Computer Science COIO§‘&%8
Technical Report

University

A Self-Stabilizing Leader Election

Algorithm for Tree Graphs®
Gheorghe Antonoiu and Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Coallins, CO 80523

Technica Report CS-96-115

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.col ostate.edu

*To appear in Journal of Parallel and Distributed Computing

A Sdf-Stabilizing Leader Election Algorithm for Tree
Graphs'

Gheorghe Antonoiu and Pradip K Srimani
Department of Computer Science
Colorado State University
Ft. Collins, CO 80523

Abstract

We propose a sdlf stabilizing algorithm (protocol) for leader election in atree graph. We show the
correctness of the proposed algorithm by using a new technique involving induction.

1 Introduction

In adistributed system the computing elements or nodes exchange information only by message passing.
Every node has a set of local variableswhose contents specify thelocal state of the node. The state of the
entire system, called the global state, isthe union of the local states of all the nodes in the system. Each
nodeisallowed to have only a partial view of the global state, and this depends on the connectivity of the
system and the propagation delay of different messages. Yet, the objective in a distributed system isto
arrive at adesirable global final state (legitimate state), defined by some invariance rel ation on the global
state. Systems that reach the legitimate state starting from any arbitrary (possibly illegitimate) statein a
finite number of steps are called self-stabilizing systems [Dij74, Dij86]. Thiskind of property is highly
desirablefor fault tolerance [Lam84] in distributed systems, since without having aglobal memory, global
synchronization is achieved in finite time without any intervention by any external agency and thus the

system can correct itself automatically from spurious perturbations or failures. Few such algorithmshave

*To appear in Journal of Parallel and Distributed Computing

1

recently appeared in the literature [GH90, BGW89, ADG92, CD94, FD94, CS94]; agood survey of self-
stabilizing algorithms can be found in [Sch93].

Our purposeinthe present paper isto propose a self-stabilizing leader el ection protocol for treegraphs.
Thus, aglobal state, where an arbitrary node can be unambiguously elected leader as identified by some
characteristics (uniquefrom all other nodes), isalegitimatestate. Self stabilizing leader el ection protocols
for uniform rings of primal size has been proposed in [Hua93], while it has been shown in [BP89] that
self stabilizing protocol for leader election cannot exist for a ring of composite size. We first show that
it may not be possible to design a self stabilizing leader election protocol for atree that can elect a leaf
node to be the leader; but, it ispossibleto get a self stabilizing protocol to elect an arbitrary internal node
astheleader if anodeisalowed totestif itisaleaf or internal node and accordingly take an appropriate
action. Thisisquite natural for atree graph whilethereisno apparent way to do thisin aring; notethat in
all existing self-stabilizing a gorithms each node can get the information about the states of its neighbor
nodes and hence does effectively know the number of its neighbors. In this sense, our protocol does have
asingleuniform rulefor each node of the tree and ecah node uses the information about its own state and
its neighbor states.

Each node, in our agorithm, hasalevel variable ranging over thedomain {0,1,2,---,C'} whereC'is
apositiveinteger greater than or equal to the number of the nodesin thetree. Thelevel variablesinitially
have arbitrary values; the algorithm changes the levels in such away that the system reaches, in finite
time, a state where a unigque but arbitrary internal node has alevel that is strictly greater than that of all
other nodes; thisinternal node can then be treated as the leader.

One useful startegy to prove the correctness of self stabilizing algorithmsisto use bounded monoton-
icaly decreasing functions defined on global system states [Kes88]; most existing self-stabilizing algo-
rithms are proved to be correct by defining a bounded function that is shown to decrease monotonically
at every step [Hua93]. We do not use this technique; instead we devel op a new proof technique using in-

duction on the number of nodesin the tree; this may prove useful in proving the correctness of other self

stabilizing protocols. Most self-stabilizing algorithms assume that thereis a central daemon [Dij74] that
decides which of the privileged nodes makes a move. In other words, the central daemon seriaizes the
moves made by the privileged nodes, but the order in which the privileged nodes are chosen to make their
moves is not known a priori. However, the presence of such a daemon is against the fundamental idea
of adistributed system. Our algorithm does uses a much weaker assumption; when multiple nodes are
privileged, an arbitrary subset of these nodes (at least one) can make a move as long as the active nodes
are not adjacent. Our algorithm does not assume any order or any specific rule in which the set of active

nodes is chosen at any point of time.

