
Computer Science Colorado
Technical Report State

University

Describing a Top-Down Architectural Style: the PARSE Process Graph Notation

Michael D. Rice Stephen B. Seidman
Computer Science Group Department of Computer Science
Mathematics Department Colorado State University

Wesleyan University

mrice@uts.cs.wesleyan.edu seidman@cs.colostate.edu

September 17, 1996

Technical Report CS-96-123

Department of Computer Science
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5862 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

1

Describing a Top-Down Architectural Style: the PARSE Process Graph Notation

Abstract: The ASDL language represents a formal methodology for modeling the software
architectural styles that are used to develop complex computer systems. In previous work,
ASDL has been used to model a coarse-grain dataflow style used for large-scale signal
processing applications. This style incorporates a bottom-up design methodology. In this paper,
the expressiveness of ASDL is demonstrated by its use to model a architectural style for parallel
and distributed systems that incorporates a top-down design methodology. The ASDL model
provides a valuable basis for understanding the style and for posing questions to its developers.

1. Introduction

In the 1980s, large-scale software systems came to be regarded as collections of modules, with
communication among the modules mediated by clearly specified interfaces. While this view
proved to be useful for small and medium-scale software systems, it is insufficient to provide the
support for global understanding of an industrial-strength software system. One problem has
been that the modules and their interconnections represent only the syntax of a large-scale
software system, and provide no basis for talking about system semantics. Recently, many
researchers have suggested that abstractions are needed that can support consideration of both
syntax and semantics of large-scale software systems. These abstractions have come to be called
software architectures [SG].

This insight has proved to be helpful, but the large variety of software architectures that have
been described has tended to make it difficult to draw widely applicable conclusions about the
structure of large software systems. Recently, David Garlan and his associates have suggested
that software architectures can be classified as belonging to distinct architectural styles [AAG],
and that it might be far more efficient to study these styles. The study of software architectural
styles is still in its infancy. The first papers from Garlan’s group dealt with only a few rather
general styles: the pipes and filters commonly used in Unix; the client-server style; and an object-
oriented style ([SG], [G2], [GAO]). While all three styles are familiar and widely used, they are
all rather general, and none can really be regarded as an industrial-strength style.

We have developed a formalism (ASDL) for describing architectural styles, and we have applied
it to model the Processing Graph Method (PGM) style [RS3]. PGM [KS] is a coarse-grained
dataflow style developed at the U.S. Naval Research Laboratory to support designing signal
processing architectures. An architecture designed under PGM can be regarded as a graph
whose nodes correspond to signal processing computations (transforms, filters, convolutions,
etc.); the edges are used for data communication, and the graph executes in a data-driven fashion.
Since an entire graph can be encapsulated in a single node that can be used as a component in
other graphs, PGM can be characterized as a bottom-up software architectural style.

The expressiveness of ASDL will be demonstrated here by showing that it can also be used to
describe a top-down architectural style. The Parallel Software Engineering (PARSE) [GJGC]
methodology was developed to support the top-down design and implementation of parallel and
distributed software architectures. PARSE has been used to describe a parallel logic language
run-time support system [JGG], a parallel database engine [GGJ], a parallel transport protocol
for high speed networks [GJGC], and a real time embedded control system [LSG]. In this
paper, we will show that PARSE can be regarded as an architectural style that can be modeled
naturally by ASDL.

2

2. The PARSE architectural style

Architectures developed within PARSE are represented graphically as diagrams constructed
according to the rules of the PARSE Process Graph Notation (PGN) [G1]. We will use ASDL
to represent the entities and rules of PGN, and thus to model the PARSE methodology.

A PARSE architecture is constructed from communication entities and processing entities.
Processing entities consist of process objects (further distinguished as data servers, function
processes, and control processes) and external interface objects. Process objects may have
persistent state (data servers, control processes) or be stateless (function processes); at the same
time, they may also be active (control processes) or passive (function processes, data servers).
PARSE also makes a distinction between classes and instances of process objects. A designer of
a PARSE architecture first defines classes of process objects and then creates instances of such
classes.

Communication entities consist of paths and constructors. Paths are used to transmit data
between instances of process objects. The semantics of data transmission are defined by the
assignment of path types to paths. PGN uses the following path types: synchronous,
asynchronous, bidirectional, broadcast. Paths are attached to object instances at ports. The ports
of an object form part of the object's class definition.

The following example will illustrate some of the features of PARSE; it is a simplified version of
an example appearing in [GJGC]. Figure 1 illustrates a PARSE description of the high-level
design of a system that implements the packet management component of a new transport
protocol for broadband networks [CG].

ack

data

synk synk

data

ack

ReceiveTransmit Network

Figure 1. Top-level PARSE system description

In Figure 1, ovals represent function servers (Network), and rectangles with rounded corners
represent control processes (Transmit, Receive). Communication is indicated by directed
arrows; a box on an arrow indicates that the communication is asynchronous. The clear
rectangular box at the left side of Network indicates a nondeterministic path constructor.

