
Computer Science
Technical Report

Super Rotator: Incrementally Extensible
Directed Network Graph of Sublogarithmic

Diameter

Pradip K Srimani
Department of Computer Science

Colorado State University
Ft. Collins, CO 80523 USA

Email: srimani@CS.Colostate.Edu

Technical Report CS-96-116

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



Super Rotator: Incrementally Extensible Directed

Network Graph of Sublogarithmic Diameter

Pradip K Srimani

Department of Computer Science

Colorado State University

Ft. Collins, CO 80523 USA

Email: srimani@CS.Colostate.Edu

Abstract

We propose a new family of directed interconnection network graphs for an arbitrary number of nodes. The

proposed network graph is almost regular (the di�erence between the in-degrees and out degrees of nodes is 2,

a constant independent of the size of the network), has a diameter sub logarithmic in the number of nodes, is

optimally fault tolerant and can be de�ned for an arbitrary number of nodes.

1 Introduction

Design of a communication network is an integral part of developing any distributed and parallel processing system.

A communication network is usually modeled by a graph where the nodes (vertices) denote the computing elements

and the the edges (arcs) denote the communication channels; if the channels are bidirectional, the graph is undirected

and if the channels are unidirectional thy graph is directed. Desirable features for a good interconnection topology

include properties like low degree, regularity, small diameter, high fault tolerance (connectivity), e�cient routing

algorithm, etc. The small diameter helps to keep the interprocessor communication delay low while the low degree

of nodes is necessary to limit the number of input-output ports to some acceptable value. Many of the works

in network topology has dealt with symmetric or undirected graphs [DT94, AK89, Pra85a, Pra85b], while others

concentrated on directed graphs [RPK80, II83, ISO85, FLV88, FM88, FL92, Cor92, FMC93].

Most popular interconnection network has been the well known binary n-cubes or hypercubes; they have been

used to design various commercial multiprocessor machines and they have been extensively studied. Recently there

has been a spurt of research on Cayley graphs, symmetric graphs de�ned on permutation of distinct symbols. Most

important of them are the so-called star graphs [AK89] which seem to enjoy most of the desirable properties of the

hypercubes at considerably less cost; they accommodate more nodes with less interconnection hardware and less

communication delay. Almost all research on Cayley graphs has been centered around undirected graphs [LJD93].

Only very recently Corbett [Cor92] has pointed to a family of directed Cayley graphs, network graphs based on

permutation of elements, called the rotator graphs; it is to be noted these rotator graphs are in fact special case

(� = D) of the digraphs ��(D), with order (�+1)� � � � (��D+2), proposed by Faber and Moore in [FM88] (see

also [FMC93]). These rotator graphs are Cayley graphs except that the generators are not closed under inverse

and hence the graph is directed (communication channels are unidirectional). These rotator graphs compete very

favorably with the hypercubes and the star graphs in the sense that they have a lower diameter for the same number

of edges and same number of nodes; this is a very desirable feature since the number of edges in the graph is directly

related to the cost of the network. These rotator graphs are also signi�cant in the sense that they are the only known

directed graphs based on permutation of groups of symbols. But they can be de�ned for N nodes only when N = n!
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for some integer n; they cannot be de�ned for an arbitrary number of nodes. This incremental extensibility is a

very essential and desirable property in real life applications of a topology in designing computer networks. A few

of the symmetric (undirected) network graphs described in the literature [AL82, FS81, BA84, SS91, SS92, LB94]

are incrementally extensible. There are also incrementally extensible directed network graphs in the literature

[II83, RPK80, FLV88, FL92].

Our purpose in the present paper is to propose another new incrementally extensible directed network topology

that can be de�ned for an arbitrary number of nodes. The design philosophy basically involves appropriate inter-

connection of di�erent sized rotator graphs of di�erent sizes. If N is the given number of nodes, n! < N < (n+1)!,

the proposed graph is a superset of several rotator graphs of size less than or equal to n!; we call it a super rotator

graph. We prove that the new topology has the following characteristics: (1) the di�erence between the maximum

and minimum in-degrees and out-degrees of all nodes is 2, a constant independent of the size of the network, (2)

the diameter is sub logarithmic, (3) the network is maximally fault tolerant in the sense that the network remains

strongly connected after ��1 node failures where � is the minimum in-degree or out-degree of a node in the graph,

(4) the number of directed edges in the graph is O(NF(N)) where F(N) = n, i� n! � N � (n + 1)!, and (5)

addition of a new node in the existing graph is easy and simple. Note that some of the existing directed graphs,

e.g. [FLV88, FL92] are also almost regular with good connectivities. It is also to be noted that we do not attempt

to minimize the diameter of a directed graph with a given number of nodes; rather we propose a new family of

graphs designed around the Cayley graphs; the proposed graphs compare favorably with the existing ones and

addition/deletion of nodes to an existing network needs minimal or no reorganization.

