
1

Computer Science Colorado
Technical Report State

University

Using Z as a Substrate for an Architectural Style Description Language1

Michael D. Rice Stephen B. Seidman
Computer Science Group Department of Computer Science
Mathematics Department Colorado State University

Wesleyan University

mrice@uts.cs.wesleyan.edu seidman@cs.colostate.edu

September 17, 1996

Technical Report CS-96-120

Department of Computer Science
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5862 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

1 The research reported in this paper was partially supported by a grant from the U. S. Naval Research Laboratory.

2

Using Z as a Substrate for an Architectural Style Description Language2

Michael D. Rice Stephen B. Seidman

Abstract: This paper shows how Z can be used as a substrate for an architectural style
description language. The language provides a collection of abstract software types that support
the description of execution and interface semantics, logical views, and relationships between
logical views. The software types correspond to application-invariant Z schemas, which
provide a type-theoretic basis for the language that allows it to be used for describing, analyzing,
and comparing various architectural styles and logical views.

1.. Introduction

The field of software architectures deals with the design, construction, maintenance, and
structure of large software systems. The study of these systems raises problems analogous to
those which motivated the development of data structures, with program modules playing the
role of data types. First, identifying common architectural patterns for software systems is
analogous to identifying basic data structures such as lists, stacks, and trees. The importance of
identifying useful “architectural styles” is now widely recognized [1]. Second, identifying
appropriate architectural description notations is analogous to developing high level programming
languages for describing and using data structures. This is an important issue that has received
far less attention. Most research efforts have developed software systems for designing domain-
specific architectures, as opposed to system-independent architectural notations. In our view, a
notion of “abstract software types” can provide a formal basis for software architectures, just as
abstract data types do for data structures. These software types serve as the foundation for a
system-independent language that can be used to compare architectural styles and particular
architectures.

This paper presents an overview of an architectural style description language (ASDL) based on a
collection of software types. Modeling software architectural styles may requre a variety of
notations and methodologies, and it is important that the underlying formalism has enough
expressive power.. We have done this by associating each software type with a Z schema [12]
that is invariant across all applications. Collectively, the software types permit the description of
execution and interface semantics, logical views, and relationships between logical views. In
addition, there are schemas that correspond to basic operations for modifying the state described
by the software types. The use of Z schemas provides the language with a flexible and
modifiable type-theoretic basis for describing, analyzing, and comparing various architectural
styles and logical views3. This is accomplished (i) by specifying the values of specific variables
found in the schemas and constraints on these variables, and (ii) by adding application-specific
declarations, constraints, and operations to describe a particular logical view.

2. Language Overview

This section provides an overview of the Z schemas that correspond to the software types and
operations of ASDL. The dependencies between the schemas are shown in Appendix A.

2 A logical view is a description of one characteristic of an architecture (such as a functional view of a compiler
based on lexical analysis and parsing components or a process view of an operating system based on processor
states like running or suspended). The identification of logical views is a precursor to the formulation of an
architectural style.

3

Examples are given to show how the ASDL schemas can be used to specify (a) execution
semantics, (b) dynamic views, (c) interface semantics, and (d) relationships between views.

 MIL Types

In [10], Z schemas were used to describe module interconnection languages (MILs). Such
languages express the structure of a software system in terms of constraints imposed on the
system’s modules and module interfaces. Since the modules and interfaces can be regarded as
representing the syntax of a software architecture, the Z schemas of [10] provide an initial
substrate for ASDL.

The syntax and static semantics of the modules that make up a given software architecture are
specified by the Z schemas MIL_Library and MIL_Setting. These schemas have been
modified only slightly from the Library and Setting schemas of [10]. The schemas use
infinite sets Labels, Nodes, Ports, and Templates that are assumed to be disjoint.