Each process in a top-level PARSE system description can be replaced by a system containing
lower-level processes that represent explicit design decisions. Figure 2 shows how the Receive
process of Figure 1 can be decomposed into lower-level processes. An arrow without a box
(Status) indicates that the communication is synchronous. Circles at the end of arrows indicate
that data is to be communicated to or from the exterior of a process; the three arrows terminated
with circles correspond to the three external communications with the Receive process shown in
Figure 1.

3

RecHostDataProc

SynkProc

Status

Data
RecData

Ack

Synk

Figure 2. Internal Structure of Receive

Both the graphical syntax and the semantics of PGN are described informally in [G1]. The
PARSE literature contains neither a formal description of the syntax nor a way to describe the
semantics of a system modeled in PARSE (although [RSJC] shows how PARSE processes can
be translated into Petri nets). In this paper, we will show how the ASDL formalism can be used
both to represent PGN syntax and to assign semantic interpretations to PARSE models.

3. Modeling PARSE in ASDL

ASDL is a generalization of the formalism that was used in [RS1] to describe module
interconnection languages (MILs). Such languages express the structure of a software system in
terms of constraints imposed on the system’s modules and module interfaces. In the MIL
formalism, Z schemas were used to describe these constraints. Generic schemas were used to
describe the features that are common to all MILs; a specific MIL was modeled by setting the
values of generic schema parameters and adjoining application-specific signature elements and
constraints. Since the modules and their interfaces can be regarded as representing the syntax of
a software architecture, the MIL Z schemas provide an initial substrate for ASDL. This substrate
must be extended to enable it to describe the semantics of the collection of modules making up a
software architecture, and the MIL schemas have accordingly been extended in ASDL.

3.1 The semantic library type

The schemas use infinite sets Labels, Nodes, Ports, and Templates that are assumed to be
disjoint. The ASDL_Library schema specifies a semantic library type that provides a
collection of templates and information about their interfaces. A template represents a
computational component, and its interface consists of ports that are used for sending and
receiving data. The mapping interfaces associates templates with ports. Each port has a set of
attributes whose values represent the direction of data movement, the type of the data, and
application-dependent information; the generic parameters Indices and Attributes are used to
provide application-specific information about attributes and their values. The attribute values are
assigned to ports by the mapping port-attr. Templates are also assigned to application-specific
categories by the mapping part, and interp provides semantic interpretations for the templates that
are used to construct a specific architecture. The semantic interpretations are members of a set
Interpretations of CSP [H] process expressions. See [RS2] for a formal definition of this set.

Some templates are identified as primitive templates; these correspond to software system
components that have been preloaded into the library. The members of Collection \ Primitives
are templates that correspond to encapsulated composite modules. Furthermore, members of

4

Templates \ Collection can also serve as reference templates, which correspond to interfaces
designed in a top-down fashion.

ASDL_Library [Indices, Attributes, Parts]
interfaces : Templates >|→ FF1Ports
port-attr : Ports |→ Indices → Attributes
Collection : FF1Templates
part : Templates |→ Parts
interp : Templates |→ Interpretations
Primitives ⊆ Collection
Collection = dom interfaces
dom interp = dom part = Collection
disjoint ran interfaces
dom port-attr = ∪ ran interfaces
∀ p ∈ dom port-attr • port-attr(p).dir ∈ {in, out}

In the ASDL model of PARSE, each class of process objects corresponds to a library template.
We will need to augment ASDL_Library by adding some signature elements and constraints
that are specific to PARSE.

PARSE_Library [Indices, Attributes, Parts, Interps]
ASDL_Library [Indices, Attributes, Parts]
path-constructors : FF(FF1Ports)
constructor-names : FFPorts |→ Char*
class-names : Templates >|→ Char*
PARSE_Library_Constraints

A PGN path constructor corresponds to a nonempty set of ports, and the set path-constructors
consists of the path constructors that are used in a specific PARSE architecture. The functions
constructor-names and class-names are used to assign names to path constructors and to classes
of process objects.

We will need to make the following PARSE-specific assumptions about the ASDL generic
parameters:

• Indices contains the fields category, name, protocol, comm-type, and constr-type. The value
of a port's category and name attributes are the category and name of the port's containing
process object; the value of its protocol and comm-type attributes are the protocol and
communication type of the port. The value of a port's constr-type attribute is the type of the
path constructor containing the port.

• Attributes contains the names of PARSE types

• Parts = {function, data_server, control_process, external_interface} contains the categories of
PARSE process objects.

• Communication_Types = {synchronous, asynchronous, bidirectional, broadcast} contains the
PARSE communication types.

5

• Constructor_Types = {concurrent, deterministic, nondeterministic, nil} contains the PARSE
constructor types. We assume that every port is contained in a path constructor, which may
consist of a single port. In the latter case, the constructor type nil is used.

PARSE_Library_Constraints is the conjunction of thirteen individual constraints, listed and
annotated below. Each constraint corresponds to one or more features of PARSE or PGN, and
references are given to the PGN rules of [G1]. A listing of the rules is given in Appendix A.

(1) disjoint path-constructors

The path constructors are disjoint sets of ports ([G1], p. 12).