2 Theleader Election Algorithm

Consider an arbitrary tree graph 7' = (V, E'). We use the following notations:

e nN: The number of nodesin thetree.

C: Aninteger constant such that C' > n.

N (7): Set of the neighbors of node .

L(i): Leve of node:.

P(i): Predecessor pointer of node i, pointing to one of the nodesin A\ (7).

Thus each node : maintains two data structures L (i) and P (i) which can have arbitrary initia values,
Notethat 0 < L(i) < C; wedo not need to consider level values beyond that (even after perturbation) as
we can always assume each processor is capable of doing amodulo (C' + 1) operation and always keeps
the remainder (mod (C + 1)) asitslevel value. Also, we do not assume the nodes are assigned unique
identification numbers. Each node maintains an ordered list of its neighbors and the predecessor pointer

P(i) at node i is set to point to one of its neighbors or null.

Definition 1 Anode: iscalled leaf nodeiff |/ (7)] = 1. Anodeiiscalledinternal nodeiff |V (i)| > 1.

Definition 2 For each node: we define the following sets: Ny (i) = {j € N'(i)|L(j) < L(i)}, Ng(i) =
{7 e N())|L(j) = L(4)}, and N (i) = {j € N(¢)|L(j) > L(4)}. For each node i we also define two

integers: m(i) = max{L(k)|k € Np(i)} and M (i) = max{L(k)|k € Ng(i) U Ng(i)}.

We make the following immediate observations:

e Inany givensystemstate, thesets Ny, (i), Ng (i), and N (i) for each nodei inthetree givethe subset
of neighbors of node i whose levelsare respectively lessthan, equal to and greater than that of node
i. Of course, one or more of the setsfor anode: may be null, but all three cannot be simultaneously

null (7' isaconnected graph).

e Inany given system state, the sets N, (i), Nx(7), and N¢ (i) for each node i are pairwise mutually

digoint.

e Since each node looks at its own state and the states of its neighbors, each node can compute these

three setsin any system state.
o If |N.,(1)] = 0,thenm(i) isnot defined; similarly, if | Ny (i) UNg(7)| = 0, then M (7) isnot defined.

Definition 3 In any given system state, a node i is called maximal iff | N (i)| = 0 and is called strictly
maximal iff |[N¢ (i) U Ng(i)| = 0. Smilarly, anode i is called minimal iff [N, ()] = 0 and is called

strictly minimal iff | N, (i) U Ng(i)| = 0.

The concept of the legitimate state depends on what we want to maintain. Since our objective in the
present paper is leader election, any possible system state, where an arbitrary node can be unambigu-
oudly elected leader as identified by some characteristics (unique from all other nodes), may be called a
legitimate state. Note that this requirement does not say anything about the characteristics of the other

nodes as long as one node can be singled out based on some characteristics. The second requirement is

4

that therest of the nodesin thetree T" are aware of the identification of the leader node. Any other system
stateis an illegitimate state.

The purpose of a self-stabilizing algorithm is to bring back the stable state once the system isin any
possibleillegitimate state by any perturbation. The basic ideaiswhenever the systemisinanillegitimate
state at least one of the nodes should be able to recognize some local inconsistency and should take some
corrective action. Any action taken by a node in an illegitimate state depends only on its own state and
the states of its neighboring nodes (each node has only apartial view of the global system state). Asnoted
earlier, electing a leader does not need that each node in the tree T is assigned an unique identification;
only theleader node needsto have auniqueidentification. But, since each node needs to know the leader,
an actual algorithm may restrict the characteristics of the other nodes in some way. First, we state the

following theorem.

Theorem 1 There can be no self-stabilizing algorithm that assigns distinct numbers to the leaf nodes of

an arbitrary tree graph.