2 Basic Concepts

In this section we brie
y introduce the rotator graphs, discuss relevant properties and introduce a few new concepts

that will be needed to describe the new topology and to study its properties. Graph theoretic terms not de�ned

here can be found in [Har72] and a detailed treatment of the rotator graphs can be found in [Cor92].

A rotator graph Rn, of order (dimension) n, is de�ned to be a directed graph G = (V;E), where V is the set

of n! vertices (nodes), each representing a distinct permutation of n distinct symbols, and E is the set of directed

edges such that there is an edge from one permutation (node) v to another permutation (node) u i� u can be

reached from v by rotating its �rst ` symbols one place left (2 � ` � n). These rotator graphs are Cayley Graphs

[ABR90] except that the generators (di�erent values of ` give the distinct generators) are not closed under inverse

operation and hence the graph is a directed graph. For example, in R3, the node abc has outgoing edges to nodes

bca and bac as well as has incoming edges from nodes bac and cab. Figure 1 shows the rotator graphs of order

2, 3 and 4. We denote the nodes as permutations of English alphabets; for example, the identity permutation is

denoted by I = (abc:::z) (z is the last symbol in the string, not necessarily the 26th letter). It has been shown in

[Cor92] that: (1) Rn is (n�1) regular in the sense that each node has both an in-degree and an out-degree of n�1

(hence, the number of edges is n!(n� 1)), (2) the diameter of Rn is given by D(Rn) = n� 1, and (3) Rn is vertex

symmetric for all values of n like other Cayley graphs [AK89].

It is also to be noted that the rotator graphs are hierarchical in the sense that Rn can be decomposed into

n number of Rn�1's. In Rn we use Vx to denote the set of nodes (permutations) that end with the symbol \x";

obviously Vx is a rotator graph of dimension n� 1. Similarly, we use V� to denote the set of nodes that end with

� where � represents a sequence of symbols. V� is a rotator graph of dimension n� j�j if V� is a subgraph of Rn.

De�nition 1 Consider any two mutually disjoint subgraphs Vx and Vy of a rotator graph Rn. The nodes of Vx

that are directly connected to some node of Vy by outgoing edges are called the type I gateway nodes of Vx with

respect to Vy; we denote this set of nodes by GI
x;y. The nodes of Vx that are directly connected to some node of Vy
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Figure 1: Rotator Graphs of Dimensions 2, 3, and 4
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by incoming edges are called the type II gateway nodes of Vx with respect to Vy; we denote this set of nodes by GII
x;y.

Example: Consider the rotator graph R4 in Figure 1. GI
a;b = fbcda; bdcag, GII

a;b = fcdba; dcbag, GI
b;a =

fadcb; acdbg, and GII
b;a = fcdab; dcabg.

De�nition 2 A directed graph G is called strongly connected i� for an arbitrary pair of vertices u and v, there

exists a directed path from u to v in G.

De�nition 3 A directed graph G is called strongly k-connected if it remains strongly connected after removal of an

arbitrary set of k or less nodes. This k is called the measure of strong connectedness � of the graph G.

Remarks:

� A strongly 0-connected graph is simply a strongly connected directed graph.

� The rotator graph Rn is strongly (n� 2)-connected, i.e., �(Rn) = n� 2, for all n � 3.

� The measure of strong connectedness of a directed graph de�nes the node fault tolerance of the graph. A

directed graph G, �(G) = k remains strongly connected when an arbitrary set of k or less nodes are faulty.

De�nition 4 Any positive integer N , n! � N < (n+1)!, can be expressed in its mixed-radix form as < an; an�1; � � � ; a1 >,

where

N = an:n! + an�1:(n� 1)! + ::::+ a1:1!

and 0 � ai � i for i = 1; � � � ; n� 1, and 0 < an � n.