The MIL_Library schema specifies a library type that provides a collection of templates and
information about their interfaces. A template represents a computational component, and its
interface consists of ports that are used for sending and receiving data. Each port has a set of
attributes whose values represent the direction of data movement, the type of the data, and
application-dependent information; the generic parameters Indices and Attributes are used to
provide application-specific information about attributes and their values. Some templates are
identified as primitive templates; these correspond to software system components that have
been preloaded into the library. The members of Collection \ Primitives are templates that
correspond to encapsulated composite modules.

MIL_Library [Indices, Attributes]
interfaces : Templates >|→ FF1Ports
port-attr : Ports |→ Indices → Attributes
Collection : FF1Templates
Primitives ⊆ Collection
Collection = dom interfaces
disjoint ran interfaces
dom port-attr = ∪ ran interfaces
∀ p ∈ dom port-attr • port-attr(p).dir ∈ {in, out}

The MIL_Setting schema specifies a module type based on the library type that consists of a
set of nodes and a set of connections that are defined by shared labels. Each node is
instantiated from a library template. The ports on an instantiated node are called slots. A label
shared by two or more slots creates a connection that can be used for data movement between
the corresponding nodes.

4

MIL_Setting [Indices, Attributes]
MIL_Library [Indices, Attributes]
node-parent : Nodes |→ Templates

 slots : FF(Nodes × Ports)
slot-attr : Nodes × Ports |→ Indices → Attributes
label : Nodes × Ports |→ Labels
slots = dom slot-attr
dom label ⊆ slots
∀ n ∈ dom node-parent •

node-parent ∈ Collection ∧ p ∈ interfaces(node-parent(n))
⇒ (n, p) ∈ dom slot-attr ∧ slot-attr(n, p) = port-attr(p)

 Semantic Library and Module Types

In ASDL, the schemas representing the MIL types have been extended to support the
specification of execution semantics. The templates in the extended Library schema have two
additional features: object attributes and semantic interpretations. The new library schema can
be thought of as a semantic library type. Furthermore, members of Templates \ Collection can
also serve as reference templates, which correspond to interfaces designed in a top-down
fashion.

ASDL_Library [Indices, Attributes, Parts]
MIL_Library [Indices, Attributes]
part : Templates |→ Parts
interp : Templates |→ Interpretations
dom interp = dom part = Collection

The object attributes are specified by a part mapping that provides application-dependent
information. The semantic interpretations are assigned to the template’s interface by an interp
mapping that associates a composition of guarded CSP processes [4] with each template. For
example, if a template τ has two ports p and q with direction attributes in and out, respectively,
then the CSP process

interp(τ) = *(p ? x → q ! x → SKIP)

specifies that the template provides a non-terminating copy operation. The members of
Interpretations are described in Appendix B.

The extended Setting schema contains a composition expression that specifies how the nodes
in a setting are composed for execution purposes and a semantic description mapping that
assigns a semantic abbreviation to each label used in a module. A node instantiated from a
reference template is called a pseudonode.

5

ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
MIL_Setting [Indices, Attributes]
ASDL_Library [Indices, Attributes, Parts]
comp-expr : ProcessExpressions
semantic-descr : Labels |→ SemanticDescriptions
dom semantic-descr = ran label

A composition expression is a restricted type of timed CSP process [9] in which node names
are viewed as processes. For example, it may specify that the nodes in a setting will be
executed in parallel. The members of ProcessExpressions are described in Appendix B.

It is important to note that ASDL uses the Z and CSP formalisms in an orthogonal fashion.
The interp field of an instance of the ASDL_Library schema and the comp-expr field of the
ASDL_Setting schema contain character strings that can be interpreted as CSP expressions.
Since our goal is to have Z and CSP reinforce each other, there is no need to propose a
common semantic domain for the two formalisms.