Proof : Consider atreeof 3 nodes: aninternal noder and two leaf nodesa and b. Each nodez maintains
some local data structure S(z). When anode = takes an action, the new value of S(x) depends only on
itsown state and those of its neighbors. Consider an illegitimate state with identical initial data structures
for nodes a and b; this has to be an illegitimate state for a self-stabilizing algorithm that would assign
distinct numbersto leaf nodes. So, either the internal nodeis privileged, or the nodes a, b are privileged,
or both. If theinternal node takes an action, the new state will also have have the property S(a) = S(b).
If a, b are privileged and one of them takes an action, the other one will remain privileged, since the state
of theinternal node—itsonly neighbor — didn’t change. Therefore, the node which didn’t take action can
take action and the new state will have S(a) = S(b). Hence, repeating the argument, there is an infinite

seguence of moves such that each state in the sequence has at least one privileged node. a

Corollary 1 Thereisno general sef-stabilizing algorithm that assigns distinct numbers to the nodes of

atree.

Theorem 2 Thereisno general sef-stabilizing algorithmthat can choose a leaf node as a leader.

Proof : Since asystem state with identical data structuresfor leaf nodesis also an illegitimate state for

any algorithm that elects aleaf node as |eader, the proof is similar to that of the previoustheorem. O

Remark 1 The theorem does not exclude the existence of such an algorithm for some particular classes

of trees.

Thus, the proposed algorithm would strive to elect an arbitrary internal node asthe leader. We restrict
ourselves to the first requirement of leader election and then later show that once the legitimate state is
reached, any non leader node can reach the leader node using the predecessor pointers. Our agorithm
has a single uniform rule for al the nodes in the graph. Each node looks at its own state and the states
of its neighbors and takes action by changing its own level. Thus, the global system state is defined by
the union of the level values at each node; the state space, although very large, isfinite. We introduce a
predicate ¥; for any node i;

W, L(i) > m(i) + 1,

Notethat ¥; isdefined only when m(7) isdefined for thenode:. \; istruefor anode: iff thedifference
of L(i) and themaximum of thelevel of thenodesin N, (i) is2 or more. Notethat =¥; = L(i) = m(i)+1,
since L(i) and m(7) areintegersand by definition m (i) < L(i). Wecan now statethealgorithm asasingle

rule for each node in the graph. The rule at node ; is asfollows:
if IN(7)] =1 A L(4) # 0 then L(i) = 0;
else if ¥; A |[Ng(i) U Ng(i)| < 1 then L(i) = m(i) + 1;

else if L(i) < C' A [|[Ne(i) U Np(i)| > 2V {|Na(i)] = 0 A [Np(i)| = 1 A ~¥;)]

then L(i) = min{M (i) + 1,C};

6

Note: By construction of the algorithm whenever ¥; needs be evaluated, it isalways defined; ¥; needsbe
evaluated only for an internal node j (with |NV(j)| > 1) suchthat |N¢(j) U Ng(j)| < 1 (thus, |NL(5)| >

1).

Definition 4 When an internal node x executes L(x) = m(x) + 1 (second clause of the algorithm), level
of node x decreases after this move (since ¥, istrue); we call thisa D-move. When an internal node x

executes L(x) = M(x) + 1, level of node = increases after this move; we call thisan I-move.

Remark 2 Aleaf nodex isprivilegediff L(x) # 0; aleaf node may be privileged in anillegitimate state,

but once it takes action it becomes un privileged and can never be privileged again.

Remark 3 Aninternal node x with L(z) < C isprivileged when |Ng(z)| > 0V |Ng(z)| > 1V U,;
an internal node = with L(x) = C' is privileged when ¥, A |[Ng(x)| < 1 (note that for a node = with
L(z) = C, Ng(xz) = 0). Note that when an internal node is privileged, it can take either a D-move
or an I-move, but not both. If it makes a D-move, it becomes un privileged after the move but may be
privileged subsequently due to moves by its neighbors. If it makes an I-move to make itslevel C, it may

be still privileged to make a D-move only.

Lemmal Inany systemstate, if all nodesare un privileged, Vx € T', L(z) < C.

