. The parameter c1 indicates the number of complemented symbols in the first part and the

parameter c2 indicates the number of complemented symbols in the second part.

� The parameter m1 indicates the length of the longest substring(s) of un complemented symbols in the first

part. We use jL to indicate the left end of the leftmost of such substrings. If m1 = 0, then we set jL = 1.

� The parameter m2 indicates the length of the longest substring(s) of un complemented symbols in the second

part. We use jR to indicate the left end of the leftmost of such substrings. If m2 = 0, then we set jR = k.

3



Example 1: Consider the node s = f�ghija�bcd�e in G10 (the identity node is abcdefghij). Here, k = 6, since

a6 = \a" = t1, m1(s) = 3 (due to the substring “hij”), jL = 3, m2(s) = 2 (due to the substring “cd”), jR = 8,

c1(s) = 1(due to �g), c2(s) = 2 (due to �b and �e), DL(s) = 13 (we use the second formula as we do not have any

complemented symbol to the right of the string corresponding to m1 before “a”) and DR(s) = 15 (we use the

first formula as we have “�e” to the right of the string corresponding to m2). Hence D(s) = 13.

Theorem 1 For an arbitrary node s = a1a2 � � � an in Gn, D(s0) = D(s) � 1, where s0 = �(s) and � 2

fg; f; f�1g.

Proof : We need to consider the case of each operator separately; assume �(s) = s0 with corresponding m0
1,

m0
2,c01, c02 and k0.

Case 1: (� = g) We have k0 = k, m0
1 = m1, c01 = c1 and there can be four possible changes in c2 and m2 (note

that either c2 or m2 or both can change at most by 1).

Subcase A: c02 = c2 � 1 & m0
2 = m2 + 1. We get DL(s

0
) = DL(s) + c2 � c02 = DL(s) + 1 and

DR(s
0
) = 2(n� k0 + 1�m0

2) + c02 + 2(k0 � 1)� c01 = DR(s)� 1; or D(s0) = D(s)� 1.

Subcase B: c02 = c2 � 1 & m0
2 = m2. We get DL(s

0
) = DL(s) + 1 and DR(s

0
) = DR(s) � 1; or

D(s0) = D(s)� 1.

Subcase C: c02 = c2 + 1 & m0
2 = m2 � 1. We get DL(s

0
) = DL(s)� 1 and DR(s

0
) = DR(s) + 1;

or D(s0) = D(s)� 1.

Subcase D: c02 = c2 + 1 & m0
2 = m2. We get DL(s

0
) = DL(s) � 1 and DR(s

0
) = DR(s) + 1; or

D(s0) = D(s)� 1.

Case 2: (� = f ) We have k0 = k � 1 and there can be four possible changes in c1, c2,m1 and m2

Subcase A: c01 = c1 � 1, c02 = c2, m0
1 = m1 & m0

2 = m2 + 1. We get DL(s
0
) = DL(s) � 1 and

DR(s
0
) = DR(s)� 1; or D(s0) = D(s)� 1.

Subcase B: c01 = c1 � 1, c02 = c2, m0
1 = m1 & m0

2 = m2. We get DL(s
0
) = DL(s) � 1 and

DR(s
0
) = DR(s) + 1; or D(s0) = D(s)� 1.

Subcase C: c01 = c1, c02 = c2+1, m0
1 = m1 &m0

2 = m2. We getDL(s
0
) = DL(s)�1 andDR(s

0
) =

DR(s)�1(+ if we have the same formula forDR(s) andDR(s
0
) ;� otherwise); orD(s0) = D(s)�1.

Subcase D: c01 = c1, c02 = c2 + 1, m0
1 = m1 � 1 & m0

2 = m2. We get DL(s
0
) = DL(s) + 1

and DR(s
0
) = DR(s) � 1(+ if we have the same formula for DR(s) and DR(s

0
) ;� otherwise); or

D(s0) = D(s)� 1.

Case 3:(� = f�1) We have k0 = k + 1 and there can be four possible changes in c1,c2,m1 and m2

Subcase A: c01 = c1 + 1, c02 = c2, m0
1 = m1 & m0

2 = m2 � 1. We get DL(s
0
) = DL(s) + 1 and

DR(s
0
) = DR(s) + 1; or D(s0) = D(s) + 1.

Subcase B: c01 = c1 + 1, c02 = c2, m0
1 = m1 & m0

2 = m2. We get DL(s
0
) = DL(s) + 1 and

4



DR(s
0
) = DR(s)� 1; or D(s0) = D(s)� 1.

Subcase C: c01 = c1, c02 = c2�1, m0
1 = m1 &m0

2 = m2. We getDL(s
0
) = DL(s)+1 andDR(s

0
) =

DR(s)�1(� if we have the same formula forDR(s) and DR(s
0
) ;+ otherwise); or D(s0) = D(s)�1.

Subcase D: c01 = c1, c02 = c2 � 1, m0
1 = m1 + 1 & m0

2 = m2. We get DL(s
0
) = DL(s) � 1

and DR(s
0
) = DR(s) � 1(� if we have the same formula for DR(s) and DR(s

0
) ;+ otherwise); or

D(s0) = D(s)� 1.

2

Corollary 1 For the identity node I = t1t2 � � � tn in Gn, D(I) = 0 and D(�(I)) = 1 for any �, � 2 fg; f; f�1g.