(2) ∪ path-constructors = dom port-attr

Each port of a template corresponding to a PARSE process object belongs to a path
constructor. In [G1], path constructors are only used to link multiple input ports. Since we
constrain output ports to belong to singleton path constructors (see (8), (9) below), our
model is consistent with PGN.

(3) dom constructor-names = path-constructors

All path constructors are named. ([G1], PA-07)

(4) dom class-names ⊇ Collection

All primitive templates and templates representing encapsulated modules must be named.
Note that templates representing top-down modules will also be named; these templates are
included in Collection.

(5) ∀τ ∈ Collection • part(τ) = external_interface ⇒ τ ∈ Primitives

Templates representing external interface process objects have no internal structure. ([G1],
PT-01)

(6) ∀τ ∈ Collection, ∀ p ∈ interfaces(τ) •

(port-attr(p).category = part(τ)) ∧
port-attr(p).name : Char ∧
port-attr(p).protocol ∈ Protocols ∧
port-attr(p).comm-type ∈ Communication_Types) ∧
port-attr(p).constr-type ∈ Constructor_Types)

Port attributes are constrained to take on appropriate values. Since the structure of protocols
is application-dependent, the set Protocols will not be discussed further here.

 (7) ∀τ ∈ Primitives, ∀ p ∈ interfaces(τ) • part(τ) = external_interface

⇒ port-attr(p).constr-type = nil

6

Ports of templates representing external interface process objects must belong to trivial
(singleton) path constructors. ([G1], PA-01)

(8) ∀ p ∈ dom port-attr • (port-attr(p).dir = out ⇒ port-attr(p).constr-type = nil)

Output ports of templates must belong to trivial (singleton) path constructors. [G1, PA-02]

(9) ∀ p ∈ dom port-attr • port-attr(p).constr-type ≠ nil

⇔ ∃ α ∈ path-constructors • p ∈ α ∧ #α > 1

Nontrivial path constructors include more than one port. ([G1], PA-02)

(10) ∀ p ∈ dom port-attr • port-attr(p).constr-type = concurrent ⇒
p ∈ interfaces(Collection \ Primitives)

A port of a primitive template cannot belong to a concurrent path constructor. ([G1], PA-03)

(11) ∀ α ∈ path-constructors •

{p, q} ⊆ α ⇒ (port-attr(p).dir = port-attr(q).dir ∧
port-attr(p).type = port-attr(q).type ∧
port-attr(p).comm-type = port-attr(q).comm-type ∧
port-attr(p).protocol = port-attr(q).protocol ∧
port-attr(p).constr-type = port-attr(q).constr-type)

Ports belonging to the same path constructor must have identical attributes.

Semantic interpretations of templates representing PARSE object classes require some additional
formalism. The symbol Λ will denote a nonempty finite set whose elements correspond to ports.
A port associated with a template τ will be denoted by (p, τ), where p ∈ Λ . The elements of Λ
will also be used to refer to CSP channels that are used to express the semantics of port
communication. If the port semantics require bidirectional communication, this will be expressed
by the pair of CSP channels { p, p op}, where p ∈ Λ.

(12) interfaces(τ) = (∪{Λ (τ, c) : c ∈ Communication_Types)} × {τ}, where

Λ(τ, c) = {p ∈ Λ : port-attr(p, τ).comm-type = c} ∧

interp(τ)) = (|| *Synch(p): p ∈ Λ(τ, synchronous)) ||

(|| *Bidir(p): p ∈ Λ(τ, bidirectional)) ||

(|| *Asynch(p): p ∈ Λ(τ, asynchronous)) ||

(|| *Broadcast(p): p ∈ Λ(τ, broadcast))

7

where Synch(p) = Asynch(p) = Broadcast(p) =
if port-attr(p, τ).dir = in

then p ? x → SKIP
else p ! x → SKIP

Bidir(p) = if port-attr(p , τ).dir = in
then p? x → p op ? x → SKIP
else p ! x → p op ! x → SKIP))1

The CSP process interp(τ)) describes the interface semantics of the template τ by using the
communication path type associated with a port to specify the communications on the
corresponding channels. These channels are always ready to communicate, and they execute
concurrently. It is important to note that ASDL uses the Z and CSP formalisms in an orthogonal
fashion. The interp field of an instance of the ASDL_Library schema and the comp-expr field
of the ASDL_Setting schema contain character strings that can be interpreted as CSP
expressions. Since the goal of ASDL is to have Z and CSP reinforce each other, there is no need
to propose a common semantic domain for the two formalisms.

 Example : We will use the Receive process of Figure 2 to illustrate the semantic library type. For
this example, we will need templates and ports satisfying the following properties:

{DataProc, SynkProc, RecHost} ⊆ Primitives

and

{α, β, γ, δ, ε, η, θ} ⊆ Ports

These templates and ports are illustrated in Figure 3. Ports belonging to nontrivial path
constructors are indicated by underlines.

