
Computer Science Colorado
Technical Report State

University

Describing the PGM Architectural Style†

Michael D. Rice Stephen B. Seidman
Computer Science Group Department of Computer Science
Mathematics Department Colorado State University

Wesleyan University

mrice@uts.cs.wesleyan.edu seidman@cs.colostate.edu

September 17, 1996

Technical Report CS-96-121

Department of Computer Science
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5862 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

† This research was partially sponsored by a grant from the Naval Research Laboratory.

1

Describing the PGM Architectural Style

 Abstract The term software architectural style has recently been introduced to refer to the
conventions that are used to interpret a description of a software architecture. The representation
and analysis of useful architectural styles is an important problem. This paper gives an overview
of a methodology developed by the authors for describing the syntax and semantics of software
architectural styles with an application to the US Naval Research Laboratory’s Processing Graph
Method (PGM). This coarse-grain dataflow architectural style has been used for more than ten
years to develop signal processing applications in government and industry.

1 . Introduction

Since the late 1970s, software systems have been designed as collections of modules that interact

with their environments through well-defined interfaces [DK]. This perspective gave rise to a

number of module interconnection languages (MILs) that could be used to describe the

configuration of the modules and interfaces of a software system [PN]. In recent years, this

syntactic view of software systems has come to be regarded as insufficient, since it says nothing

about the semantics of the modules and interfaces. The modular view of software systems has

been replaced by the study of abstract models of the structure of software systems, which have

come to be called software architectures ([GP], [GS]). These models raise problems analogous

to those which motivated the development of data structures, with program modules playing the

role of data types. First, identifying common architectural patterns for software systems is

analogous to identifying basic data structures such as lists, stacks, and trees. The importance of

identifying such useful “architectural styles” is now widely recognized [AAG]. Second,

identifying appropriate architectural description notations is analogous to developing high level

programming languages for describing and using data structures. In our view, a notion of

“abstract software types” can provide a formal basis for software architectures, just as abstract

data types do for data structures. These software types provide the foundation for a system-

independent language (ASDL) that can be used to compare architectural styles and particular

architectures, and also to gain an increased understanding of complex architectural styles. This

paper gives an overview of ASDL and shows how it can be used to obtain a description of an

industrial-strength software architectural style.

Each ASDL software type is associated with a Z schema [S] that is invariant across all

applications. The software types support the description of the execution and interface semantics

of the components of an architecture or architectural style. In addition, ASDL provides schemas

that correspond to basic operations for modifying the state described by the software types. The

use of Z schemas provides the language with a flexible and modifiable type-theoretic basis for

2

describing, analyzing, and comparing various architectural styles. This is accomplished by

specifying the values of specific variables found in the schemas and constraints on these

variables, and by adding application-specific declarations, constraints, and operations to describe

a particular style.

The Z schemas used in ASDL are derived from those used in the model for MILs proposed by

Rice and Seidman in [RS1] (henceforth called the RS MIL model). As in the earlier model, the

ASDL schemas are generic Z schemas. The syntax of a particular architectural style is

represented by a specific instantiation of the generic schemas. Such an instantiation constrains

the configuration of the elements that make up an architecture. While this is similar to the

approach taken with MILs, this approach cannot be used to represent the semantics of a style,

since MILs carry no semantic information. A similar observation has recently been made by

Abowd, Allan, and Garlan [AAG], who state that an abstract representation of the elements of an

architecture is insufficient to convey the meaning of the architecture, and that these elements must

be interpreted if they are to be meaningful. ASDL provides such an interpretation, since it treats

syntax and semantics within the same formal framework. Structural aspects common to all styles

are expressed by the generic ASDL schemas, while the features that are characteristic of a style

are expressed by the style-specific instantiation. In this way, architectural styles can be described

generically, and critical features of specific styles can be isolated and analyzed with the goal of

obtaining a deeper understanding.

The utility and power of the model will be demonstrated by an application to an architectural style

that has industrial significance. The Processing Graph Method (PGM) is a coarse-grain dataflow

software architectural style developed at the US Naval Research Laboratory, primarily for signal

processing applications [KS]. It has been used for more than ten years to design signal

processing software for execution on a special-purpose multiprocessor. An effort is currently

under way to develop an IEEE standard for PGM. This effort is intended to support the

migration of the methodology and software to commercially available multiprocessors and to

provide a common basis for application developers working on different hardware platforms.