Remark: Given an arbitrary node s = a1a2 � � � an, the values of k, c1, c2, m1 and m2 can be easily computed

in linear time by scanning the node label once; while doing so, the values of jL and jR (refer definition 1 and the

following remarks) corresponding to m1 and m2 respectively may also be stored as integer variables. In example

1 above, the values of jL and jR are 3 and 8 respectively. Once this is done, DL(s), DR(s) and D(s) can be

computed according to definition 1 and the algorithm Opt Rout, given in Figure 2 can be used to generate a path

of length D(s) from the node s to the destination node I , the identity permutation.

Theorem 2 Given an arbitrary node s in Gn, the algorithm Opt Rout correctly generates an optimal (shortest)

path of length D(s) from the node s to the identity node I .

Proof : From the definition 1 and the construction of the algorithm, it is evident that the algorithm constructs a

path of length D(s) for a given node s. From theorem 1, application of any one of the three operators g; f; andf�1

can decrement the value of D of any node at best by one and since these are the only edges in the graph, the

algorithm does generate the optimal path from the node s to the destination node I . 2

Corollary 2 For an arbitrary node s = a1a2 � � � an in Gn, the function D(s), given by definition 1, correctly

gives the distance of the node s from the identity node I = t1t2 � � � tn.

Corollary 3 For an arbitrary node s = a1a2 � � � an in Gn (s 6= I), there exists a �, � 2 fg; f; f�1g such that

D(�(s)) = D(s)� 1.

Proof : Obvious from theorem 2. 2

Theorem 3 The diameter of the graph Gn is given by

D(Gn) =

8<
:

2n� 2 if n is even

2n� 3 if n is odd

5



Procedure Opt Rout(s;m1; m2; jL; jR; DL(s); DR(s))
if DL(s) < DR(s) then

begin
for i = 1 to (jL � 1) do

Move to the f neighbor of the current node.
for i = 1 to (jL � 1) + (n� k + 1) do

if the last symbol of the current node is un complemented
then move to the g neighbor and then to the f�1 neighbor
else move to the f�1 neighbor

if (k � jL �m1) > 0 then
begin

for i = 1 to k � jL �m1 � 1 do
Move to the f�1 neighbor of the current node.

Move to the g neighbor of the current node.
for i = 1 to k � jL �m1 � 1 do

if the first symbol of the current node is un complemented
then move to the f neighbor and then to the g neighbor
else move to the f neighbor

end
end

else
begin

for i = 1 to n� jR �m2 do
Move to the f�1 neighbor of the current node.

if (n� jR �m2) � 0 then
begin

Move to the g neighbor of the current node.
for i = 1 to (n� jR �m2) + (k � 1) do

if the first symbol of the current node is un complemented
then move to the f neighbor and then to the g neighbor
else move to the f neighbor

end
else

begin
for i = 1 to (k � 1) do

if the first symbol of the current node is un complemented
then move to the f neighbor and then to the g neighbor
else move to the f neighbor

end
for i = 1 to jR � k do

Move to the f neighbor of the current node.
for i = 1 to jR � k do

if the last symbol of the current node is un complemented
then move to the g neighbor and then to the f�1 neighbor
else move to the f�1 neighbor

end

Figure 2: Algorithm Opt Rout(s;m1;m2; jL; jR;DL(s);DR(s))

6



Proof : To get the diameter, we must maximize the distance. Left distance and right distance are maximized by

putting m1 = 0 and m2 = 0, i.e.,

D
max

L
=

8<
:

2(n� 1) + c1 � c2

2n+ c1 � c2

D
max

R
=

8<
:

2(n� 1) + c2 � c1

2n+ c2 � c1

Now, m1 = 0 and m2 = 0 ) c1 + c2 = n. Hence to maximize the distance, we must minimize jc1 � c2j, i.e.

jc1 � c2j = 0 when n is even and jc1 � c2j = 1 when n is odd. Under these circumstances, maximum possible

value for the distance D = min(DL;DR) becomes 2n� 2 when n is even and 2n� 3 when n is odd.

Consider the node x = �tbn
2
c+1 � � � �tn�t1 � � � �tbn

2
c. We see that D(x) = 2n� 3, if n is odd and D(x) = 2n� 2,

if n is even. Thus, the result follows. 2

4 Conclusion

We have developed an optimal routing algorithm as well as determined the diameter of the trivalent Cayley graphs.

Thus, these results further enhance the utility of those network graphs.

References

[AK89] S. B. Akers and B. Krishnamurthy. A group-theoretic model for symmetric interconnection networks.
IEEE Transactions on Computers, 38(4):555–566, April 1989.

[CAB93] C. Chen, D. P. Agrawal, and J. R. Burke. dBCube: a new class of hierarchical multiprocessor intercon-
nection networks with area efficient layout. IEEE Transactions on Parallel and Distributed Systems,
4(12):1332–1344, December 1993.

[LS82] W. E. Leland and M. H. Solomon. Dense trivalent graphs for processor interconnection. IEEE Trans-
actions on Computers, 31(3):219–222, March 1982.

[PN93] D. J. Pritchard and D. A. Nicole. Cube connected Möbius ladders: an inherently deadlock free fixed
degree network. IEEE Transactions on Parallel and Distributed Systems, 4(1):111–117, January 1993.

[PR82] D. K. Pradhan and S. M. Reddy. A fault tolerant communication architecture for distributed systems.
IEEE Transactions on Computers, C-31(9):863–870, September 1982.

[SP89] M. R. Samatham and D. K. Pradhan. The De Bruijn multiprocessor network: a versatile parallel pro-
cessing and sorting network for VLSI. IEEE Transactions on Computers, 38(4):567–581, April 1989.

[VS95] P. Vadapalli and P. K. Srimani. Trivalent Cayley graphs for interconnection networks. Information
Processing Letters, 54(6):329–335, June 1995.

7


