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Abstract

In this paper we develop afeasibility agorithm for preemptively scheduling a given set of jobs
with dimension and time requirements on a star graph network of given size with a given deadline.
We show that the algorithm runsin O(n log n) time where n is the number of jobs.

1 Introduction

One of the attractive topologies for constructing the symmetric interconnection networks is the star
graph [AK89, AK87]. The star graph, being a member of the class of Cayley graphs, has been shown
to possess appealing features including low degree of the node, small diameter, partitionability, sym-
metry, and high degree of fault-tolerance. For this reason, recently much research has been directed
toward studying properties of these star graphs [DT94, QMA92], its fault-tolerance aspects [Lat93], or
implementing various algorithms on it [QAM94, MS90, FA91, MS92].

When parallel algorithms are mapped and implemented on amassively parallel architecture, the di-
mension of the network plays an important role as a parameter of the algorithm. Thisis especialy true
for highly regular and hierarchical networks such as the hypercube and star graph. Depending on the

size of the incoming task, one portion of the network (which preserves the topological properties of the
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original network) isallocated to it; subsequent tasks are then assigned to digjoint subnetworks and if no
subnetwork of the required size is available, the task(s) are queued until some tasks run to completion
and make subnetworks with the required size available. There are many important issues of concernin
thisarea. One of the fundamental problem is of preemptive scheduling of independent jobs (each with
a processing time and a size requirement); while the ultimate goal is to compute the minimum finish
time given the network size, the more immediate (and easier) problem is to determine the feasibility of
scheduling given a network and a specific deadline. This problem has been recently solved for hyper-
cube networks[AZ90, ZA93]. Our purposein the present paper isto propose afeasibility algorithm that
decidesif agiven set of jobs, where each job is associated with a dimension d and a processing time ¢
(meaning that the job needs be processed on ad-dimensional star graph for ¢ units of time), can be pre-
emptively scheduled on an m-dimensional star graph system within a given deadline I". We also show
that our algorithm has a O(n log n) run time complexity where n isthe number of jobsin the given set

of jobs.

2 BasicPreiminaries

In this section we briefly introduce the basi ¢ terminol ogy about star graphs and scheduling of jobsin star
graph networks. Graph theoretic terms not defined here can befound in [Har72] and adetail ed treatment
of star graphs can be found in [AK89, AK87].

A star graph S,,, of order n, is defined to be a symmetric graph G = (V, E) where V' is the set
of n! vertices, each representing a distinct permutation of n elements and £ is the set of symmetric
edges such that two permutations (nodes) are connected by an edge iff one can be reached from the
other by interchanging itsfirst symbol with any other symbol. For example, in S, the node representing
permutation 123 has edges to two other permutations (nodes) 213 and 321. Throughout our discussion
we denote the nodes by permutations of English numerals. For example, the identity permutation is
denoted by I = (1234...).

Remarks:

e These star graphs are members of the family of Cayley group graphs. For a star graph S,, of di-



mension n, thereare n — 1 generators, ¢, g3, - - * , gn, Where g; swapsthefirst symbol with the i-th
symbol of any permutation. Each generator isits own inversg, i.e., the star graph is symmetric.

Also, the star graph S, isa (n — 1)-regular graph with n! nodes and n!(n — 1)/2 edges.

e |tiseasy to seethat any permutation of n elements can also be specified intermsof itscycle struc-
ture with respect to the identity permutation /. For example, 345216 = (135)(24)(6). The maxi-
mum number of cyclesin a permutation of n elementsisn» and the minimum number is 1. When
acycle has only one symbol, that symbol isin its correct position in the permutation with respect
to the identity permutation. The singleton cycles may be omitted in the cycle representation of a

permutation if the number of symbolsin the permutation is understood from the context.

The problem of job scheduling on star graphs can be formulated as follows. We are given aset of n
independentjobs J = {J; : 1 < i < n} andastar graph S, of dimensionm. Eachjob J; = (d;, ;),1 <
i < n requires a star graph of dimension d; (i.e., ad;-substar) for ¢; units of timewhere0 < d; < m
and t; isarational number, ¢; > 0. The problem isto compute a schedule such that the finish time (the
time when all jobs are finished) is minimized (we call this an optimal schedule). A scheduleis called
preemptive if ajob may be preempted before completion and can resume at a later time, possibly on a
different substar. We also assume, for the sake of simplicity (without any loss of rigor) that the jobs are
ordered, i.e, Vi, 1 <i<mn,d; > d;;1.