The syntax and semantics of the PGM style are currently only described by natural language text

[KS]. Since PGM is a very complex style, this text is often obscure and subject to varying

interpretations. An ASDL description of the PGM style has the potential to provide a solid and

reliable platform for developers and implementors.

3

2. ASDL: The Use of Software Types to Describe Architectural Styles

In this section, we will describe the software types used by ASDL. These types can be

categorized into several groups that will be discussed in turn: MIL types, semantic types, unit

types, and system types.

2.1 MIL Types

The Z schemas of [RS1] were used to describe module interconnection languages, which express

the structure of a software system in terms of constraints imposed on the system’s modules and

module interfaces. Since the modules and interfaces can be regarded as representing the syntax

of a software architecture, these schemas provide an initial substrate for ASDL.

The syntax and static semantics of the modules that make up a given software architecture are

specified by the Z schemas MIL_Library and MIL_Setting. These schemas have been

modified only slightly from the Library and Setting schemas of [RS]. The schemas use

infinite sets Labels, Nodes, Ports, and Templates that are assumed to be disjoint.

The MIL_Library schema specifies a library type that provides a collection of templates and

information about their interfaces. A template represents a computational component that is

available for inclusion into a software architecture, and its interface consists of ports that are used

for sending and receiving data. Each port has a set of attributes whose values represent the

direction of data movement, the type of the data, and application-dependent information; the

generic parameters Indices and Attributes are used to provide application-specific information

about attributes and their values. Some templates are identified as primitive templates; these

correspond to software system components that have been preloaded into the library. The

members of Collection \ Primitives are templates that correspond to encapsulated composite

modules.

MIL_Library [Indices, Attributes]
interfaces : Templates >|→ FF1Ports
port-attr : Ports |→ Indices → Attributes
Collection : FF1Templates
Primitives ⊆ Collection
Collection = dom interfaces
disjoint ran interfaces
dom port-attr = ∪ ran interfaces
{dir, type} ⊆ Indices ∧ {in, out} ⊆ Attributes
∀ p ∈ dom port-attr • port-attr(p).dir ∈ {in, out}

4

The MIL_Setting schema specifies a module type based on the library type that consists of a set

of nodes and a set of connections that are defined by shared labels. The nodes represent the

components of a software architecture; each node is instantiated from a library template. A node

has external interfaces called slots that correspond to (and inherit attributes from) the ports on the

underlying template. A label shared by two or more slots creates a connection that can be used

for data movement between the corresponding nodes.

MIL_Setting [Indices, Attributes]
MIL_Library [Indices, Attributes]
node-parent : Nodes |→ Templates

 slots : FF(Nodes × Ports)
slot-attr : Nodes × Ports |→ Indices → Attributes
label : Nodes × Ports |→ Labels
slots = dom slot-attr
dom label ⊆ slots
∀ n ∈ dom node-parent •

node-parent(n) ∈ Collection ∧ p ∈ interfaces(node-parent(n))
⇒ (n, p) ∈ dom slot-attr ∧ slot-attr(n, p) = port-attr(p)

2.2 Semantic Library and Module Types

In ASDL, the schemas representing the MIL types have been extended to support the

specification of execution semantics. The templates in the extended Library schema have two

additional features: object attributes and semantic interpretations. The new library schema can be

thought of as a semantic library type.

ASDL_Library [Indices, Attributes, Parts]
MIL_Library [Indices, Attributes]
part : Templates |→ Parts
interp : Templates |→ Interpretations
dom interp = dom part = Collection

Object attributes are specified by a part mapping that provides application-dependent information.

Semantic interpretations are assigned to the template’s interface by an interp mapping that

associates a composition of guarded CSP processes [H] with each template. For example, if a

template τ has two ports p and q with direction attributes in and out, respectively, then the CSP

process

interp(τ) = *(p ? x → q ! x → SKIP)

5

specifies that the template provides a non-terminating copy operation. The members of

Interpretations are described in [RS2].

The extended Setting schema contains a composition expression that specifies how the nodes in a

setting are composed for execution purposes and a semantic description mapping that assigns a

semantic abbreviation to each label used in a module.

ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
MIL_Setting [Indices, Attributes]
ASDL_Library [Indices, Attributes, Parts]
comp-expr : ProcessExpressions
semantic-descr : Labels |→ SemanticDescriptions
dom semantic-descr = ran label

A composition expression is a restricted type of timed CSP process [RR] in which node names

are viewed as processes. For example, it may specify that the nodes in a setting will be executed

in parallel. The members of ProcessExpressions are described in [RS2].

It is important to note that ASDL uses the Z and CSP formalisms orthogonally, so that there is no

need to propose a common semantic domain for the two formalisms. Specifically, the use of

CSP is confined to providing a process algebra value for the comp-expr variable of the

ASDL_Setting schema and for the interpretation of each template τ (interp(τ)) of the

ASDL_Library schema. The character strings assigned to these elements correspond to CSP

process algebra expressions.

A semantic abbreviation associated with a label represents a communication protocol, as well as

additional application-dependent information. The set SemanticDescriptions contains

abbreviations that correspond to a variety of communication capabilities, and the mapping

semantic-descr assigns an abbreviation to each label in a setting. For example, the abbreviations

uac and usc represent unidirectional asynchronous and synchronous communication,

respectively.

Each abbreviation a has a meaning [a] and a set of associated properties, including its text

description. For example, the meaning of usc is described by the CSP expression

 [usc] = *(in ? x → out ! x → SKIP).

6

The associated properties may include an alphabet like {in, out} or an alternate specification of

the meaning, such as out ≤ in (each trace on out is a prefix of a trace on in). Other properties

might include timing information or a restriction on the buffer size for an asynchronous protocol.

The execution semantics of a module are derived from the semantic interpretations of the

templates underlying the nodes, the composition expression, and the semantic descriptions of the

labels that specify the connections between nodes. The ASDL_Setting schema can therefore be

thought of as a semantic module type that contains the basic components and the information

needed to execute the module.

2.3 Unit and System Types

The ASDL_Setting schema represents a module as a self-contained computational unit without

any external connections. These connections and the associated interface semantics are described

by an additional unit type. For reasons of space, we will not be able to present the

corresponding schema here; full details can be found in [RS2]. This schema provides a set of

virtual ports that represents the public interfaces of the unit, links between the virtual ports and

the slots of the module, and semantic descriptions of the communication capabilities of the virtual

ports.

There is also a system type that represents architectural state information: the modules and units

that have been used to describe an architecture, the relationships between units and modules, and

the connection between library templates and units. We will not be able to present the

corresponding schema here; full details can be found in [RS2].

2.4 Operations

ASDL contains a number of basic operations that support the incremental specification of the

software types. These serve as guides for the design of application-dependent operations that are

constructed by adding new signatures and constraints to existing operations or by incorporating

existing operations into a new operation. The operations include setting operations to create and

delete nodes, assign labels to slots, specify a composition expression, and select semantic

abbreviations, interface operations to specify virtual ports, attributes, links, and virtual port

descriptions, an encapsulation operation to create a new library template based on a unit, relation

operations to specify and modify relations between units, and operations that define the units

needed to support a top-down design methodology. Detailed descriptions of these operations can

be found in [RS2].

7

3 . The PGM Architectural Style

The Processing Graph Method (PGM) is a coarse-grain dataflow software methodology

developed at the US Naval Research Laboratory, primarily for signal processing applications. It

has been used for more than ten years to design signal processing software for execution on a

special-purpose multiprocessor. The current effort to develop an IEEE standard for PGM is

intended to support the migration of the methodology and software to commercially available

multiprocessors and to provide a common basis for application developers working on different

hardware platforms.

A PGM application [KS] consists of one or more PGM graphs and PGM command programs.

The nodes of a PGM graph consist of PGM transitions that represent computations and data

restructuring operations, and PGM places that represent data transfers. Graph edges may only

exist between nodes of different category. The interfaces between transitions and places are

represented by ports. The execution of a transition is triggered by the arrival of sufficient data at

the transition's input ports. The transition then reads data from the input ports, performs the

specified computation, and writes data to the output ports. Places offer several forms of data

transmission between transitions: queues use a first-in, first-out communication protocol, graph

variables provide rewritable data, and graph constants provide read-only data. In many

circumstances, the result of the execution of a PGM graph can be shown to be independent of the

execution order of its individual transitions ([KM], [SK]).