Proof : Suppose otherwise. If anode = has L(z) = C and is un privileged, then either Ny (z) > 1, or
-V, or both. Consider the subset of nodesin 7" with level C'. This subset forms a subtree of 7" (consider
two nodes x, y € T withlevels C; since T isatree, there exists a unique path between x and y and each
node on this path must have alevel C' since they are all un privileged). Hence, there must exist at least
one node z: such that Ny(z) # 1 and hence -V, = L(z) = m(z) + 1; thus there exists a node y such
that L(y) = C' — 1. Since the node y isunprivileged, L(y) = m(y) + 1, i.e., there exists a node z such
that L(z) = C' — 2. Repeating this argument, we must have nodes with all the distinct level values from

C' to 0. Thisisa contradiction since the total number of nodesisn < C, hence the proof. O

7

At this point, we can have a precise definition of the legitimate (stable) state. A legitimate or stable state
isaglobal system state when no node is privileged. Specification of the set of |egitimate states depends

on the algorithm and can be obtained by complementing the predicates in the agorithm.

Definition 5 The systemisin a legitimate stateiff (i) Vo € T st. x isaleaf node, L(z) =0, (ii))Vz € T

st. zisaninternal node, L(x) < C'A |Ng(z)| = 0 A |[Ng(z)] < 1A L(z) = m(x) + 1.

Remark 4 In any illegitimate state, at least one node in the tree 7' is privileged. This directly follows

from Remarks 2 and 3 and Definition 5.

Lemma?2 Inanillegitimate state, if a node = with L(z) < C' ismaximal but not strictly maximal, then

it must be privileged; a strictly maximal node z isprivileged iff ¥, istrue.

Proof : A nodez with L(z) < C, whichismaximal but not strictly maximal, must have | Nz (z)| > 0;

astrictly maximal node = has |[N¢(x) U Ng(z)| = 0. Therest follows from Remark 3. O

Lemma 3 For atree 7" with n nodes, n > 3, in a legitimate (stable) state (i.e., no node is privileged),
there exists exactly one maximal node which is also strictly maximal. The level of this strictly maximal

nodeislessthan n.

Proof : Sinceno nodeisprivileged, Vx € T, L(z) < C (Lemma1). Thus, any un privileged maximal
node must be strictly maximal (Lemma 2). Consider the node = such that L(z) = maz{L(k) | k € V'}.
Sincethisnode = ismaximal and un privileged, it is strictly maximal. Suppose, another strictly maximal
node y exists. Then, there isa path between = and y via at |east one other node (both = and y are strictly
maximal). Let be z the node with the minimum level on this path. Since this node z has at least two
neighborswith levels greater than or equal to itsown level, node = is privileged, which isacontradiction.
Using an argument similar to that used in Lemma 1, there is apath from node x to aleaf such that on that
path the levels of the nodesare L(x), L(z) — 1, ..., 1, 0. Sincethere are at most » nodes in this path,

L(z) < n. O

Treewith 1 Treewith 2
internal node internal nodes

Figure 1: Star like Trees

Corollary 2 In any legitimate state, the unique strictly maximal node has a level that is strictly greater

than the level of any other node.

Lemma4 In any legitimate state, the unique strictly maximal node is the elected |eader and each node

can reach the leader.

Proof : Theleader node z has|Ng(z)| = 0 and it can set its predecessor pointer P(xz) = NULL. Any
other node y € T has|Ng(y)| = 1 and hence can set its predecessor pointer P(y) to point to the unique

nodein N¢(y). O

Definition 6 Aninternal nodeinatree Tiscalled atypel nodeif it hasat least two internal node neigh-
borsinT'; otherwiseitiscalled atypell node. Thus, thevertex set of T can be partitionedas’; UT,UT3,
where T; isthe set of type | internal nodes, T; isthe set of type Il internal nodes and 73 is the set of |eaf

nodes of thetree T'.

Remark 5 For agiventree T, if T} = (), then the tree T must be either a star or two stars connected by

an edge; see Figure 1. For any other tree T, the set 7 isnot null.
Definition 7 For agiventree T and agiven systemstate, let /,,,;, = min{ L(x)|z € T;UT,}, theminimum
level of internal nodes (both type | and type Il). Let L,,;, = {x € T UTy|L(z) = lpin }-

Lemmab In any illegitimate state, provided no leaf node makes any move, if a type Il internal node y
(y € Ty) makes a D-move such that L(y) becomeslessthan L(z) after the move, where L(z) isthe level

of node y’s unique type | neighbor =z, node y becomes permanently un privileged.

