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Abstract

In this paper we develop a feasibility algorithm for preemptively scheduling a given set of jobs
with dimension and time requirements on a star graph network of given size with a given deadline.
We show that the algorithm runs in O(n log n) time where n is the number of jobs.

1 Introduction

One of the attractive topologies for constructing the symmetric interconnection networks is the star

graph [AK89, AK87]. The star graph, being a member of the class of Cayley graphs, has been shown

to possess appealing features including low degree of the node, small diameter, partitionability, sym-

metry, and high degree of fault-tolerance. For this reason, recently much research has been directed

toward studying properties of these star graphs [DT94, QMA92], its fault-tolerance aspects [Lat93], or

implementing various algorithms on it [QAM94, MS90, FA91, MS92].

When parallel algorithms are mapped and implemented on a massively parallel architecture, the di-

mension of the network plays an important role as a parameter of the algorithm. This is especially true

for highly regular and hierarchical networks such as the hypercube and star graph. Depending on the

size of the incoming task, one portion of the network (which preserves the topological properties of the

�To appear in the Proceedings IEEE International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP-96)

1



original network) is allocated to it; subsequent tasks are then assigned to disjoint subnetworks and if no

subnetwork of the required size is available, the task(s) are queued until some tasks run to completion

and make subnetworks with the required size available. There are many important issues of concern in

this area. One of the fundamental problem is of preemptive scheduling of independent jobs (each with

a processing time and a size requirement); while the ultimate goal is to compute the minimum finish

time given the network size, the more immediate (and easier) problem is to determine the feasibility of

scheduling given a network and a specific deadline. This problem has been recently solved for hyper-

cube networks [AZ90, ZA93]. Our purpose in the present paper is to propose a feasibility algorithm that

decides if a given set of jobs, where each job is associated with a dimension d and a processing time t

(meaning that the job needs be processed on a d-dimensional star graph for t units of time), can be pre-

emptively scheduled on an m-dimensional star graph system within a given deadline T . We also show

that our algorithm has a O(n logn) run time complexity where n is the number of jobs in the given set

of jobs.

2 Basic Preliminaries

In this section we briefly introduce the basic terminology about star graphs and scheduling of jobs in star

graph networks. Graph theoretic terms not defined here can be found in [Har72] and a detailed treatment

of star graphs can be found in [AK89, AK87].

A star graph Sn, of order n, is defined to be a symmetric graph G = (V;E) where V is the set

of n! vertices, each representing a distinct permutation of n elements and E is the set of symmetric

edges such that two permutations (nodes) are connected by an edge iff one can be reached from the

other by interchanging its first symbol with any other symbol. For example, in S3, the node representing

permutation 123 has edges to two other permutations (nodes) 213 and 321. Throughout our discussion

we denote the nodes by permutations of English numerals. For example, the identity permutation is

denoted by I = (1234:::).

Remarks:

� These star graphs are members of the family of Cayley group graphs. For a star graph Sn of di-
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mension n, there are n�1 generators, g2; g3; � � � ; gn, where gi swaps the first symbol with the i-th

symbol of any permutation. Each generator is its own inverse, i.e., the star graph is symmetric.

Also, the star graph Sn is a (n� 1)-regular graph with n! nodes and n!(n� 1)=2 edges.

� It is easy to see that any permutation of n elements can also be specified in terms of its cycle struc-

ture with respect to the identity permutation I . For example, 345216 = (135)(24)(6). The maxi-

mum number of cycles in a permutation of n elements is n and the minimum number is 1. When

a cycle has only one symbol, that symbol is in its correct position in the permutation with respect

to the identity permutation. The singleton cycles may be omitted in the cycle representation of a

permutation if the number of symbols in the permutation is understood from the context.

The problem of job scheduling on star graphs can be formulated as follows. We are given a set of n

independent jobs J = fJi : 1 � i � ng and a star graph Sm of dimensionm. Each job Ji = (di; ti); 1 �

i � n requires a star graph of dimension di (i.e., a di-substar) for ti units of time where 0 � di � m

and ti is a rational number, ti > 0. The problem is to compute a schedule such that the finish time (the

time when all jobs are finished) is minimized (we call this an optimal schedule). A schedule is called

preemptive if a job may be preempted before completion and can resume at a later time, possibly on a

different substar. We also assume, for the sake of simplicity (without any loss of rigor) that the jobs are

ordered, i.e., 8i; 1 � i � n; di � di+1.