Figure 1 illustrates a PGM graph Γ . The circles represent transition nodes, and the square

represents a place node corresponding to a queue. Ports are represented by small squares on

node boundaries.

A B
INPUT

OUTPUT

CAPACITY

OUTPUT

INPUT(1)
INPUT(2)

INPUT(3)

C
Q1

Q2

Q3

GP(1) GP(2)

Γ

Figure 1. A PGM Graph

PGM command programs are programs that consist of a sequence of calls to specific procedures

that create and instantiate PGM graphs and also provide facilities for dynamic manipulation of

8

PGM graphs. A command program creates a PGM graph by calling procedures that set up

transition and place nodes, establish the graph topology by setting graph parameters and linking

node ports, and then instantiate the graph as an executable object. Graph manipulation is

provided by command program procedures that stop and restart executing graphs, create and

delete edges between a graph’s ports and its environment, and allow graph parameters to be

dynamically reset.

Since the details of the computations represented by PGM transition nodes are not specified in a

PGM graph, a PGM graph corresponds to a software architecture. From that perspective, the

constraints governing the configuration of PGM graphs can be regarded as defining a PGM

architectural style. A textual description of these constraints is given in [KS]. The constraints are

rather complex, and the text of [KS] is often subject to conflicting interpretations. In the

following section, we will show how ASDL can be used to obtain a reliable description of the

PGM style that can serve as a stable foundation for implementors. We do not regard the

command program procedures as forming part of the PGM style, and we have therefore not

included them in the ASDL description.

4 . Describing the PGM style in ASDL

As mentioned above, PGM nodes are either transitions that represent computations or data

restructuring operations, or places that represent data transfers. Transitions are further classified

as ordinary or special, and special transitions have one of five parametrized flavors, which will be

described below. Places are further classified as graph constants, graph variables, or queues.

Each node is associated with a set of ports which are used to transmit data to and from other

nodes. Similarly, each port is associated with a set of attributes which describe its characteristics.

The first step toward obtaining an ASDL description of PGM is to define a PGM-specific version

of the semantic library schema. To do this, we must first make some PGM-specific assumptions

about the generic parameters that must be supplied for this schema:

• Indices contains the field category

• Attributes contains the members of the set Parts and the names of the PGM types

• Parts = Transitions ∪ Places ∪ {Graph}

The function port-attr in the MIL_Library schema assigns attribute values to ports. According

to this schema, dir ∈ Indices and {in, out} ⊆ Attributes. The dir attribute governs whether a port

inputs or outputs data. The type attribute indicates the type of the data that may be communicated

9

using the port. The category attribute identifies the part corresponding to the template to which

the port belongs.

• Transitions = {Ordinary({Tα}α ∈ Λ, φ : F → T), Fanin(T, n), Fanout(T, n), Pack(T),
 Unpack(T), U_Merge(T, n)}

• Places = {G_Var(T), G _ Const(T), Queue(T)}

The element Graph of Parts corresponds to a subgraph that is treated as a single node. The

definitions of Transitions and Places need some further comment. With respect to Transitions,

the {Tα} are the types of the data tokens communicated through the ports of an ordinary

transition, and the computation performed by that transition corresponds to the function φ, whose

set of input arguments has the finite set type F. The remaining members of Transitions represent

the five flavors of the special transitions used for data restructuring in PGM; each is parametrized

by a type T, and three are also parametrized by an integer n. The parametrized definitions of the

members of Places express the type of the data that can be stored in a place.

We can then define PGM_Library by adding some PGM-specific constraints to the

parameterized generic schema:

PGM_Library = ASDL_Library [Indices, Attributes, Parts] | PGM_Library_Constraints

The first of these constraints is

Primitives = part-1(Transitions ∪ Places),

which states that the primitive templates in the library must be either transitions or places.

The second constraint is

∀ τ ∈ Primitives, ∀ p ∈ interfaces(τ) • port-attr(p).category = part(τ),

which expresses the fact that the category attribute of a port is inherited from the corresponding

template. This will be needed in PGM_Setting to express the fact that the PGM style requires

linked nodes to have opposite category (see S4b below).