A semantic abbreviation associated with a label represents a communication protocol, as well as
additional application-dependent information involving data transfer rates and timing
requirements. To do this, the set SemanticDescriptions contains abbreviations that correspond
to a variety of communication capabilities. The mapping semantic-descr assigns an
abbreviation to each label in a setting. The following abbreviations illustrate some of the
possible semantic descriptions:

uac (usc) -- unidirectional asynchronous (synchronous) communication
abp -- alternating bit protocol
rpc -- remote procedure call
brod -- broadcast input data
merge -- combine input data
mult -- multiplex input data

Each abbreviation a has a meaning [a] and a set of associated properties , including its text
description. For example, the meaning of usc is described by the CSP expression

 [usc] = *(in ? x → out ! x → SKIP).

The associated properties may include an alphabet like {in, out} or an alternate specification of
the meaning, such as out ≤ in (each trace on out is a prefix of a trace on in). Other properties
might include timing information or a restriction on the buffer size for an asynchronous
protocol.

In some cases, the meaning of an abbreviation is parameterized by a potential set of
connections. For example, the meanings of the broadcast and multiplex abbreviations are
specified by:

 [brod](S) = *(in ? x → || (outs ! x → SKIP : s ∈ S))

 [mult](S) = *(0ins ? x → out ! x → SKIP : s ∈ S)).

The execution semantics of a module are derived from the semantic interpretations of the
templates underlying the nodes, the composition expression, and the semantic descriptions of

6

the labels that specify the connections between nodes. The ASDL_Setting schema can
therefore be thought of as a semantic module type that contains the basic components and the
information needed to execute the module.

The following examples illustrate the use of library and module types.

(a) A module type in the Processing Graph Method (PGM, [7], [11]) corresponds to a graph
whose nodes perform signal processing operations. The primitive templates underlying
the nodes belong to two categories: transitions that represent computations and data
restructuring operations and places that represent data transfers between transitions. Slots
of the same port type instantiated from templates of different categories may be connected
by directed arcs that specify data movement.

For example, part(τ) = G_Var(T) specifies that τ is a graph variable template
(corresponding to a PGM graph node holding rewritable constant data) with one input
(INPUT) and output (OUTPUT) port, each of type T, and

interp(τ)(R, S) = *({INPUTr ? x → SKIP : r ∈ R} ({OUTPUTs ! x → SKIP : s ∈ S}))

specifies that τ is willing to receive or send data on the indicated channels, where R and S
correspond to the nodes that are linked to the INPUT and OUTPUT ports, respectively.

The interpretation of a PGM transition template enforces a dataflow execution
methodology, in which the execution of a node is triggered by the arrival of sufficient data
at its input slots. The composition expression specifies the parallel execution of the nodes
in a module and the semantic description of each label specifies a unidirectional
synchronous transfer of data.

(b) A composition expression can also describe the dynamic evolution of a module which is
the target of ASDL operations . In this case, the alphabet of the process representing the
expression includes special event names corresponding to the ASDL operations used. For
example, the following portion of a composition expression describes the creation of a
client node C based on a template τ and its connection to one of the server nodes S1 and S2
using a label L with the semantic abbreviation bac (bidirectional asynchronous
communication):

create_node(C, τ) → (assign_label(L, S1, C, bac) assign_label(L, S2, C, bac))

The ASDL create_node operation instantiates a node from a library template, and the
assign_label operation establishes a connection between the client and server nodes by
setting the values of the slot labels. These operations will be discussed further below.

 Unit Type

The ASDL_Setting schema represents a module as a self-contained computational unit without
any external connections. The ASDL_Unit schema corresponds to a unit type that describes
these connections and the associated interface semantics. It includes a set of virtual ports that
represent the “public” interfaces of the unit and a mapping that specifies the attributes of these
ports. The mapping virtual-port-descr assigns a semantic abbreviation to each virtual port in a
unit. The virtual ports and their attributes, specified in the associated ASDL_Boundary
schema, represent a unit’s syntactic boundary. The connect mapping describes the links
between slots and virtual ports.