γ
δ

ε

SynkProc

α
β

θ

DataProc

η

RecHost

Figure 3. Semantic library elements corresponding to the Receive process

The path constructors consist of the sets {α, β}, {γ}, {δ}, {ε} , {η}, and {θ}; the port-attr
mapping is defined by the following table:

1 The symbols || and * are taken from [H]. If P is a set of processes, || P denotes the concurrent execution of the

members of P. If P is a process, then *P denotes a process that iterates P without termination.

8

 port dir name category constr-type comm-type

α in DataProc control process nondeterministic asynchronous

β in DataProc control process nondeterministic synchronous

γ in SynkProc function server nil asynchronous

δ out SynkProc function server nil asynchronous

ε out SynkProc function server nil synchronous

η in RecHost function server nil asynchronous

θ out DataProc control process nil asynchronous

3.2 The semantic module type

The ASDL_Setting schema, given below, specifies a semantic module type that is based on
the library type. This type consists of a set of nodes and a set of connections that are defined by
shared labels. Each node is instantiated from a library template. The ports on an instantiated
node are called slots. A label shared by two or more slots creates a connection that can be used
for data movement between the corresponding nodes.

ASDL also contains operations that support the construction of a specific software architecture
within an architectural style described by the schema constraints. For example, the Create_Node
operation instantiates a node from a library template, and the Assign_Label operation assigns a
label to an unlabeled slot. Schemas defining these operations are found in [RS2].

The semantic module type also contains a composition expression that specifies how the nodes in
a setting are composed for execution purposes and a semantic description mapping that assigns a
semantic abbreviation to each label used in a module. A node instantiated from a reference
template is called a pseudonode. A composition expression is a restricted type of timed CSP
process, in which node names are viewed as processes. For example, the expression may
specify that the nodes in a setting will be executed in parallel. The sets ProcessExpressions and
SemanticDescriptions are described in [RS2].

The execution semantics of an ASDL module are derived from the semantic interpretations of the
templates underlying the nodes, the composition expression, and the semantic abbreviations
associated with the labels that specify the connections between nodes. ASDL_Setting therefore
contains all of the information needed to execute the module.

It has already been mentioned that ASDL models of software architectural styles use semantic
abbreviations assigned to shared labels to describe the way in which data is communicated
between nodes. If this approach were applied directly to PGN, data communication between
process objects would be expressed in terms of attributes of these objects and their ports. PGN
actually uses an alternative approach; data communications between objects are determined by
path constructors associated with ports of the underlying object classes. A faithful model of
PGN (and PARSE) in ASDL must reflect this approach. In order to do so, we will introduce the
specific semantic abbreviation nil. The semantics of a slot label mapped to nil by semantic-
descr will be inherited from the interface semantics of the corresponding port on the underlying
template, and the execution semantics of a PGN (PARSE) module will therefore be appropriately
derived from the composition expression and the semantic interpretations of the templates
underlying the nodes.

9

ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Library [Indices, Attributes, Parts]
node-parent : Nodes |→ Templates

 slots : FF(Nodes × Ports)
slot-attr : Nodes × Ports |→ Indices → Attributes
label : Nodes × Ports |→ Labels
comp-expr : ProcessExpressions
semantic-descr : Labels |→ SemanticDescriptions
slots = dom slot-attr
dom label ⊆ slots
∀ n ∈ dom node-parent •

node-parent(n) ∈ Collection ∧ p ∈ interfaces(node-parent(n))
⇒ (n, p) ∈ dom slot-attr ∧ slot-attr(n, p) = port-attr(p)

dom semantic-descr = ran label

In the ASDL model of PARSE, an instantiation of a process object corresponds to a node. We
will need to modify ASDL_Setting by adding some signature elements and constraints that are
specific to PARSE. The functions node-name and state are used to assign names to nodes and to
record the internal states of nodes. The domain D used to represent node state is application-
dependent, and will not be discussed further here.

PARSE_Setting [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
PARSE_Library
node-name : Nodes |→ Char*
state: Nodes |→ D
PARSE_Setting_Constraints

PARSE_Setting_Constraints is the conjunction of the five individual constraints that are listed
below. Each constraint corresponds to one or more features of PARSE or PGN, and
explanations of the correspondence are given in boldface, with cross-references to [G1]. comp-
expr uses CSP channels to describe communication between ports corresponding to (input,
output) slot pairs that share a common label. These channels will be designated by the labels to
which they correspond. If bidirectional communication is needed, a pair of channels {a, aop}
will correspond to the label a.

(1) dom node-name = dom node-parent

All PARSE process objects must be named.

(2) (∀ s, t ∈ slots • (label(s) = label(t)) ⇒
(slot-attr(s).protocol = slot-attr(t).protocol) ∧
(slot-attr(s).type = slot-attr(t).type) ∧
(slot-attr(s).comm-type = slot-attr(t).comm-type))

10

Since shared slot labels represent communication paths, slots with the same label must
correspond to ports that have the same type, protocol, and communication type ([G1], p.
7).

(3) (∀ s, t ∈ slots) •

((label(s) = label(t)) ∧ (first(s) = first(t)) ⇒
∃ α ∈ path-constructors ∧ {second(s), second(t)} ⊆ α)

The projection functions first and second map a slot s = (n, p) to n and p, respectively.
Since shared slot labels represent communication paths, slots on the same node with the
same label must correspond to ports that belong to the same path constructor.