9

Proof : When nodey makesaD-move, | N¢(y)UNg(y)| < 1; and L(z) must be equal to or greater than
L(y) inorder that new level of nodey (after the move) becomeslessthan L(z). Thus, after themove, level
of node y is one greater than the maximum of the levels of itsleaf neighbors and isless than that of node
z. Leaf nodes do not make any move and for any subsequent move of the node z, itslevel will always be

greater than that of node y (since y € N (z)); thus the node y becomes permanently un privileged. O

Lemma 6 Sarting fromany illegitimate state, provided no |eaf node makes any move, one of the follow-

ing will occur in finite time:
o If |Lin| > 1, |Limin| Will decrease.
o If |Lyin| = 1, liin Will increase.

e At least oneinternal node will become permanently un privileged.

Proof : We consider two cases:

Casel: {,,;, = C. Inthiscase, L,,;, = T1 U T,. Nonodesin T; is privileged sinceit has at least two
neighborswith level C. Any nodey in Ty, if it isprivileged, can make only a D-move. Any such node y
has leaf node neighbors and exactly one 77 neighbor, say z (L(z) = C). After the D-move, the new level
of nodey will bem(y) +1 < C; nodey isnow un privileged and remain so permanently since leaf nodes
do not make any move (Lemmab).

Case2: l,,, < C. Consider anodey € Ty, U Ty — Ly, if thissetisnot empty. L(y) > £, If node
y makes an I-move, the new level of node y is still greater than ¢,,,;, and hence |L,,,;,, | does not increase.

For a D-move of node y, we consider two subcases.
Subcase 1: If y € T1, thenew level of y would bem(y) + 1 (m(y) > £pmin) @nd hence | L, |
does not increase.

Subcase2: If y € Ty, node y hasleaf node neighborsand exactly one7T; neighbor, say z (note

L(z) > lpmn)- If thenew level of node y (after the D-move) isgreater than L(z), | Ly, | does

10

not increase; otherwise, if this new level of node y is smaller than L(z), node y becomes

permanently un privileged (Lemma5).

Thus, for any move made by anodey € T, U Ty — L,;n, €ither the theorem is proved or |L,,,;,, | does not
increase. Now, consider anodey € L,,;,. If nodey doesnot makeamovein finitetime, it ispermanently
un privileged and the theorem is proved. Otherwise, consider again two subcases. If y € T}, y hasat least
two internal node neighbors, say y; and y,. We have, L(y1) > Cin, L(y2) > Cmin, @d L(y) = Copin;
thus node y must make an I-move. Hence, if | Ly, | > 1, | Ly | Will decrease, or £,,,;, will increase. If
y € Ty (node y hasleaf node neighbors and exactly one T neighbor, say z), y can make either an I-move
or aD-move. In caseof an I-move, if | Lin| > 1, | Liin| Will decrease, or £,,,;,, will increase. In case of a

D-move, level of node i will be less than that of node z and hence node y is permanently un privileged.

O
Remark 6 Note that the argument holds as long as adjacent nodes do not make concurrent moves.

Lemma 7 For atreeT with n nodes, starting fromany illegitimate state, there is no infinite sequence of

moves made only by internal nodes.

Proof : We prove by induction. For n = 2, the claim holds trivially since there is no internal node.
For n = 3, there is only one possible tree structure with one internal node; the internal node is either
un privileged, or becomes un privileged after itsfirst move. Assume the lemmaistrue for any tree with
(n — 1) nodesand for any C' > (n — 1). Consider atree with n nodesand C' > n; assume that internal
nodes make an infinite sequence of moves;, we will reach a contradiction. By repeated application of
Lemma, /,,;, will gradually increase (no node can be rendered permanently un privileged because of
our induction hypothesis) and in finitely many moves, /,,,;, will be equal to C' and L,,;,, will include all
the internal nodesin the tree. At thispoint, any internal node is either un privileged or can make at most

one D-move and become permanently un privileged. Thuswe reach a contradiction and hence the proof.