The remaining constraints describe the semantics of primitive templates. A pair of constraints is

needed for each primitive template. The first of these constraints describes the interface, while

the second specifies a CSP process that describes the semantics of the template. The template's

interface is modeled by using either a single CSP channel or a family of channels. The names of

these channels are derived from the names of the ports comprising the interface. For example, a

10

two-member set of channels corresponding to the port OUTPUT is denoted as {OUTPUT,

OUTPUTop}.

The two constraints associated with the part G_Const(T) are

(GC1) part(τ) = G _ Const(T) ⇒ interfaces(τ) = {(OUTPUT, τ)} ∧ port-attr(OUTPUT, τ).dir = out ∧
port-attr(OUTPUT, τ).type = T

(GC2) interp(τ)(S) = *({OUTPUTs ! data → SKIP : s ∈ S})

(GC1) states that a G _ Const(T) (graph constant) template has a single port with direction out and

type T. (GC2) states that a template is always ready to supply its data value. Recall that in CSP,
 represents nondeterministic choice, * represents indefinite iteration, ; represents sequential

composition, and that ? and ! are used to denote channel input and output. S corresponds to the

set of channels linked to the port. These constraints express the idea that a PGM graph constant

holds a single unchangeable data token (determined when the graph is instantiated) that will be

supplied when requested.

While a PGM graph variable also holds a single data token which is supplied when requested, the

value of this token can be changed. The GV constraints that express this semantics should be

contrasted with their GC analogs.

(GV1) part(τ) = G_Var(T) ⇒ interfaces(τ) = {(INPUT, τ), (OUTPUT, τ)}∧
port-attr(INPUT, τ).dir = in ∧ port-attr(OUTPUT, τ).dir = out ∧
port-attr(INPUT, τ).type = port-attr(OUTPUT, τ).type = T

(GV2) interp(τ)(R, S) = *(({INPUTr ? data → SKIP : r ∈ R})

({OUTPUTs ! data → SKIP : s ∈ S}))

(GV1) states that a G _ Var(T) (graph variable) template has one input and one output port, each

with type T. (GV2) states that the template’s interface is always ready to receive or supply data.

The parameters R and S represent the channels linked to the input and output ports, respectively.

The behavior of a PGM queue is more complex. Since its capacity to store data tokens is limited,

it is necessary to check whether sufficient space is available before receiving data. As a

consequence, a queue template has an input port, an output port, and a port that is used for

communicating the queue's capacity. The constraint that describes this interface is:

(Q1) part(τ) = Queue(T) ⇒ interfaces(τ) = {(CAPACITY, τ), (INPUT, τ), (OUTPUT, τ)} ∧
port-attr(CAPACITY, τ).dir = port-attr(INPUT, τ).dir = in ∧
port-attr(OUTPUT, τ).dir = out ∧
port-attr(INPUT, τ).type = port-attr(OUTPUT, τ).type = T ∧

11

port-attr(CAPACITY, τ).type = [0..maxint]

The constraint that describes a queue's semantics is

(Q2) interp(τ)(R, S) = *(((INPUT ∈ R) &
((INPUT ? read; amt → Input_Data(data, amt))

 (INPUT ? query_space →
INPUTop ! capacity - #data → SKIP)))

((OUTPUT ∈ S) &
((OUTPUTop ? consume; c; o → Consume_Data(data, c, o))

 (OUTPUTop ? write; r; o → Output_Data(data, r, o))
 OUTPUTop ? query_content → OUTPUT ! #data → SKIP)))

 ((CAPACITY ∈ R) &
((CAPACITY ? read; amt → CAPACITY ? capacity → SKIP)

 (CAPACITY ? query_space → CAPACITYop ! 1 → SKIP))))

This constraint describes a queue template’s response to input on the INPUT, OUTPUTop, or

CAPACITY channels. The Boolean guards act as preconditions for the channel operations. The

syntax for the guards is an extension to CSP that was adapted from the occam language [J]. For

example, if INPUT ∈ R, the queue is willing to receive data, and the process continues as

described. If INPUT ∉ R, however, the queue is not willing to receive data, and the input portion

of the queue process is equivalent to SKIP. Similarly, if OUTPUT ∈ S, then the queue can use the

OUTPUT port to send data (resp. receive data) on the channel OUTPUT (resp. OUTPUTop).