Each S,, containsm digoint S,,,_;’s. Let A bethesymbol set {1,2,...m — 1,m, 2}, where z de-
notes a don't care symbol. Every substar of S,, can be uniquely labeled by a string of symbolsin A
such that the only repeated symbol be x. Notably, the number of = symbolsin the label determinesthe
dimension of the substar. For instance, the substar 2322z is 3-dimensional and containsthe set of nodes
{13425, 13524, 43125, 43521, 53124, 53421}. Thefirst position (i.e. the leftmost position) of the label
of any substar isalways equal to = dueto connectivity conditions of the star graph, unlessthe substarisa
singlenode. The S,, islabeled as +™, where the superscript istherepetition factor. It isalsowell known
[Knu72] that all the m! permutations of m distinct symbols can be uniquely numbered from 0 through
m! — 1. We use this scheme to number the vertices of any star graph S,,,; for details of the numbering

scheme, see [Knu72).



Definition 1 For any a,b € V with a < b, let [a, b] denote the set of processors{p € V : a < p < b}.

We call [a, b] a processor interval or a p-interval.

Remark 1 Foranygiven/, ¢ > 0,anm-star S,,, can bedividedinto ¢ consecutivep-intervals|ay, b;], - - -

[ag,bg]Whereal:O,bg:m!—land(Vii1§i<é:ai+1:bi+1).

Remark 2 Not all p-intervals of size z! (z is a positive integer) are z-substar; in this paper we are
interested only in those p-intervals which are valid substars and hence we use the terms p-interval and

substar interchangeably.

Definition 2 Theprofile[ AZ90, ZA93] of a scheduleisdefined to be a function F' that maps a processor
p € Vtoatime f = F(p) such that the processor p has been busy until time f and f denotesthetime

when the processor p is available for more work.

o, if T denotes the given deadline for the job set, » = T — f denotes the Remaining Processing Time
or the RPT of the processor p. If we attempt to find the schedule one job at a time, we need to know
the finishtime of all the processorsfor the existing schedule and thisinformation is stored in the profile.
We use S(7) to denote the schedule after job J; is scheduled and use P(i) to denote the corresponding
profile.

When we schedul e the jobs on a star (each job needs a substar of some dimension), the profile func-
tion maps a p-interval (all the processors in the interval) to atime. Thus, the profile of the complete

schedule on the star is a sequence of ordered pairs of p-intervals and finish times

P = ([alabl]a f1)7 ([a27b2]7 f2)7 T ([aw by]’ fy)

for someinteger y wherethey intervalsare consecutive and dividethe given m-star. Again, welogically
extend the concept of RPT to the intervals, RPT of an interval isthe RPT of its processors, more

specifically, for agive deadline of the jobs, r; = T' — f; will denote the RPT of the p-interval [a;, b;].

Remark 3 If a p-interval has zero RPT' in a schedule, it cannot be used for scheduling further jobs

and will be deleted from the profile.
Definition 3 A profile P iscalled stair-like [ZA93] if Vi : fi11 < fi.
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3 Feasbility Algorithm

Givenaset of jobs J = {J, Js,---, J,}, where J; = (d;,t;) as explained earlier and an m-star, the
feasibility algorithm computesif the given jobs can be scheduled on the mn-star to meet agiven deadline
T. Obvioudly, if the given deadline T" isfeasible, wemust haveVi : 1 < i <n : T > t;andT >
% > tid;!. We can safely assume that the given T' satisfies both of these requirements or we can
declare the deadline to be infeasible.

We assume that the job set .J is sorted in descending order of dimensions of the substars needed, as
explained earlier. We attempt to schedule the jobsin thisorder one at atime. Let S(:) and P(i) denote
respectively the schedule and the profile after the job J; is scheduled. S(0) istheinitial schedule (null)
and P(0) istheinitia profile (before any job is scheduled). So, P(0) = ([0, m! — 1],0). We use k to
denote the number of p-intervals with nonzero RPT inthe profile P(i — 1). If £ = 0, job .J; cannot be

scheduled; otherwise P (i — 1) will ook like

P(Z - 1) = ([alvbl]afl)a ([a27b2]7f2)7 T ([akabk]afk)

[Note: if this profile is stair-like, the p-intervalsin P(i — 1) are ordered in increasing order of their
RPTs]
The Algorithm to schedule J; = (d;, t;)

Step 1. If ¢; > 7, thenreturn “infeasible” (Job J; cannot be scheduled).

Step 2: I ¢; < ry, then schedule job J; entirely on the substar (p-interval) [a;, a; + d;! — 1] from time

fitotime f; + ;.

Step 3:  If there exists an integer j such that ¢; = r;, then schedule the job J; entirely on the substar
laj,a;+d;! — 1] touseup all its RPT.