For example, 110 =< 4; 2; 1; 0 >, since 4:4! + 2:3! + 1:2! + 0:1! = 96 + 12 + 2 = 110.

In order to design the proposed super rotator graphs we need two types of connections between rotator graphs

of di�erent dimensions. We de�ne them as follows.

De�nition 5 Given m copies of Rk where m � k, we say that these m copies are joined by type A connections

when they are connected by the directed edges as if they were subgraphs of the larger Rk+1.

Remark: There are exactly (k� 1)! directed type-A edges from each Rk to each of the other Rk's; similarly there

are exactly (k � 1)! directed type-A edges from each of the other Rk's to a speci�c Rk. Figure 2 shows the type-A

edges between two copies of R3.

De�nition 6 When m copies of Rk, m � k, are joined by the type A connections, the resulting graph is called a

class Ck(m).

Example: Figure 2 shows a C3(3). For a given class Ck(m), we arbitrarily number the m components from 1 to

m as C`
k(m), 1 � ` � m, and we call the �rst component C1

k(m) the leader Lk(m) of the class Ck(m).

De�nition 7 Given two rotator graphs Rm and Rn, m < n, they are said to be joined by type B connections if

outgoing edges are added from each node w in Rm to jn�mj di�erent nodes of Rn (type B successors of w in Rn)

and incoming edges are added to each node w in Rm from jn�mj di�erent nodes of Rn (type B predecessors of w

in Rn). It is required that type B successors of an arbitrary pair of nodes in Rm are mutually disjoint and so are

their type B predecessors; but type B successors and type B predecessors of nodes may overlap.

Example: Figure 3 shows the type B connections between a R3 and a R1.

Vertex Numbering: It is well known [Knu72] that all the n! permutations of n distinct symbols can be uniquely

numbered from 0 through n! � 1. We use this scheme to number the vertices of any rotator graph Rn; we also

extend this scheme to number the vertices of a class Ck(m). The class Ck(m) has m:k! nodes; the nodes of C1

k are

numbered from 0 to k!� 1, the nodes of C2

k are numbered from k! to 2k!� 1 and so on.
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3 Topology for Super Rotator Graphs

The basic idea behind the design of the super rotator graph of N nodes, when n! < N < (n + 1)!, is to express

N as sum of several factorials, build smaller rotator graphs of appropriate dimensions, and then add appropriate

type A and type B edges to connect those smaller graphs. The following algorithm builds the super rotator graph

for any given N , n! < N < (n = 1)!.

The Algorithm

Step 1: [Build the smaller rotator subgraphs]

Compute the mixed radix representation of N =< cn; cn�1; � � � ; c1 > and construct ci copies of Ri for

all i, 1 � i � n (note cn 6= 0).

Step 2: [Label the nodes]

� Choose n+1 symbols to label the nodes (permutations). We use n+1 consecutive English letters

starting with \a".

� For i = n to 1 do the following (�x the i-th symbol for the nodes):

{ if ci 6= 0 then label each of the ci copies of Ri as V�j� where � = symbol(i+ 1)symbol(i+

2) � � � symbol(n), and �j , 1 � j � ci, are chosen in alphabetic order from the set of symbols

that are yet to be allocated to the \symbol" array.

{ Set symbol(i) to be equal to the next available English letter in alphabetic order.

Step 3: [Provide type A connections among rotator subgraphs to form classes
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� For each i, 1 � i � n, join the ci components of Ri's by type A connection as de�ned earlier to

get the di�erent classes Ci (note that this does not connect the rotator subgraphs of di�erent

dimensions).

� Each class Ci has ci number of components C`
i , 1 � ` � ci each of which is a rotator graph of

dimension i. The vertices in Ci are numbered from 0 to ci:i!� 1 by using the vertex numbering

scheme as described before (the vertices of C1
i are numbered from 0 to i! � 1, those of C2

i are

numbered from i! to 2i!� 1 and so on).