The symbols consume, read, write, query_content, and query_space act as tags. If a

transition port is connected to the OUTPUT port, then the transition sends the tag query_content

to determine if the queue contains enough data to permit the execution of the transition. If a

transition port is connected to the INPUT port, then the transition sends the tag query_space to

determine if the queue has enough space to store data resulting from the transition’s execution. If

a read request is received on READ or CAPACITY, then the corresponding process will read the

requisite amount of data. Similarly, an appropriate process responds to requests received on

OUTPUTop by consuming data, outputting data, or outputting the number of tokens currently

stored in the queue. Descriptions of these processes are given in [PGM].

Similar constraints are associated with ordinary transitions. These nodes represent

computations, and they may have any number of input and output ports of different types. For

reasons of space, neither these constraints, nor those describing the semantics of special

transitions, can be given here. Full details can be found in [RS2].

12

The PGM-specific version of the ASDL semantic module schema is obtained by adding five new

signature elements (indicated in boldface italics) and five new constraints to the ADSL_Setting

schema. The PGM_Setting schema corresponds to a PGM graph. The kind of the setting is

stored in setting-type, and the name of the graph is stored in the character string name. The link

relation denotes the pairs of slots corresponding to pairs of PGM ports that are joined by PGM

graph edges. Since PGM command programs can suspend and restart the execution of a graph,

a setting must contain information about the execution status of a graph (exec-status) and the

current state of the graph’s place nodes. State is represented by the mapping state : Nodes |→
D⊥ , where D⊥ denotes the domain of possible data values, including the undefined value ⊥ .

PGM_Setting [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
PGM_Library [Indices, Attributes, Parts]
setting-type : Parts
name : Char*
link : FF ((Nodes × Ports) × (Nodes × Ports))
exec-status : (run, suspend)
state : Nodes |→ D⊥
PGM_Setting_Constraints

PGM _ Setting_Constraints contains the following specific constraints:

(S1) setting-type = Graph

(S2) b ∈ ran label ⇒ | label-1(b) | ≥ 2

(S3) ∀ b ∈ ran label •
semantic-descr(b) ∈ {usc, bsc} ∧
semantic-descr(b) = usc ⇔ ∃ s ∈ label -1(b) • slot-attr(s).category = G_Const

(S4) (a) (link ⊆ slots × slots) ∧ ((r, s) ∈ link ⇔ label(r) = label(s))

(b) (r, s) ∈ link ⇒ (slot-attr(r).type = slot-attr(s).type) ∧ (slot-attr(r).dir ≠ slot-attr(s).dir)
∧ (slot-attr(r).category ≠ slot-attr(s).category)

(c) ({(r, s), (r, t)} ⊆ link) ∧ (s ≠ t) ⇒ slot-attr(r).category ∈ {G_Const, G_Var}

(S5) (a) dom state = {n ∈ dom node-parent : part(node-parent(n)) ∈ Places}

(b) ∀ n ∈ dom state •
(part(node-parent(n)) ∈ {G_Var(T), G_Const(T)} ⇒ state(n) has type T × N) ∧

(part(node-parent(n)) = Queue(T) ⇒ state(n) has type seqT × N)

13

(S1) expresses the fact that a setting can only be used to construct a PGM graph. (S2) requires

that each label be shared by at least two slots. This technical constraint is needed to support the

specification of PGM command program procedures. (S3) states that communication between

node ports in a setting is synchronous, and is bidirectional (bsc) unless one of the nodes is a

graph constant. In the latter case, the communication is unidirectional (usc).

The link constraints in (S4) express the rules that govern edges in PGM graphs. (S4a) asserts

that the pairs related by link must be slots, and that slots related by link must share the same label.

(S4b) requires that slots related by link must share the same data type, but must have opposite

direction and category. (S4c) requires that a slot that is related to more than one slot by link must

be associated with a node instantiated from a graph constant or graph variable. It follows that a

slot that is associated with a node instantiated from a transition or queue can only be linked to one

other slot.