7

ASDL_Unit [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Boundary [Indices, Attributes]
connect : Nodes × Ports |→ FFPorts
virtual-port-descr : Ports |→ SemanticDescriptions
dom connect ⊆ Slots
∪ ran connect ⊆ virtual-ports
dom virtual-port-descr = virtual-ports
∀ p ∈ virtual-ports • { interface-attr(p).dir} = {slot-attr(s).dir : p ∈ connect(s)}

ASDL_Boundary [Indices, Attributes]
interface-attr : Ports |→ Indices → Attributes
virtual-ports : FFPorts
virtual-ports = dom interface-attr

The schema ASDL_Unit imposes only a minimal restriction on the interface that enforces
consistency with respect to the direction of data movement. Further restrictions are based on
application-dependent information about the desired behavior of units. For example, type-
consistency requirements may be placed on the connect mapping, and the virtual-port-descr
mapping may specify broadcasting or multiplexing behavior for a virtual port.

The following example illustrates the use of unit types.

(c) A computer in a network can be represented as a unit type, where the nodes correspond to
sockets, and their connections to virtual ports correspond to the assignment of sockets to
services such as ftp and telnet. Since a port can be linked to more than one socket, ports
must support the multiplexing of messages. The semantics of a virtual port p is specified
as

virtual-port-descr(p) = Receive Send.
where

Receive = *(pk ? msg → socket-slotnumber(msg) ! msg → SKIP : k ∈ K),

number(msg) is the local socket number identifying the destination of the message msg,
and K corresponds to the computer’s set of network connections.

 System Type

The ASDL_System schema includes the ASDL_Library schema, as well as architectural state
information: the modules and units that have been used to describe logical views of an
architecture, the relationships between units and modules, the connection between library
templates and unit types, and architectural connections between different logical views.

8

ASDL_System [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Library [I, A, P, S]
Units : FFASDL_Unit [I, A, P, S]
basis : Templates |→ ASDL_Unit [I, A, P, S]
relation : Labels ||→ FF(Nodes × Nodes)
Collection \ dom basis = Primitives
Units = ran basis
∀ τ ∈ Collection \ Primitives • (interfaces(τ) = basis(τ).virtual-ports ∧

port-attr | interfaces(τ) = basis(τ).interface-attr)

∀ ρ ∈ dom relation ∃ {u, u*} ⊆ Units •

(dom relation(ρ) ⊆ dom u.node-parent ∧ ran relation(ρ) ⊆ dom u*.node-parent)

where I, A, P, S refer to Indices, Attributes, Parts, and SemanticDescriptions.

The variable Units denotes the set of all unit types that have been used to describe various
logical views of the architecture. The basis mapping summarizes the connection between unit
types and templates. The mapping relation summarizes the relations that have been specified
between sets of nodes in various units to provide architectural connections between different
logical views.

The use of the resulting system type is illustrated by the following example:

(d) In an assembler, a module type may specify a phase view, where each node represents a
distinct phase (first pass, second pass, ...) and connections between nodes represent
control information. In this view, the composition expression specifies sequential
execution and the semantic description specifies “transfer of control”. Another module
type may specify a structural view, where the nodes correspond to data structures and
connections between nodes represent pointer references. In this case, the composition
expression is SKIP, denoting the absence of an execution context, and the semantic
description is simply “reference to”. There are natural “modify” and “use” relations
between the two views - if the execution of a phase node np alters (respectively reads) the
contents of a structure node ns, then (np , ns) belongs to the “modify” (respectively “use”)
relation.

 Operations

ASDL contains a number of basic operations that support the incremental specification of the
software types by updating the ASDL_System schema. These serve as guides for the design
of application-dependent operations that are constructed by adding new signatures and
constraints to existing operations or by incorporating existing operations into a new operation.

The basic operations include setting operations to create and delete nodes and pseudonodes,
assign labels to slots, specify a composition expression, and select semantic abbreviations,
interface operations to specify virtual ports, attributes, links, and virtual port descriptions, an
encapsulation operation to create a new library template based on a unit, relation operations to
specify and modify relations between units, and operations that define the units needed to
support a top-down design methodology.