Step 4: [Construct the super rotator graph in steps by providing the type B connections]

Find the minimum i such that ci 6= 0 and then set j = i and set SRj = Ci (SRj denotes the super

rotator graph with
Pj

k=1 ckk! nodes).

while i � n do

if ci 6= 0 then

� Establish type B connections between SRj and Ci. Each node in SRj is assigned (i� j) type B

successors as well as (i � j) type B predecessors in the leader Li of the class Ci. This is easily

done by using the node numberings in both the graphs SRj and Ci (e.g., outgoing edges are

introduced from node \0" of SRj to nodes \0" through \i-j-1" of Li as well as incoming edges

are introduced from nodes \i! � 1" to \i! � (i � j)" of Li to node \0" of SRj , outgoing edges

are introduced from node \1" of SRj to nodes \i-j" through \2(i-j)-1" of Li as well as incoming

edges are introduced from nodes \i!� (i� j)� 1"to\i!� 2(i� j)" of Li to node \0" of SRj , and

so on).

� Renumber the nodes of SRj by adding cii! to each node number.

� Set j = i and set SRj to be the composite graph generated in the previous steps. Note that SRj

has now
Pj

k=1 ckk! nodes and they are numbered from 0 to
Pj

k+1 ckk!� 1.

i = i+ 1

Return SRn as the desired super rotator graph of N vertices.

Remarks:

� In step 4, for each i, whenever type B connections are provided between a leader Li of a class Ci and some

smaller super rotator SRj , j < i, the in-degree of each node of Li is increased at most by 1; and the out-degree

of each node of Li is also increased at most by 1. This is evident from three facts: (1) a leader Li is a rotator

graph Ri of i! nodes, (2) the maximum number of nodes in the super rotator graph SRj is (j + 1)!� 1, and

(3) i! > (i� j)f(j + 1)!� 1g for any integer i and j, i > j.

� In step 4, for each i, SRi represents a super rotator graph of
Pi

k=1 ckk! vertices.

Example 1: Let N = 13. Then N can be expressed as N =< 2; 0; 1 > or c3 = 2; c2 = 0; c1 = 1. Here n = 3

and there are three classes, e.g., C3; C2 and C1 of which C2 is null since c2 = 0. C3 has two components: C1
3 = Va

which is also the leader of this group, and C2
3 = Vb; each of these components is a rotator graph of dimension 3.

See Figure 4. The nodes of C3 are numbered from 0 to 2:3!� 1 = 11; the numberings are shown in parenthesis in

the �gure. Thus symbol(3) = c and in the next step we get symbol(2) = a, since c2 = 0. Hence symbol(1) = b and

the class C1 is a rotator graph of dimension 1, i.e., a single vertex \dbac". Type A connections are provided in C3

by joining all the gateway points to their counterparts in the components. To provide the type B connections, we

add two directed edges from the node 0 of class C1 to the nodes 0 and 1 of C1
3 , the leader of the class C3; and add
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Figure 4: Super Rotator Graph with N = 13 nodes

two directed edges from nodes 5 and 4 of C1
3 to the node 0 of class C1. Lastly, the node \dbac" of C1 is renumbered

as 12 by adding 2:3! to its original numbering.

Example 2: Let N = 23. Then N can be expressed as N =< 3; 2; 1 > or c3 = 3; c2 = 2; and c1 = 1. We have 3

non-null classes. See Figure 5. The class C3 have 3 components, e.g., Va, Vb and Vc each of which is a rotator graph

of dimension 3; the vertices are numbered from 0 to 17. Also, symbol(3) = d. The class C2 has two components

Vad and Vbd each of which is a rotator graph of dimension 2; the vertices are numbered from 0 to 3. As before, the

class C1 is a single node (a rotator graph of dimension 1) and since symbol(2) = c, this single node is labeled as

the permutation \bacd" and is numbered 0. Type A connections are provided in each class as shown in the �gure.

In the �rst iteration of step 4 of the design algorithm, type B connections are provided to nodes of C1 and C2 by

adding directed edges from node \0" of C1 to node \0" of C2 and from node \1" of C2 to node \0" of C1 and

we get SR2. Nodes of SR2 are renumbered (actually the nodes of C1 only need be renumbered; the node \bacd"

is renumbered as 4). Next, C3 and SR2 are joined by type B connections to get the desired super rotator graph

SR3(23) (nodes \0" through \4" of SR2 are connected to \0" through \4" of C3 as well as nodes \5" through \1"

of C3 are connected to \0" through \4" of SR2).