(4) (∀ n ∈ Nodes) • n ∈ dom state ⇒
n ∈ dom node-parent ∧ part(node-parent(n) ∈ {data-server, control-process}

Only data server processes and control processes have persistent state ([G1], pp. 2-3).

 (5) comp-expr = || {Proc(n) | n ∈ dom node-parent}

The processes corresponding to the nodes of a PARSE graph execute concurrently.

Proc(n) = Internal-process(n) || Interface-process(n)

The process corresponding to a single node of a PARSE graph represents both the
execution semantics (Internal-process) and the interface semantics (Interface-process) of the
node. The execution semantics will not be specified further here.

Interface-process(n) = || {Grouped-slot-process (a) | a ∈ ran label}

The interface semantics of a node are obtained from the concurrent composition of the
behavior of the groups of slots that share common labels. The behavior of such a slot
group will depend on the type of the path constructor that is associated with the underlying
template ports.

Grouped-slot-process (a) =

Operator (slot-attr(s).constr-type) {Labeled-slot-process(s) | label (s) = a }

where Operator is a function from Constructor_Types to CSP constructors defined by
the ordered pairs

{(concurrent, ||), (deterministic,), (nondeterministic,), (nil, NIL)}2.

2 The operator symbols and are taken from [H]. If P is a set of processes, P and P denote

nondeterministic execution of the members of P; the first operator allows the environment to select the process
that will be executed.

11

Since PARSE_Setting_Constraint (3) and PARSE_Library_Constraint (11) imply that all
slots s with the same label will have the same value of slot-attr(s).constr-type, the argument
of Operator is well-defined.

By PARSE_Library_Constraint (9), the constructor type nil will only be applied to
singletons. The corresponding NIL operator is defined by NIL(P) = P; it will only be
applied to a set containing a single CSP process.

Labeled-slot-process (s) =

if port-attr(p).comm-type = synchronous
then if port-attr(p).dir = out then *(p?x → a!x → SKIP)

else *(a!x →p?x → SKIP)

else if port-attr(p).comm-type = bidirectional
then if port-attr(p).dir = out then *(p?x →a!x →aop?x →pop!x → SKIP)

else *(a?x →p!x →pop?x →aop!x → SKIP)

else if port-attr(p).comm-type = asynchronous
then if port-attr(p).dir = out then *(p?x →ain!x → SKIP) || Buff(a)

else *(aout?x →p!x → SKIP) || Buff(a),

else if port-attr(p).comm-type = broadcast
then if port-attr(p).dir = out then *(p?x → (||aα !x → SKIP | slot-attr (α).dir = in ∧

label (α) = a)

else (a?x →p!x → SKIP)

In Labeled_slot_process,

(1) a = label(s) is the label associated with the slot s and p = second(s) is the
corresponding port

(2) Buff(a) is a buffer process of infinite capacity served by channels ain and aout.

 Example : The Create_Node operation can be called three times to use the templates given above
to construct the system of Figure 2. If this is done, we will have

{dataproc_node, synkproc_node, rechost_node} ⊆ Nodes,

node-parent (dataproc_node) = DataProc
node-parent (synkproc_node) = SynkProc
node-parent (rechost_node) = RecHost,

{(DataProc, α), (DataProc, β), (DataProc, θ), (SynkProc, γ),

(SynkProc, δ), (SynkProc, ε), (RecHost, η)} ⊆ Slots,

12

and the mapping slot-attr will be defined, as specified in the PARSE_Setting schema, by

slot-attr((DataProc, α) = port-attr(α), etc.

The Assign_Label operation can then be used to set the values of the slot labels, so that we will
now have

label(DataProc, θ) = label(RecHost, η) = RecData

and

label(DataProc, β) = label(SynkProc, ε) = Status

Figure 4 illustrates the ASDL model of the system of Figure 2. Rectangles correspond to nodes,
while slots and labels are indicated by internal and external annotations, respectively.

γ(SynkProc,)

δ(SynkProc,)
ε(SynkProc,)

synkproc_node

Status
α(DataProc,)

β(DataProc,)
θ(DataProc,)

dataproc_node
η(RecHost,)

rechost_node
RecDataStatus

RecData

Figure 4. Examples of ASDL semantic module types

3.3 Unit types

The ASDL_Setting schema represents a module as a self-contained computational unit without
any external connections. The ASDL_Unit schema corresponds to a unit type that describes
these connections and the associated interface semantics. It includes a set of virtual ports that
represent the “public” interfaces of the unit and a mapping that specifies the attributes of these
ports. The mapping virtual-port-descr assigns a semantic abbreviation to each virtual port in a
unit. The virtual ports and their attributes, specified in the associated ASDL_Boundary
schema, represent a unit’s syntactic boundary. The connect mapping describes the links between
slots and virtual ports.