The create_node operation is a typical setting operation, since it alters an individual unit, but
does not change the semantic library type. The availability of schema composition in Z makes
it possible to localize the definition of these operations. In order to do so, the auxiliary

9

schemas Select_Unit and Update_System are used. The format for the ASDL operation is
then

ASDL(OOOOPPPP) = Select_Unit; OOOOPPPP ; Update_System,

where OOOOPPPP is the “local” schema that performs the operation for a specific unit. For example,
the local schema corresponding to OOOOPPPP = create_node is

Create_Node
ΞASDL_System
∆ASDL_Unit
τ? : Templates
τ? ∈ Collection
∃ n ∈ Nodes \ dom node-parent •

node-parent' = node-parent ⊕ {n |→ τ?}

The system-level schemas are Select_Unit, which returns the unit associated with a reference
template r?, and Update_System, which updates the unit associated with a reference
template r?.

Select_Unit
ΞASDL_System
r? : Templates
ASDL_Unit '
r? ∈ dom basis \ Collection
node-parent' = basis(r?).node-parent

. . .
virtual-port-descr' = basis(r?).virtual-port-descr

Update_System
∆ASDL_System
r? : Templates
ASDL_Unit '
r? ∈ dom basis \ Collection
basis' = basis ⊕ {r? |→ u} • (u.node-parent = node-parent

. . .
u.virtual-port-descr = virtual-port-descr

In these schemas, the elision indicates that an analogous constraint holds for each of the ten
ASDL_Unit variables not listed.

The encapsulation operation (ASDL_External) creates a new library template from an
existing unit type. The virtual ports of the unit type become the ports of the template and the
attributes of these ports are derived from the unit’s interface. The template's interpretation is
derived from the interpretations of the templates underlying the nodes, the composition
expression, the abbreviations of labels, and the semantics of the virtual ports. This represents

10

a complex synthesis of the semantics of the entities associated with the unit. In general, it may
not be possible to construct a “closed form” interpretation due to the presence of partial and
heterogeneous information.

ASDL_External
∆ASDL_System
r? : Templates
kind? : Parts
r? ∈ dom basis \ Collection
interfaces' = interfaces ⊕ {r? |→ basis(r?).virtual-ports}
port-attr' = port-attr ⊕ basis(r?).interface-attr
part' = part ⊕ {r? |→ kind?}
interp' = interp ⊕ {r? |→ Synthesis(basis(r?))}

Note that the constraints in ADSL_External guarantee that Collection' = Collection ∪ {r?}.
One of the benefits of using Z as a basis for ASDL is that the formalism makes it possible to
draw such conclusions.

The new library template can, in turn, be used to create a node in another module. ASDL
permits an application-dependent interpretation of the extent to which the internal structure of
the node is visible in the new module. For example, if encapsulation requires that each virtual
port is linked to a node in the underlying unit, then one interpretation is that only the resources
of the nodes linked to the port can be accessed through the port. On the other hand, if
encapsulation permits a virtual port with no links, then another interpretation may allow
characteristics of the node to be modified by using the port.

In [10], a top-down design methodology was modeled by using a family of generic connector
templates. ASDL supports a more straightforward representation of this methodology, since it
provides an operation to incorporate a special unit type into an existing module. The included
unit corresponds to a module that may be empty. In the latter case, a reference template is used
to instantiate a pseudonode that can be linked to other nodes. The internal structure of the unit
can be constructed later, thereby providing the desired top-down design capability.

Specifically, the Create_Unit operation is used to create an empty unit and associate it with a
reference template, the Update_Boundary (local) operation is used to define the unit’s
interface, and the Create_Pseudonode (local) operation is used to use the reference template
to instantiate a pseudonode associated with the unit.