O

11

0 0 9
o@\i fﬁﬁ
@ © d e\;@

0

(i) PV ={c,d,e, g}, AV ={d}

0 0 9 0 0 0
0 @\i gﬁg/z) 0 @\i ﬁﬁﬁﬁ
@ © d @\®® @ © d @\®®

0 0

(i) PV ={d, g}, AV ={g} (i) PV = {d, e}, AV = {e}
PN <o PNV <@
(iv) PV = {d}, AV ={d} V)PV =0, AV =0

Figure 2: The Execution of the Algorithm
Lemma8 For atree T' with n nodes, starting with any illegitimate state, all nodes are un privileged in

finitely many moves.

Proof : It followsfrom Lemma7 and the fact that any leaf node can make at most one move. a

We can now state the following theorem about the termination of the algorithm in finite time.

Theorem 3 For atreeT with n nodes, starting with any illegitimate state, stable state is reached by the

algorithmin finite time.

Example: Figure2illustratesthe execution of the algorithm on an examplegraph from an arbitrary initial

state. Thetreein our example has9 vertices, {a, b, ¢, d, e, f, g, h,1, j}. Eachnodein thefiguresislabeled

12

with its name and itslevel. The set PV denotes the set of privileged nodes and the set AV denotes the
set of active nodes. It isto be noted that in a given state multiple nodes may be privileged and more than
one node may be active as long as active nodes are not adjacent; we have arbitrarily chosen a subset to
be active in our example. Figure 2(i) isthe initial state and the Figure 2(v) is the final legitimate state.
It isto be noted that there are many other possible sequences of moves that will bring the state back to a

stable state starting from the sameinitial illegitimate state.

3 Conclusion

We have proposed a self stabilizing algorithm for leader election in a tree graph. When the algorithm
terminates (in finite time), there is an unique node with alevel valuethat is strictly greater than the levels
of al other nodes; this is the elected leader node and each of the rest of the nodes has a unique way to
reach that leader. The nodesin teh tree are treated uniformly in the sense that each node executesasingle
uniform rule. Ecah node has only apartial view of the global state; it knows of its own state and the states
of its neighbors. Starting from any illegitimate state, the algorithm can elect an arbitrary internal node to
be the new leader; but no leaf node will ever be selected astheleader of thetree (aleaf nodein atreeisa
node with eaxctly one neighbor). We have shown that it may not be possible to design a self stabilizing
protocol that can elect aleaf nodeto betheleader. To do that, it may beinteresting to ook at probabilistic

self-stabilizing algorithms.

References

[ADG92] A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocks in step. Parallel Processing
Letters, 1(1):11-18, 1992.

[BGW89] G. M. Brown, M. G. Gouda, and C. L. Wu. Token systems that self-stabilize. 1EEE Trans.
Comput., 38(6):845-852, June 1989.

[BP89] J. Burnsand J. Pachl. Uniform stabilizing rings. ACM Transactions on Programming Lan-
guages and Systems, 11(2):330-344, 1989.

13

[CDY4]

[CS94]

[Dij74]

[Dijg6]

[FD94]

[GHO0]
[Huag3]

[Kesss]

[Lam84]

[Scho3]

Z. Collinand S. Dolev. Sef-stabilizing depth-first search. Information Processing Letters,
49:297-301, 1994.

S. Chandrasekar and P. K. Srimani. A self-stabilizing distributed algorithm for all-pairs short-
est path problem. Parallel Algorithmsand Applications, 4(1& 2):125-137, 1994.

E. W. Dijkstra. Self-stabilizing systemsin spite of distributed control. Communications of the
ACM, 17(11):643-644, November 1974.

E. W. Dijkstra. A belated proof of self-stabilization. J. of Distributed Computing, 1(1):5-6,
1986.

M. Flatebo and A. K. Datta. Two state self stabilizing algorithmsfor token rings. IEEE Trans-
actions on Software Engineering, 20(6):500-504, June 1994.

M. Gouda and T. Herman. Stabilizing unison. Inf. Processing Letters, 35(4):171-175, 1990.

S. T. Huang. Leader electionin uniformrings. ACM Transactionson Programming Languages
and Systems, 15(3):563-573, July 1993.

J. L. W. Kessels. An exercise in proving self-stabilization with a variant function. Inf. Pro-
cessing Letters, 29(2):39-42, 1988.

L. Lamport. Solved problems, unsolved problems, and non-problemsin concurrency. In Pro-
ceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing, pages
1-11, 1984.

M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45-67, March 1993.

14