Each Sm contains m disjoint Sm�1’s. Let � be the symbol set f1; 2; : : :m � 1; m; xg, where x de-

notes a don’t care symbol. Every substar of Sm can be uniquely labeled by a string of symbols in �

such that the only repeated symbol be x. Notably, the number of x symbols in the label determines the

dimension of the substar. For instance, the substar x3x2x is 3-dimensional and contains the set of nodes

f13425; 13524; 43125; 43521; 53124; 53421g. The first position (i.e. the leftmost position) of the label

of any substar is always equal to x due to connectivity conditions of the star graph, unless the substar is a

single node. The Sm is labeled as xm, where the superscript is the repetition factor. It is also well known

[Knu72] that all the m! permutations of m distinct symbols can be uniquely numbered from 0 through

m! � 1. We use this scheme to number the vertices of any star graph Sm; for details of the numbering

scheme, see [Knu72].
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Definition 1 For any a; b 2 V with a < b, let [a; b] denote the set of processors fp 2 V : a � p � bg.

We call [a; b] a processor interval or a p-interval.

Remark 1 For any given `; ` > 0, anm-starSm can be divided into ` consecutive p-intervals [a1; b1]; � � �

[a`; b`] where a1 = 0, b` = m!� 1 and (8i : 1 � i < ` : ai+1 = bi + 1).

Remark 2 Not all p-intervals of size x! (x is a positive integer) are x-substar; in this paper we are

interested only in those p-intervals which are valid substars and hence we use the terms p-interval and

substar interchangeably.

Definition 2 The profile [AZ90, ZA93] of a schedule is defined to be a functionF that maps a processor

p 2 V to a time f = F (p) such that the processor p has been busy until time f and f denotes the time

when the processor p is available for more work.

So, if T denotes the given deadline for the job set, r = T � f denotes the Remaining Processing Time

or the RPT of the processor p. If we attempt to find the schedule one job at a time, we need to know

the finish time of all the processors for the existing schedule and this information is stored in the profile.

We use S(i) to denote the schedule after job Ji is scheduled and use P (i) to denote the corresponding

profile.

When we schedule the jobs on a star (each job needs a substar of some dimension), the profile func-

tion maps a p-interval (all the processors in the interval) to a time. Thus, the profile of the complete

schedule on the star is a sequence of ordered pairs of p-intervals and finish times

P = ([a1; b1]; f1); ([a2; b2]; f2); � � � ; ([ay; by]; fy)

for some integer y where the y intervals are consecutive and divide the givenm-star. Again, we logically

extend the concept of RPT to the intervals; RPT of an interval is the RPT of its processors; more

specifically, for a give deadline of the jobs, rj = T � fj will denote the RPT of the p-interval [aj; bj].

Remark 3 If a p-interval has zero RPT in a schedule, it cannot be used for scheduling further jobs

and will be deleted from the profile.

Definition 3 A profile P is called stair-like [ZA93] if 8i : fi+1 < fi.
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3 Feasibility Algorithm

Given a set of jobs J = fJ1; J2; � � � ; Jng, where Ji = (di; ti) as explained earlier and an m-star, the

feasibility algorithm computes if the given jobs can be scheduled on them-star to meet a given deadline

T . Obviously, if the given deadline T is feasible, we must have 8i : 1 � i � n : T � ti and T �

1

m!

Pn
i=1 tidi!. We can safely assume that the given T satisfies both of these requirements or we can

declare the deadline to be infeasible.

We assume that the job set J is sorted in descending order of dimensions of the substars needed, as

explained earlier. We attempt to schedule the jobs in this order one at a time. Let S(i) and P (i) denote

respectively the schedule and the profile after the job Ji is scheduled. S(0) is the initial schedule (null)

and P (0) is the initial profile (before any job is scheduled). So, P (0) = ([0; m! � 1]; 0): We use k to

denote the number of p-intervals with nonzero RPT in the profile P (i� 1). If k = 0, job Ji cannot be

scheduled; otherwise P (i� 1) will look like

P (i� 1) = ([a1; b1]; f1); ([a2; b2]; f2); � � � ; ([ak; bk]; fk)

[Note: if this profile is stair-like, the p-intervals in P (i � 1) are ordered in increasing order of their

RPT s.]

The Algorithm to schedule Ji = (di; ti)

Step 1: If ti > rk, then return “infeasible” (Job Ji cannot be scheduled).

Step 2: If ti < r1, then schedule job Ji entirely on the substar (p-interval) [a1; a1 + di!� 1] from time

f1 to time f1 + ti.

Step 3: If there exists an integer j such that ti = rj, then schedule the job Ji entirely on the substar

[aj; aj + di!� 1] to use up all its RPT .

Step 4: Compute an integer j such that ti > rj ^ ti � rj+1; schedule the job Ji on the substar [aj; aj +

di!�1] to use up all itsRPT rj and schedule the remaining time ti�rj of job Ji on the substar

[aj+1; aj+1 + di!� 1] from time fj+1 to time fj+1 + (ti � rj).
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Figure 1: Schedule for the Example Job Set

Remark 4 For any job Ji if Step 1 does not apply, our algorithm is able to schedule the job by either

one of the 3 steps 2, 3 or 4.