Step 4:  Computeaninteger j suchthat ¢; > r; At; < rj;q; schedulethejob J; on the substar [a;, a; +
d;!—1] touseupall its RPT r; and schedulethe remaining timet; —r; of job .J; on the substar

[aji1, 41 + d;! — 1] fromtime f;;, totime f;1 + (t; — 7).
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Figure 1. Schedule for the Example Job Set

Remark 4 For any job .J; if Step 1 does not apply, our algorithmis able to schedule the job by either
one of the 3 steps 2, 3 or 4.

Remark 5 Note that application of the steps of the algorithm involves appropriate update of the pro-
file; scheduling of a job J; may split a particular p-interval into two or may necessitate deletion of a
p-interval (duetoits RPT being completely used up). Thisupdating of the profile P will depend on the

data structure used and is not relevant to the correctness of the scheduling algorithm.

Example: Consider a5-star, adeadlineT = 4, andaJob set J = (Jy, Jy, J3, Jy, J5, Js), Where J; =
(4,2), Jy, = (4,4), J3 = (4,3), J, = (3,3), J5 = (3,3.5) and J; = (1,4). Note that the jobs are
arranged in nonincreasing order of dimension. Theinitial profileis ([0, 119],0) and Figure 1 showsthe
final schedule obtained by the algorithm. We show below the profiles generated after scheduling each
job in the set:

J1 scheduled Jo scheduled
([0,119],0) (0,23],2), (|24, 119], 4) (0,23],2), (]48,119],0)

Step 2 Step3,j =2




J3 scheduled J4 scheduled J5 scheduled

(148, 71],1), ([72,119], 0) ([54,71],1), ([72,119],0)
Stepd,j =1 Step 3,7 =1 Step4, ;=1
Js scheduled
([60,71],1), ([72,77],0.5), ([78,119],0) ([60,71],1), ([73,78],0.5), ([79, 119],0)
Step 4, j =2

Lemmal Theprofiles P(i),0 < ¢ < n are stair-like.

Proof : Theprofile P(0) istrivialy stair-like. Assumethat P(i — 1) isstair-like; we need to show that
P(i) isstair-like after the job J; is scheduled by the algorithm.

e Assume Step 2 isexecuted to schedule J;. There aretwo cases: if |[ay, b || = d;!, the profile P (i)
isobtained by replacing thefirst entry ([a1, b1], f1) in P(i—1) by anentry ([ay, b1], f1 +1;); elseif
|[a1, b1]| > d;!, thentheprofile P(7) isobtained by replacing thefirst entry ([a1, b1], f1) in P(i—1)
by two elements ([a1, a1 + d;! — 1], f1 + t;) and ([a; + d;!, b1], f1). In either case, the resulting

profile P(i) maintains the stair-like property.

o Assume Step 3isexecuted to schedule J;. Profile P (i) isobtained by replacingtheentry ([a;, b;], f;)
by anew entry ([a; + d;!, b;], f;); the stair-like property is maintained. Notethat if b; = a; +d;!,
then the original entry is simply deleted.

o Assume Step 4isexecuted to schedule J;. Profile P (i) isobtained by deletingtheentry ([a;, b;], f;)
andreplacing theentry ([a;41, bj11], fj+1) by twoentries ([a;11, aj11 +di! — 1], fj1 + (ti—1j))
and ([a;41 + d;!, bj11], fip1). Since fj11 + (t; — ;) < f;, the stair-like property is maintained in
the profile P ().

Lemma 2 The algorithm generates a feasible schedul e iff one exists.

Proof : Weonly need to provethat the algorithm generates a schedul e if afeasible schedule exists. We
use contradiction. Let S’ be afeasible schedule of thejob set .J and the deadline7’. Assumethat thejobs

Jo, J1,- -+, J;i_1 arescheduled in S” in the sameway asin S(i — 1) and job J; is scheduled differently
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in S’ than it would bein S(i). We show that S” can be modified so that .J; is scheduled in S asin S(7).
Thus, the schedule S can be transformed to S(n), the schedule generated by the proposed algorithm.
Let P(i—1) = ([a1, b1], f1),- -, ([ak, bk], fr). Sincethejob J; isscheduledin S"'—S(i—1), fr+t; < T
and hence our algorithm is able to schedule J; and can generate S (). Assume our algorithm schedules
J; in S(i) onsubstar A = [a;,a; + d;! — 1] fromtime f; totime f; + ¢, (= 7, say) (Step 2 or 3 of our
agorithm); or on substar A fromtime f; to 7" and on substar B = [a;1, a1 + d;! — 1] fromtime f;,
totime f;+1 + (t; — ;) (= 7', say) (Step 4 of our agorithm). If the job J; is scheduled in S in the
same way, we are done; if not, werearrange jobs .J;, J; 1, -+, J,, in S’ — S(i — 1) using the following

procedure such that .J; isscheduled in S’ just likein S(3).