4 Properties of the Super Rotator Graphs

In this section we develop interesting algebraic properties of the super rotator graphs SRn(N), where N is the

number of nodes in the graph and n! < N < (n+1)!. We use � andD to indicate the measure of strong connectedness

(node fault tolerance) and the diameter respectively of a directed graph.

Lemma 1 When m copies of Rn, m � n, are connected by type A connections to form a class Cn(m), �(Cn(m))

is given by n� 2.
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Figure 5: Super Rotator Graph with N = 23 nodes

Proof : Cn(m) is made of m components C`
n, 1 � ` � m each of which is a rotator graph of dimension n, i.e.,

each component of the class is strongly (n � 2)-connected. Assume an arbitrary set of n � 2 nodes to be faulty.

Each component of the class is still strongly connected. Consider any two components; there are (n� 1)! incoming

edges as well as (n� 1)! outgoing edges; no two of these edges are parallel and also (n� 1)! > n� 2. Thus all the

components are strongly connected among each other by the type A edges. Hence the proof. 2

Lemma 2 When two rotator graphs Rm and Rn, m < n, are connected by type B connections, then the resulting

directed graph is strongly (n� 2)-connected.

Proof : For an arbitrary set of (n � 2) faulty nodes, we have to show that the combined graph is still strongly

connected. If all the faulty nodes are in Rn, the proof is trivial since the rotator graph Rn is strongly (n � 2)-

connected. If there are less than (m� 2) faulty nodes in Rm and the rest are in Rn, both Rm and Rn are strongly

connected and hence the combined graph as well. If there are (m� 2) or more faulty nodes in Rm, then Rm may

be disconnected. Consider any surviving node v of Rm; v has (n �m) type B successors as well as (n �m) type

B predecessors in Rn; at least one successor and at least one predecessor must be fault free. Thus Rn is strongly

connected and each surviving node of Rm is strongly connected to Rn. Hence the proof of the lemma. 2

Theorem 1 The super rotator graph SRn(N) of N nodes, n! � N < (n + 1)!, is strongly (n � 2)-connected, i.e.,

�(SRn(N)) = n� 2.

Proof : The proof follows from step 4 of the design algorithm. At the beginning of step 4, we have di�erent Ci's

(for di�erent values of i) of strong connectedness measure i� 2. The smallest initial super rotator graph is a class.
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Whenever we join Ci with a super rotator graph SRj , j < i by type B connections, the resulting graph SRi has

a strong connectedness measure of i� 2 by the previous lemmas. Hence, when the algorithm terminates, the �nal

super rotator graph SRn(N) has a strong connectedness measure of n� 2. 2

Corollary 1 The minimum in-degree (out-degree) of any node in SRn(N) is n� 1.

Remark: A super rotator graph of N vertices, where n! � N < (n+1)! has the same strong connectedness measure

as a rotator graph Rn of n! vertices.

Theorem 2 The diameter of a class Ci(m) (m copies of rotator graphs Ri joined by type A connections) is upper

bounded by D(Ci(m)) � 2i� 1.

Proof : Consider two arbitrary nodes u and v in Ci(m). If both u and v belong to the same component

C`
i (` � m), there is a directed path from u to v of length � i � 1 (since D(Ri) = i � 1; each component is a

rotator graph of dimension i). If u and v belong to di�erent components, say Vx and Vy, and there are no other

components in the class, then we must reach from u a gateway point in GI
x;y (any node in GI

x;y has \y" as the �rst

symbol and \x" as the last symbol) and then go to a node in GII
y;x and then go to v in Vy ; this is true since we

cannot apply the generator gi until we are at a gateway point since there is no other component. Thus the worst

case distance between u and v is given by (i� 1) + 1 + (i� 1) = 2i� 1. Hence the theorem. 2

Remark: Consider the example 1 in Figure 4. C3 has two components Va and Vb. Let u = \cdba" 2 Va and v =

\acdb". The minimal path between u and v is given by u = cdba! dbca! bcda! cdab! dacb! acdb = v and

the length is 5 = 2:3� 1.

Theorem 3 The diameter of the super rotator graph SRn(N); n! < N < (n + 1)!, is upper bounded by

D(SRn(N)) � 2n.

Proof : Consider two arbitrary nodes u and v. We need to consider the following cases:

Case 1: u 2 Ci, v 2 Cj and i = j � n. Then d(u; v) is upper-bounded by 2i� 1 (theorem 2).