Remark 5 Note that application of the steps of the algorithm involves appropriate update of the pro-

file; scheduling of a job Ji may split a particular p-interval into two or may necessitate deletion of a

p-interval (due to its RPT being completely used up). This updating of the profile P will depend on the

data structure used and is not relevant to the correctness of the scheduling algorithm.

Example: Consider a 5-star, a deadline T = 4, and a Job set J = (J1; J2; J3; J4; J5; J6), where J1 =

(4; 2), J2 = (4; 4), J3 = (4; 3), J4 = (3; 3), J5 = (3; 3:5) and J6 = (1; 4). Note that the jobs are

arranged in nonincreasing order of dimension. The initial profile is ([0; 119]; 0) and Figure 1 shows the

final schedule obtained by the algorithm. We show below the profiles generated after scheduling each

job in the set:

([0; 119]; 0)
J1 scheduled
����������!

Step 2
([0; 23]; 2); ([24; 119]; 4)

J2 scheduled
����������!
Step 3, j = 2

([0; 23]; 2); ([48; 119]; 0)
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J3 scheduled
����������!

Step 4,j = 1
([48; 71]; 1); ([72; 119]; 0)

J4 scheduled
����������!
Step 3, j = 1

([54; 71]; 1); ([72; 119]; 0)
J5 scheduled
����������!
Step 4, j = 1

([60; 71]; 1); ([72; 77]; 0:5); ([78; 119]; 0)
J6 scheduled
����������!
Step 4, j = 2

([60; 71]; 1); ([73; 78]; 0:5); ([79; 119]; 0)

Lemma 1 The profiles P (i); 0 � i � n are stair-like.

Proof : The profile P (0) is trivially stair-like. Assume that P (i�1) is stair-like; we need to show that

P (i) is stair-like after the job Ji is scheduled by the algorithm.

� Assume Step 2 is executed to schedule Ji. There are two cases: if j[a1; b1]j = di!, the profile P (i)

is obtained by replacing the first entry ([a1; b1]; f1) in P (i�1) by an entry ([a1; b1]; f1+ti); else if

j[a1; b1]j > di!, then the profileP (i) is obtained by replacing the first entry ([a1; b1]; f1) in P (i�1)

by two elements ([a1; a1 + di! � 1]; f1 + ti) and ([a1 + di!; b1]; f1). In either case, the resulting

profile P (i) maintains the stair-like property.

� Assume Step 3 is executed to scheduleJi. ProfileP (i) is obtained by replacing the entry ([aj; bj]; fj)

by a new entry ([aj + di!; bj]; fj); the stair-like property is maintained. Note that if bj = aj + di!,

then the original entry is simply deleted.

� Assume Step 4 is executed to scheduleJi. ProfileP (i) is obtained by deleting the entry ([aj; bj]; fj)

and replacing the entry ([aj+1; bj+1]; fj+1) by two entries ([aj+1; aj+1+ di!� 1]; fj+1 +(ti� rj))

and ([aj+1 + di!; bj+1]; fj+1). Since fj+1 + (ti � rj) � fj, the stair-like property is maintained in

the profile P (i).

2

Lemma 2 The algorithm generates a feasible schedule iff one exists.

Proof : We only need to prove that the algorithm generates a schedule if a feasible schedule exists. We

use contradiction. Let S 0 be a feasible schedule of the job set J and the deadline T . Assume that the jobs

J0; J1; � � � ; Ji�1 are scheduled in S 0 in the same way as in S(i � 1) and job Ji is scheduled differently
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in S 0 than it would be in S(i). We show that S 0 can be modified so that Ji is scheduled in S 0 as in S(i).

Thus, the schedule S 0 can be transformed to S(n), the schedule generated by the proposed algorithm.

Let P (i�1) = ([a1; b1]; f1); � � � ; ([ak; bk]; fk). Since the job Ji is scheduled in S 0�S(i�1), fk+ti � T

and hence our algorithm is able to schedule Ji and can generate S(i). Assume our algorithm schedules

Ji in S(i) on substar A = [aj; aj + di! � 1] from time fj to time fj + ti (= � , say) (Step 2 or 3 of our

algorithm); or on substar A from time fj to T and on substar B = [aj+1; aj+1 + di!� 1] from time fj+1

to time fj+1 + (ti � rj) (= � 0, say) (Step 4 of our algorithm). If the job Ji is scheduled in S 0 in the

same way, we are done; if not, we rearrange jobs Ji; Ji+1; � � � ; Jn in S 0 � S(i� 1) using the following

procedure such that Ji is scheduled in S 0 just like in S(i).