e Dividethe entire time interval [0, 7] into equal length intervals of size 6 (call those intervals ¢-
intervals) such that each job in S’ is preempted or finished at the end of some é-interval; this can
always be done by choosing ¢ sufficiently small. For an arbitrary é-interval «, let JS(«) de-
note the set of jobs (from among J;, J;1, - - -, J,) that are scheduled in S’ in the é-interval «,
i.e, JS(a) ={Jx:i <k <mn, and J, isscheduledin S" over a}.

e Dividethem-star intom(m —1) - - - (m — d; + 1) d;-substars across the entireinterval [0, 7']; line
up jobsin JS(a) over each interval « such that no job is scheduled on two d;-substars — thisis

possible because V.J,, € JS(«) : dy < d;.

e Let 7" =T — t;. Divide the schedule 5" into two parts: left and right of 7. Let I; = {a : «is
ad-interval onleft of 77 and J; ¢ JS(«)} andlet I, = {a' : o/ isaé-interval onright of 7" and
J; € JS(a')}. Obviously, number of intervalsin I; and I, are equal. Now we can think of aone-
to-one function from 7; to I,. Consider aninterval « in I; and the corresponding o’ in I,. Since
the profile P(i — 1) isstair-like, number of d;!-substarsover a:in S’ — S(i — 1) isat least as many
asover . Thus, since J; isover o and not over «, thereisat least ad;!-substar over o whichis

either an empty interval or occupied by ajobin .JS(«) — JS(«') — thus we can interchange.

e Nowthejob J; isintheinterval [1”, T']; we now moveit to thedesired subcubes and timeintervals

asisdonein S(i). We use the following rules:



(1) If Step 2isused to schedule J; on S(i — 1) to produce S(i), .J; is scheduled on substar A =
lai,a; + d;! — 1] from fy to fy +t; = 7. Inthiscase, 7' > f; and 7 > f;. For each avin
[T',T]in S’, weinterchange J; in its d;-substar with jobsin A; we then swap J; in A over
[7",T] with that in A over [f,, X]. Because A extendsfrom f; to 7" in S’ — S(i — 1), the

swapping can always be done.

(2) If Step3isusedtoschedule.J; onS(i—1) toproduce S(:), J; isscheduled entirely on substar
A = laj,a; +d;! — 1] fromtime f; totime f; + ¢, = 7. Inthiscase, T" = f;and T = 7.

For each «in [T”,T] in S’, we just interchange J; in its d;-substar with jobsin A.

(3) If Step4isusedtoschedule J; onS(i—1) toproduce S(7), J; isscheduled on substar A from
time f; to7' andonsubstar B = [a; 11, a1 +d;!—1] fromtime f; ., totime f;1+(t,—r;) =
7. Inthiscase, f; > T" > fjyiand f; > 77 > fj41. Foreachain [f;,T]in S', we
interchange J; in its d;-substar with jobsin A; we interchange J; in substar B over [1", f;]
withthatinB over [f;;1, 7']. Because B extendsfrom f;, to7'inS’—S(i—1), theswapping

can always be done.

Theorem 1 Thenumber of preemptionsin afeasibleschedul e produced by thealgorithmisupper bounded

by n — 1.

Proof : Thefirst job .J; is scheduled without any preemption and for each subsequent job we need at

most one preemption; thus the result follows. O

Theorem 2 The feasibility algorithm has a run time complexity of O(nlogn).

Proof : Thefeasibility algorithminvolvesupdating the profile by scheduling onejob at atimefrom the
job set starting from a profile of a single entry and assuming that the job set is orderd in non increasing
order of dimension requirement. The jobs can be ordered in O(n logn) time using a sorting algorithm
like heapsort. The profile can be maintained by using some kind of a balanced tree structure like AVL

trees. The initial tree contains only one node. Update of the tree for scheduling one job involves, in
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the worst case, one deletion and one insertion (i.e., one entry of the profile may need be deleted and one
additional entry may need beinserted). |nsertion and/or deletionin an AVL tree can bedonein O(logn)
time where n is the number of elementsin the tree. Thus, the entire operation of the profile updating
can be donein O(nlogn) time. Lastly, to schedule each job, we need to decide on the particular step
of the algorithm. There are only 4 stepsin the algorithm; to decide if a particular step is applicable, we
need to do a search on the tree which can take at most O(log n) time and hence the decision process for

al then jobswill take O(nlogn) time. O

4 Conclusion

We have developoed afeasibility algorithm to preemptively schedule a set of job with time and dimen-
sion requirements on a given star graph with a given deadline. We have shown that the algorithm runs
in O(nlogn) time where n is the number of jobs. It'd be interesting to design strategies to compute
the minimal finish time of ajob set for a given star graph network as well as to design nonpreemptive

scheduling strategies for tasks on a star graph network. We plan to report our results soon.
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