Case 2: u 2 Ci, v 2 Cj and i 6= j. Assume j < i without loss of generality. The node v 2 Cj has at least one type

B successor vsucc 2 Ci and at least one type B predecessor vpred 2 Ci. By theorem 2 we can go from vsucc to u by

at most 2i� 1 hops and from u to vpred by at most 2i� 1 hops. Hence, the distance between the nodes u and v is

either way upper-bounded by 2i� 1 + 1 = 2i. Hence the theorem. 2

Theorem 4 Total number of edges in a super rotator graph SRn(N); n! < N < (n+ 1)! and N =< cn; � � � ; c1 >,

is given by
nX
i=1

�
ci(i� 1)i! + 2

�
ci

2

�
(i� 1)! + 2ci(n� i)i!

�
= O(Nn)

Proof : The �rst term in the expression counts the total number of directed edges in all the complete rotator

graphs (components of the di�erent classes). The second term accounts for all the type A edges; for any class

Ci(ci) (ci > 0) there are
�
ci
2

�
pairs of component rotator graphs of dimension i and for each pair there are (i� 1)!

directed type A edges in either direction. The third term accounts for all the type B edges ; each class Ci, i 6= n,

has cii! nodes; each node is connected to (n � i) nodes in the leaders of higher order classes by directed edges as

well as has (n� i) directed type B edges incident on it from the leaders of higher order classes. 2

Theorem 5 The maximum in-degree (out-degree) of any node in a super rotator graph SRn(N) is n+ 1.
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Proof : Any node in the class Ci has a maximum in-degree (out-degree) of i + 1 (since any node of a rotator

graph Ri has in-degree (out-degree) of i and in a class any node can have at most one type A incident edge and

at most one type A outgoing edge. Each node in a class Ci has (n � i) type B incoming edges from and (n � i)

type B outgoing edges to higher order classes and can have at most one incoming type B edge from and at most

outgoing edge to lower order classes. Hence the maximum in-degree (out-degree) of any node in a super rotator

graph is n+ 1. 2

De�nition 8 Consider any arbitrary directed graph G where the minimum of the in-degree and out degree of any

node is �. The graph G is called maximally fault tolerant i� G is strongly (�� 1)-connected; the fault tolerance

is maximal since the graph's connectivity cannot exceed this value.

Rotator graphs are shown to be maximally fault tolerant [Cor92]; each node in Rn has in-degree (out-degree)

of n � 1 and Rn is strongly (n � 2)-connected. In the following we show that the super rotator graphs are also

maximally fault tolerant in the same sense.

Lemma 3 For any super rotator graph SRn(N); n! < N < (n+ 1)!, there exists at least one node with in-degree

or out-degree n� 1.

Proof : Consider the leader Ln of the class Cn; this leader is a rotator graph of dimension n with n! nodes while

the rest of the graph SRn(N) excluding this class Cn has at most n!� 1 nodes. Thus, at least one node in Ln has

no incoming type B edge as well as at least one node with no outgoing type B edge (these two nodes may not be

the same). So, there is at least one node for which minimum of the in-degree and the out-degree is n� 1. 2

Theorem 6 The super rotator graph SRn(N) is maximally fault tolerant.

Proof : The proof readily follows from the facts that SRn(N) is strongly (n � 2)-connected and the minimum

in-degree (out-degree) of a node is n� 1. 2

5 Conclusion

We have proposed a new class of directed network graphs that can be e�ectively used in designing the communication

architecture for distributed processing systems. The design of the graphs is based on the theory of Cayley graphs.

The proposed family of graphs has the following interesting properties:

� The graph can be easily de�ned for any given number of nodes.

� The graph has a sub logarithmic diameter and is maximally fault tolerant in the sense that the graph remains

strongly connected when the number of faulty nodes is less than the minimum of the in-degree and out degree

of any node.

� The di�erence between the maximum in-degree (out-degree) and the minimum in-degree (out-degree) of nodes

is 2, a constant independent of the number of nodes, i.e., the graph is almost regular.

� The number of directed edges in the graph is O(NF(N)) where F(N) = n, i� n! � N � (n+ 1)!.

� Additional nodes can be added to an existing graph with no or minimal reorganization of the existing inter-

connections.

Investigations are underway to design optimal routing algorithms as well as the fault tolerance and diagnosability

issues of these graphs.
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