In ASDL, units can be used in two rather different ways. A unit can represent the boundary of
an existing setting. The association between the setting's slots and the unit's virtual ports is
expressed by the connect mapping. Alternatively, an "empty" unit can consist of the virtual ports
that comprise a boundary. The Create_Unit_Node operation adds a node based on such a unit to
a setting and creates slots corresponding to the unit's virtual ports. A top-down model of a
system can be constructed in this way The Connect_Virtual_Port operation can then be used to
refine the top-down model by filling in the internal structure of the nodes instantiated from the
empty units. Schemas describing these operations can be found in [RS2].

 Example : These concepts can be illustrated with the transport protocol example shown in Figure
1. A top-down model of this system initializes Units to {Transmit, Network, Receive}. The
virtual ports are given as follows:

13

Transmit: a, b, c

Network: d, e, f, g, h, i

Receive: j, k, l

and {a, b, c, d, e, f, g, h, i, j, k, l} ⊆ Ports.

The path constructors consist of the sets {e, f, g}, {j, k}, {a}, {b}, {c}, {g}, {l}}. The port-
attr mapping is defined by the following table:

 Port dir name category constr-type comm-type

a in Transmit control process nil asynchronous

b out Transmit control process nil asynchronous

c out Transmit control process nil asynchronous

d out Network function server nil asynchronous

e in Network function server nondeterministic asynchronous

f in Network function server nondeterministic asynchronous

g in Network function server nondeterministic asynchronous

h out Network function server nil asynchronous

i out Network function server nil asynchronous

j in Receive control process concurrent asynchronous

k in Receive control process concurrent asynchronous

l out Receive control process nil asynchronous

If the Create_Unit_Node operation is invoked once for each of the three units, we will then have
{trans_node, net_node, rec_node} ⊆ Nodes, {t, u, v} ⊆ Templates, and {(trans_node, t),
(net_node, u), (rec_node, v)} ⊆ node-parent. We will also have

Slots = {t} × {a, b, c} ∪ {u} × {d e, f, g, h, i} ∪ {v} × {j k, l}

The values of the slot-attr mapping will be defined explicitly from the corresponding values of
port-attr. It should be noted that while slot-attr must be defined explicitly for nodes obtained from
units in a top-down design process, the ASDL_Setting schema defines it implicitly for nodes
obtained from templates as part of bottom-up design.

The Assign_Label operation can then be used to make label assignments that will create the
connections shown in Figure 1:

label(t, a) = label (u, d) = ack1
label(t, b) = label (u, e) = data1
label(t, c) = label (u, f) = synk1
label(u, g) = label (v, l) = ack2
label(u, h) = label (v, j) = data2
label(u, i) = label (v, k) = synk2

14

The refinement of the system of Figure 1 by the system of Figure 2 can then be accomplished by
calling the ConnectVirtualPort operation, which will give the connect function the following
values:

connect(DataProc, α) = j

connect(SynkProc, γ) = k

connect(SynkProc, δ) = l

Figure 5 illustrates these concepts. Large rectangles correspond to unit nodes; slots and their
labels are indicated by annotations inside and outside these rectangles, respectively. Slots
corresponding to ports contained in nontrivial path constructors are indicated by underlines. The
refinement of rec_node is indicated by the inclusion of squares corresponding to the
templatesDataProc (DP), SynkProc (SP), and RecHost (RH). The association of slots on unit
nodes with slots of the system of Figure 4 is shown by dotted lines. Internal associations
between these slots are not shown.

(t,a)

(t,b)

(t,c)

trans_node

(t,h)

(t,i)

net_node

(t,j)

(t,k)

(t,l)

rec_node

(t,d)
(t,e)
(t,f)

(t,g)

ack1 ack1

ack2ack2

data1
data1

data2
data2

synk1

synk1
synk2synk2

α(DP,)

γ(SP,)
δ(SP,)

RH

Figure 5. Unit nodes and refinement in ASDL

The ASDL_Boundary and ASDL_Unit schemas define the ASDL unit type.

ASDL_Boundary [Indices, Attributes]
interface-attr : Ports |→ Indices → Attributes
virtual-ports : FFPorts
virtual-ports = dom interface-attr

ASDL_Unit [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Setting [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Boundary [Indices, Attributes]
connect : Nodes × Ports |→ FFPorts
virtual-port-descr : Ports |→ SemanticDescriptions
dom connect ⊆ slots
∪ ran connect ⊆ virtual-ports
dom virtual-port-descr = virtual-ports
∀ p ∈ virtual-ports • { interface-attr(p).dir} = {slot-attr(s).dir : p ∈ connect(s)}

15

In order to use the ASDL unit type in the PARSE model, two additional constraints are needed.
The PARSE_Unit schema includes the PARSE versions of the Setting and Library schemas,
and also adjoins PARSE_Unit_Constraints, which consists of the conjunction of the two
additional constraints.

PARSE_Unit
ASDL_Unit [Indices, Attributes, Parts, SemanticDescriptions]
PARSE_Setting
PARSE_Library
PARSE_Unit_Constraints

The two additional constraints are:

(1) ∀ (n, p) ∈ dom connect • # connect (n, p) = 1

The generality of the ASDL unit type allows a slot to be connected to more than one virtual
port; this connection pattern is not possible in PARSE.