The constraints in (S5) describe the way in which the state of a setting is modeled. A dynamic

representation of the state of a PGM graph is needed to support the modeling of runtime graph

management procedures. Since PGM transition nodes do not have state, (S5a) makes the domain

of the state mapping equal to the set of nodes instantiated from PGM place templates. (S5b)

gives type descriptions for the state of graph constants, graph variables, and queues.

5. Benefits of the ASDL approach

The goal of the effort to develop an IEEE standard for PGM is a document that will be accepted

as a definition of PGM by two communities: the engineers who are building PGM architectures

that correspond to signal processing applications, and the manufacturers of multiprocessor

hardware platforms that will execute these architectures. This document must include a correct

and unequivocal definition of PGM. Until now, such definitions have been written in natural

language [KS], and the informality of natural language definitions has given rise to many rounds

of discussion and clarification. The primary purpose of constructing an ASDL model of PGM

was to create a formal model that could serve as a reference point for developers and

implementors.

As an example, compare the following definition of the PGM queue, taken from [KS], with the

formalism of constraints (Q1) and (Q2) of PGM_Library.

A queue is a place that shall execute by receiving tokens from its data input port and sending
them out through its data output port. Tokens shall be handled in a first-in, first-out manner
and shall be stored in the queue’s associated family. A queue port shall be connected to at

14

most one transition port. Each queue shall be associated with a family of tokens. The
number of tokens currently stored in this family shall be called the queue’s content. The
capacity of a queue shall initially be set at MAXINT, which denotes the maximum integer
value that can be represented by the target hardware. Each queue shall have an input capacity
port of integer mode. If the name of a queue is queuename, its capacity port shall be named
queuename.CAPACITY. At any time after initialization, a queue’s capacity shall be equal to
the value of the most recent integer token written to the queue’s capacity port. The result of
using the consume operation to remove N tokens from a queue shall be the deletion of the
first N tokens from the queue.

It is far easier to base an architecture or an implementation on the formal constraints than on an

interpretation of the words in the natural language definition. We have found that discussions

based on the formal constraints have been far briefer and more insightful than discussions based

on the natural language definitions. As a consequence, we will be including a version of the

formalism as an annex to the draft PGM standard.

6. Related research

The term architectural style was introduced by Abowd, Allen, and Garlan in [AAG]. In that

paper, the authors formalize an abstract syntax (henceforth referred to as the AAG syntax) for

software architectures and show how the abstract syntax can be mapped to a semantic model for

each style. The abstract syntax can be compared with the architectural syntax provided by the RS

MIL model, since both provide a generic framework for treating architectures. The AAG syntax

consists of Z schemas that specify sets of components and connectors, and an attachment

mapping that is used to associate elements of those sets. The semantic models in [AAG] are also

expressed using Z schemas, and the mapping from syntax to semantics is defined using the

signature elements of the syntactic and semantic schemas. Finally, the constraints imposed on the

syntax by the semantic model are derived by combining the syntactic and semantic schemas.

Despite their common goals and their common use of Z formalism, there are some important

differences between the approaches. First, the approach used in [AAG] often makes it difficult to

separate the syntactic and semantic aspects of a style. For example, syntactic features of styles

are usually discussed only after the syntactic and semantic schemas have been combined In our

approach, such syntactic features can be treated independently of semantics by adding style-

specific signature elements and constraints to a RS MIL library or setting schema. In addition,

semantic models in [AAG] are built around transition functions representing state machines. This

approach seems less expressive than the incorporation of process algebra expressions into ASDL

schemas, as advocated here.

In [AG], Allen and Garlan propose another approach for describing architectural components that

is also somewhat similar to ASDL. This approach is associated with a description language called

15

WRIGHT. The instances and attachments described in [AG] correspond to ASDL nodes and

labels. Also, the idea of a connector provides a means of describing execution semantics. The

ports on instances correspond to port processes and although this phrase is not used, roles

correspond to “ports on connectors”. Connections are made between ports on nodes and roles on

connectors, but two nodes are never directly connected. In addition, CSP expressions are used

to describe the semantics of the ports and connectors. This is roughly equivalent to our

description of semantics using semantic descriptions and a composition expression. By contrast

with ASDL, [AG] has no notion of encapsulation, and there is no type-theoretic basis that

supports the specification of generic operations for constructing an architecture. Nonetheless, the

spirit of the work in [AG] is similar to our own, most importantly in its recognition of the

importance of using a formal notation to obtain a precise description of execution and interface

semantics.