� Divide the entire time interval [0; T ] into equal length intervals of size � (call those intervals �-

intervals) such that each job in S 0 is preempted or finished at the end of some �-interval; this can

always be done by choosing � sufficiently small. For an arbitrary �-interval �, let JS(�) de-

note the set of jobs (from among Ji; Ji+1; � � � ; Jn) that are scheduled in S 0 in the �-interval �,

i.e., JS(�) = fJk : i � k � n; and Jk is scheduled in S 0 over �g.

� Divide the m-star into m(m� 1) � � � (m�di+1) di-substars across the entire interval [0; T ]; line

up jobs in JS(�) over each interval � such that no job is scheduled on two di-substars – this is

possible because 8Jk 2 JS(�) : dk � di.

� Let T 0 = T � ti. Divide the schedule S 0 into two parts: left and right of T 0. Let I1 = f� : � is

a �-interval on left of T 0 and Ji 62 JS(�)g and let I2 = f�0 : �0 is a �-interval on right of T 0 and

Ji 2 JS(�0)g. Obviously, number of intervals in I1 and I2 are equal. Now we can think of a one-

to-one function from I1 to I2. Consider an interval � in I1 and the corresponding �0 in I2. Since

the profile P (i� 1) is stair-like, number of di!-substars over � in S 0�S(i� 1) is at least as many

as over �0. Thus, since Ji is over �0 and not over �, there is at least a di!-substar over � which is

either an empty interval or occupied by a job in JS(�)� JS(�0) – thus we can interchange.

� Now the job Ji is in the interval [T 0; T ]; we now move it to the desired subcubes and time intervals

as is done in S(i). We use the following rules:
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(1) If Step 2 is used to schedule Ji on S(i� 1) to produce S(i), Ji is scheduled on substar A =

[a1; a1 + di! � 1] from f1 to f1 + ti = � . In this case, T 0 > f1 and � > f1. For each � in

[T 0; T ] in S 0, we interchange Ji in its di-substar with jobs in A; we then swap Ji in A over

[T 0; T ] with that in A over [f1; X]. Because A extends from f1 to T in S 0 � S(i � 1), the

swapping can always be done.

(2) If Step 3 is used to schedule Ji on S(i�1) to produceS(i), Ji is scheduled entirely on substar

A = [aj; aj + di! � 1] from time fj to time fj + ti = � . In this case, T 0 = fj and T = � .

For each � in [T 0; T ] in S 0, we just interchange Ji in its di-substar with jobs in A.

(3) If Step 4 is used to schedule Ji on S(i�1) to produce S(i), Ji is scheduled on substar A from

time fj to T and on substarB = [aj+1; aj+1+di!�1] from time fj+1 to time fj+1+(ti�rj) =

� 0. In this case, fj > T 0 > fj+1 and fj > � 0 > fj+1. For each � in [fj; T ] in S 0, we

interchange Ji in its di-substar with jobs in A; we interchange Ji in substar B over [T 0; fj]

with that in B over [fj+1; � 0]. Because B extends from fj+1 toT inS 0�S(i�1), the swapping

can always be done.

2

Theorem 1 The number of preemptions in a feasible schedule produced by the algorithm is upper bounded

by n� 1.

Proof : The first job J1 is scheduled without any preemption and for each subsequent job we need at

most one preemption; thus the result follows. 2

Theorem 2 The feasibility algorithm has a run time complexity of O(n logn).

Proof : The feasibility algorithm involves updating the profile by scheduling one job at a time from the

job set starting from a profile of a single entry and assuming that the job set is orderd in non increasing

order of dimension requirement. The jobs can be ordered in O(n logn) time using a sorting algorithm

like heapsort. The profile can be maintained by using some kind of a balanced tree structure like AVL

trees. The initial tree contains only one node. Update of the tree for scheduling one job involves, in
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the worst case, one deletion and one insertion (i.e., one entry of the profile may need be deleted and one

additional entry may need be inserted). Insertion and/or deletion in an AVL tree can be done inO(logn)

time where n is the number of elements in the tree. Thus, the entire operation of the profile updating

can be done in O(n logn) time. Lastly, to schedule each job, we need to decide on the particular step

of the algorithm. There are only 4 steps in the algorithm; to decide if a particular step is applicable, we

need to do a search on the tree which can take at mostO(logn) time and hence the decision process for

all the n jobs will take O(n logn) time. 2

4 Conclusion

We have developoed a feasibility algorithm to preemptively schedule a set of job with time and dimen-

sion requirements on a given star graph with a given deadline. We have shown that the algorithm runs

in O(n logn) time where n is the number of jobs. It’d be interesting to design strategies to compute

the minimal finish time of a job set for a given star graph network as well as to design nonpreemptive

scheduling strategies for tasks on a star graph network. We plan to report our results soon.
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