Create_Unit
∆ASDL_System
r! : Templates
r! ∉ dom basis \ Collection
basis' = basis ⊕ {r! |→ u} • (u.node-parent = u .label= u. slot-attr = ∅

u.comp-expr = SKIP
u.interface-attr = u.connect = ∅

11

Update_Boundary
∆ASDL_System
τ? : Templates
i-attr : Ports |→ Indices → Attributes
τ? ∉ dom basis \ Collection
basis(τ?).interface-attr = i-attr

Create_PseudoNode
ΞASDL_System
∆ASDL_Unit
τ? : Templates
τ? ∉ dom basis \ Collection
∃ n ∈ Nodes \ dom node-parent •

(node-parent' = node-parent ⊕ {n |→ τ?}
slot-attr' = slot-attr ⊕

{(n, p) |→ basis(τ?).interface-attr(p) | p ∈ basis(τ?).virtual-ports})

3 . Conclusions

The increasing scale and complexity of modern software systems requires the development of
abstractions than can serve as general organizing principles for architectures. The language
described in this paper represents an attempt to do so by giving a coherent and system-
independent framework for the formal specification of architectural principles. Z has provided a
powerful and flexible substrate for the software types and operations of ASDL. Other formal
approaches to the specification of architectures and architectural styles have been proposed ([1],
[2], [5], [6], and [13]). The spirit of this work has much in common with our own ideas.
However, we believe that the following features differentiate our work from previous efforts.

First, the software types include a comprehensive set of variable declarations and constraints.
These provide expressive power and flexibility, and the Z schemas permit the use of a mixture of
formal notations for the specification of architectural features. The language therefore supports
an approach to architectural specifications that is both heterogeneous and orthogonal. Second,
the operations provide a natural way to describe architectural styles that have dynamic features.
This approach was illustrated in example (b) where the special event names used in the
composition expression referred to the operations create_node and assign_label. Some
approaches (such as [5] and [6]) use languages (like the Chemical Abstract Machine [3] and the
π-calculus [8]) that support the dynamic creation of processes. These languages can also be used
to model evolving architectures, but they have the drawback of an added semantic complexity
when compared to CSP and Z. In addition, the dynamic operations must be explicitly specified
in these languages. In ASDL, only a reference to an operation like create_node is needed. While
ASDL currently uses a Z schema to specify this operation, another more appropriate formalism
could be used.

Finally, the software types and operations provide not only the ability to describe architectural
styles, but also a basis for a methodology for developing architectural descriptions. This is
analogous to the manner in which abstract data types are used. A stack with its standard
operations suggests potential uses in algorithms; a software type with its associated operations
suggests potential uses in architectural descriptions. For example, given a module type
representing a logical view, to formulate interface requirements for a unit based on the module, it
is natural to think in terms of interface operations that specify virtual ports, attributes, links, and

12

virtual port descriptions. As another example, in describing an architectural style, it is natural to
think in terms of whether two nodes belong to the same view and should be connected by an
assign_label operation, or whether the nodes belong to different views and should be related by
an operation that creates entries in a relation between the views. The types and operations of
ASDL provide a rich variety of choices for handling such issues.

 References

[1] G. Abowd, R. Allan, and D. Garlan, Using style to understand descriptions of software
architecture, Proceedings ACM SIGSOFT93 Symposium on Foundations of Software
Engineering, pp. 9-20, 1993.

[2] R. Allan and D. Garlan, Formalizing architectural connection, Proceedings of the 16th
International Conference on Software Engineering, pp. 71-80, 1994.

[3] G. Berry and G. Boudol, “The chemical abstract machine model”, Theoretical Computer
Science 96 (1992), 217-248.

[4] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[5] P. Inverardi and A. L. Wolf, “Formal specification and analysis of software architectures
using the Chemical Abstract Machine model”, IEEE Transactions on Software Engineering
21 (1995), 373-386.

[6] J. Kramer and J. Magee, “Modeling distributed software architectures”, manuscript, 1995.