(2) ∪ ran connect = virtual-ports

ASDL allows virtual ports that are connected to no slots; this connection pattern is not
possible in PARSE.

3.4 System Type

The ASDL_System schema defines a system type that provides all of the structural information
needed to understand a software architecture constructed in the modeled style. The schema
includes the ASDL_Library schema, as well as architectural state information: the modules and
units that have been used to describe the bottom-up and top-down components of an architecture,
the relationships between units and modules, and the connection between library templates and
unit types. ASDL also supports the representation of multiple logical views of a software
architecture, and the ASDL_System schema correspondingly includes information on
architectural connections between different logical views.

The schema variable Units denotes the set of all unit types that have been used to describe
various logical views of the architecture. The basis mapping summarizes the connection between
unit types and templates. Finally, the relation mapping summarizes the relations that have been
specified between sets of nodes in various units to provide architectural connections between
different logical views.

In order to represent the structure of a PARSE architecture, it will be necessary to modify the
ASDL_System schema to use the PARSE-specific versions of the ASDL types, to add a
function that allows objects to be named, and to adjoin three PARSE-specific system constraints.
The modified schema is given below.

16

ASDL_System [Indices, Attributes, Parts, SemanticDescriptions]
ASDL_Library [Indices, Attributes, Parts, SemanticDescriptions]
Units : FFASDL_Unit [Indices, Attributes, Parts, SemanticDescriptions]
basis : Templates |→ ASDL_Unit [Indices, Attributes, Parts, SemanticDescriptions]
relation : Labels ||→ FF(Nodes × Nodes)
Collection \ dom basis = Primitives
Units = ran basis
∀ τ ∈ Collection \ Primitives • (interfaces(τ) = basis(τ).virtual-ports ∧

port-attr | interfaces(τ) = basis(τ).interface-attr)

∀ ρ ∈ dom relation ∃ {u, u*} ⊆ Units •

(dom relation(ρ) ⊆ dom u.node-parent ∧ ran relation(ρ) ⊆ dom u*.node-parent)

PARSE_System [Indices, Attributes, Parts, SemanticDescriptions]
PARSE_Library [Indices, Attributes, Parts, SemanticDescriptions]
Units : FFPARSE_Unit [Indices, Attributes, Parts, SemanticDescriptions]
basis : Templates |→ PARSE_Unit [Indices, Attributes, Parts, SemanticDescriptions]
relation : Labels ||→ FF(Nodes × Nodes)
instance-names : Nodes |→ Char*
Collection \ dom basis = Primitives
Units = ran basis
∀ τ ∈ Collection \ Primitives • (interfaces(τ) = basis(τ).virtual-ports ∧

port-attr | interfaces(τ) = basis(τ).interface-attr)

∀ ρ ∈ dom relation ∃ {u, u*} ⊆ Units •

(dom relation(ρ) ⊆ dom u.node-parent ∧ ran relation(ρ) ⊆ dom u*.node-parent)

PARSE_System_Constraints

PARSE_System_Constraints is the conjunction of the following constraints:

(1) (∀ T ∈ Collection\Primitives, {p , q} ⊆ T.interfaces •

port-attr(p).constructor-type = port-attr(q).constructor-type = concurrent ⇒
(∃ s, t ∈ basis(T).slots • connect(s) = p ∧ connect(t) = q) ∧ first(s) ≠ first(t))

A concurrent path constructor can only be connected to ports located on different objects.
([G1], PA-04)

 (2) (∀ T ∈ Collection\Primitives, {p , q} ⊆ T.interfaces ∧ p ≠ q •
port-attr(p).constructor-type = port-attr(q).constructor-type

∈ {deterministic, nondeterministic} ⇒
(∃ s, t ∈ basis(T).slots •

(connect(s) = p ∧ connect(t) = q ∧
port-attr(second(s)).constructor-type =

port-attr(second(t)).constructor-type = port-attr(p).constructor-type))

17

For a decomposible process, paths joined by either a deterministic or a nondeterministic
path constructor must be joined by the same type of constructor at a lower level of
decomposition. ([G1], PA-05)

(3) dom instance-names = ∪ {dom u.node-parent • u ∈ Units} ∧
ran instance-names ∩ ran class-names = ∅

Every instance of a process object must have a unique name. The constraint also requires
that instance names be distinct from class names. ([G1], p. 4)

4. Conclusions

Developing an ASDL model for PARSE serves several purposes. First, it provides further
evidence for the claim made in [RS2] that ASDL is a general language for describing software
architectural styles. In addition, the model’s ability to represent the complex interface semantics
supported by PARSE demonstrates the expressiveness of ASDL’s process expressions.

Even more importantly, the model provides a valuable platform for posing questions about
PARSE and PGN. It is always difficult to ask questions about aspects of a software architectural
style if the only tools are those provided by the style itself. An ASDL model of a style requires
that there has been an extended interaction between the model builders and the style developers.
As the model builders seek to determine the values of the model's generic parameters and to
specify the style-specific constraints that must be added to the ASDL schemas, they must interact
with the style developers. This interaction not only leads to a more faithful model, it often serves
to give the developers an improved understanding of their style. The resulting model can provide
a sound basis for implementors and users of the style.