The primary purpose for constructing an ASDL model of PGM was to obtain a deeper

understanding of an industrially important architectural style. A similar approach was taken by

Delisle and Garlan when they constructed a Z-based model of the architecture of a digital

oscilloscope [DG]. More recently, Allen [A] has undertaken a similar effort by using WRIGHT

to model the Department of Defense’s High Level Architecture for Simulations (HLA) as an

architectural style in order to obtain an understanding of the architectures built using this style.

7. Conclusions

This paper proposes a formal and generic approach to describing the syntax and semantics of

software architectural styles. The approach was illustrated by applying it to the PGM

architectural style. The process of developing the PGM application is also of interest. We began

with a textual description of the PGM style, and we used that description to develop the PGM-

specific ASDL schemas. Since these schemas are formal representations, we can use them to

mathematically verify the consistency and correctness of various aspects of the PGM model. On

the other hand, the schemas also provide the basis for a custom notation that can be used to

convince PGM practitioners of the correctness and power of our model, and the resulting

descriptions will form part of the draft PGM standard. We feel that one of the potential

advantages of our formalism is that it enables the modeler to acquire a deep understanding of a

software architectural style. It can therefore serve as an effective mediator between textual

descriptions of architectures and customized notations.

References

[A] R. Allen, “HLA: A standards effort as architectural style”, Proceedings of the Second
International Software Architecture, pp. 130-133, 1996.

16

[AAG] G. Abowd, R. Allan, and D. Garlan, “Using style to understand descriptions of
software architecture”, Proceedings of the ACM SIGSOFT’93 Symposium on
Foundations of Software Engineering, pp. 9-20, 1993.

[AG] R. Allan and D. Garlan, “Formalizing architectural connection”, Proceedings of the
16th International Conference on Software Engineering, pp. 71-80, 1994.

[DG] N. Delisle and D. Garlan, “Applying formal specification to industrial problems: a
specification of an oscilloscope”, IEEE Software 7(1990), 29-37.

[DK] F. DeRemer and H. Kron, “Programming-in-the-large versus programming in-the-
small”, IEEE Transactions on Software Engineering 2(1976), 80-86.

[GP] D. Garlan and D. E. Perry, “Introduction to the special issue on software architecture”,
IEEE Transactions on Software Engineering 21 (1995), 269-274.

[GS] D. Garlan and M. Shaw, “An introduction to software architecture”, in V. Ambriola and
G. Tortora, eds., Advances in Software Engineering and Knowledge Engineering, vol.
1, World Scientific, pp. 1-39, 1993.

[H] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[J] G. Jones, Programming in occam, Prentice-Hall, 1987.

[KM] R. M. Karp and R. E. Miller, “Properties of a model for parallel computation:
determinacy, termination, queuing”, SIAM Journal of Applied Mathematics 14 (1966),
1390-1411.

[KS] D. J. Kaplan and R.S. Stevens, “Processing graph method 2.0 semantics”, manuscript,
US Naval Research Laboratory, June, 1995.

[PGM] Draft Processing Graph Method Standard, Naval Research Laboratory, January 1997.

[PN] R. Prieto-Diaz and J. M. Neighbors, “Module interconnection languages”, Journal of
Systems and Software 6(1986), 307-334.

[RR] G. M. Reed and A. W. Roscoe, “A timed model for communicating sequential
processes”, Theoretical Computer Science 58 (1988), 249-261.

[RS1] M.D. Rice and S.B. Seidman, “A formal model for module interconnection languages”,
IEEE Transactions on Software Engineering 20 (1994), 88-101.

[RS2] M.D. Rice and S.B. Seidman, “Using Z as a substrate for an architectural style
description language”, Technical Report 96-120, Department of Computer Science,
Colorado State University, 1996.

[S] J. M. Spivey, The Z Notation, A Reference Manual, Prentice-Hall, 1989.

[SK] R. S. Stevens and D. J. Kaplan, “Determinacy of generalized schema”, IEEE
Transactions on Computers 41 (1992), 776-779.