[7] D. J. Kaplan and R.S. Stevens, “Processing graph method 2.0 semantics”, manuscript,
Naval Research Laboratory, June, 1995.

[8] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile processes”, Technical Reports
ECS-LFCS 89-85, 89-86, University of Edinburgh, 1989.

[9] G. M. Reed and A. W. Roscoe, “A timed model for communicating sequential processes”,
Theoretical Computer Science 58 (1988), 249-261.

[10] M.D. Rice and S.B. Seidman, “A formal model for module interconnection languages”,
IEEE Transactions on Software Engineering 20 (1994), 88-101.

[11] M.D. Rice and S.B. Seidman, “Describing the PGM architectural style”, Technical Report
CS-96-120, Department of Computer Science, Colorado State University, 1996.

[12] J. M. Spivey, The Z Notation, A Reference Manual, Prentice-Hall, 1989.

[13] P. Zave and M. Jackson, “Conjunction as composition”, ACM Trans. on Software
Engineering and Methodology, 2(4), pp. 379-411, Oct. 1993.

13

Appendix A: Dependencies among ASDL schemas and schema variables

The following graph shows the variables used in the ASDL state schemas and the dependencies
between the various schemas. Bold lines indicate schema inclusions and thin lines denote the
declaration of variables in schema signatures.

ASDL_SettingASDL_Boundary

connect

virtual-port-descr

ASDL_Unit

semantics-descr

comp-expr

MIL_Library

interfaces port-attr Collection

ASDL_Library

interppart

ASDL_System

basis Unitsrelation

interface-attr virtual-ports

MIL_Setting

node-parent slotsslot-attrlabel

14

Appendix B: Syntax of Process Expressions and Interpretations

The syntax is described by using a mixture of CSP notation and BNF. To focus the
presentation, we have omitted the specification of arithmetic and boolean expressions and
standard sequential constructs such as conditionals and loops.

The members of ProcessExpressions are described by the following syntax:

P ::= event → P | P Op P | WAIT(δ) | STOP | SKIP | n
Op ::= ; | || | |

where n ∈ Nodes and δ is a positive integer. The process event → P permits the specification
of a dynamic composition expression. Events have the following form:

event ::= operation-name(symbol-list)
operation-name ::= Create_Node | Assign_Label | ...

 symbol ::= n | t | l | s | a

where n ∈ Nodes, t ∈ Templates, l ∈ Labels, s = <n, p> ∈ Nodes × Ports, and a ∈
SemanticDescriptions. Each operation-name refers to an operation on the system schema (see
Appendix A).

Process expressions are therefore constructed from nodes and events using the CSP operators

sequential (;), parallel (||), deterministic and nondeterministic choice (0, |
_

|), and prefix (→).

Semantic restrictions include (i) a composition expression for a setting must use nodes n ∈ dom
node-parent and slots s = (n, p) satisfying p ∈ interfaces(node-parent(n)) and (ii) each operation-
name has a fixed set and order of required parameters (e.g. create_node(n, t) and
assign_label(l, s, a)). Moreover, the corresponding operation can modify only the unit variables
connect, label, node-parent, slot-attr, and slots.

The members of Interpretations are described by the following syntax:

I ::= io-process | I Op I | WAIT(δ) | STOP | SKIP

where Op is specified above and δ is a positive integer. Each input-output process has the
following form:

io-process ::= chan-name ? i-item → I(i-item) | chan-name ! o-item → I
chan-name ::= p | pop | pi | piop

where p ∈ Ports, i is an integer index variable, and op is a reserved symbol. The term i-item (o-
item) denotes a variable (expression) for receiving (sending) data through the port referenced by
chan-name.

Semantic restrictions include (i) each port name p referenced in interp(τ) must be a member of
interfaces(τ), (ii) p or pi (pop or piop) is a legal reference if and only if port-attr(p).dir = in (port-
attr(p).dir = out), and (iii) each of the terms i-item and o-item must must be compatible with the
type port-attr(p).type.