References

[AAG] G. Abowd, R. Allan, and D. Garlan, Using style to understand descriptions of
software architecture, Proceedings of ACM SIGSOFT93 Symposium on
Foundations of Software Engineering, pp. 9-20, 1993.

[CG] T. S. Chan and I. Gorton, “A Transputer-based implementation of HTPNET: a
transport protocol for broadband networks”, in Transputer Applications and Systems,
vol. 2, Proceedings of the 1993 World Transputer Conference, pp. 899-910.

[G1] J. P. Gray, “Definition of the PARSE process graph notation, version 2”, Technical
Report PARSE-TR-2b, Department of Computer Science, University of
Wollongong, 1994.

[G2] D. Garlan, “What is style”, Proceedings of First International Workshop on
Architectures for Software Systems, 1995.

[GAO] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architectural design
environments”, Proceedings of ACM SIGSOFT94 Symposium on Foundations of
Software Engineering, 1994.

18

[GGJ] J. P. Gray, I. Gorton, and I. E. Jelly, “Designing parallel database programs using
PARSE”, Proceedings of 17th International Software and Applications Conference,
Phoenix, 1993.

[GJGC] I. Gorton, I. E. Jelly, J. P. Gray, and T. S. Chan, “Reliable parallel software
construction using PARSE”, Concurrency: Practice and Experience, 1995.

[H] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[JGG] I. E. Jelly, I. Gorton, and J. P. Gray, “A hybrid transputer based architecture for
parallel logic language execution”, Proceedings of Transputer Applications and
Systems ‘93, pp. 950-964.

[KS] D. Kaplan and R. Stevens, “Processing graph method 2.0 semantics”, manuscript,
Naval Research Laboratory, June, 1995.

[LSG] A. Y. Liu, T. S. Chan, and I. Gorton, “Designing distributed multimedia systems
using PARSE”, Proceedings of the IFIP Workshop on Parallel and Distributed
Software Engineering, Berlin, March 1996.

[RS1] M. Rice and S. Seidman, “A formal model for module interconnection languages”,
IEEE Transactions on Software Engineering 20 (1994), 88-101.

[RS2] M. Rice and S. Seidman, “Using Z as a Substrate for an Architectural Style
Description Language”, Technical Report CS-96-120, Department of Computer
Science, Colorado State University, 1996.

[RS3] M. Rice and S. Seidman, “Describing the PGM architectural style”, Technical Report
CS-96-123, Department of Computer Science, Colorado State University, 1996.

[RSJC] S. Russo, C. Savy, I. Jelly, and P. Collingwood, “Petri net modelling of PARSE
designs”, Proceedings of EuroPar ‘96, Springer-Verlag, 1996.

[SG] M. Shaw and D. Garlan, Software Architecture: An Emerging Discipline, Prentice-
Hall, Upper Saddle River, NJ, 1996.

19

Appendix A: PGN rules: comments and ASDL implementations

The rules referenced and annotated here are those contained in the PARSE-TR-2b technical report
[G1]. The references and remarks in brackets point to specific features of ASDL or to
constraints given in the PARSE schemas.

Rule PT-01 External interface objects are not decomposible. [Library (5)]

Rule PT-02 All process objects are either decomposible processes or primitive processes
[Process objects are represented by members of Collection. Templates are either
primitive or composite.]

Rule PT-03 Decomposible processes may be decomposed into an arbitrary collection of lower
level processes. [ASDL places no restriction on the depth of hierarchical
structures.]

Rule PA-01 Constructors may be applied to any type of process object, but may not be applied
to external interface objects. [Library (7)]

Rule PA-02 A path constructor can only be applied to multiple input path connections on the
same process. [Library (9)]

A constructor must be applied to either multiple input paths, or to a single input
path connected to a replicated process. [Library (8); so far, the ASDL model does
not treat process replication.]

Rule PA-03 A concurrent constructor cannot be attached to a primitive sequential process.
[Library (10)]

Rule PA-04 A concurrent constructor implies that there must be a minimum number of
concurrent processes at a lower level of decomposition. There must be at least N
internal processes within the decomposition, where N is the number of input path
connections entering a constructor, and each path connection must be to a
different internal process. [System (1)]

Rule PA-05 For a decomposible process, paths joined by either a deterministic or a non-
deterministic constructor, must be be joined by the same type of constructor at a
lower level of decomposition. The set of paths joined by a constructor at a higher
level, must be joined at a single process, with a constructor of the same type, at a
lower level of decomposition. [System (2)]

Rule PA-07 Processes may have many constructors attached to them, they may be of the same
type or different types, but each constructor must be labelled with an identifier.
For convenience and tidiness, a constructor symbol may be copied so long as
each copy is clearly marked. [Library (3)]

Rule PA-08 When a process has many constructors attached to it, there is no implied
combination of constructors. [The semantics of this rule are unclear.]

