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Abstract

Template matching is an e�ective means of locating vehicles in outdoor scenes, but it tends to be

a computationally expensive. To reduce processing time, we use large neural networks to predict, or

index, a small subset of templates that are likely to match each window in an image. Results on actual

LADAR range images show that limiting the templates to those selected by the neural networks reduces

the computation time by a factor of 5 without sacri�cing the accuracy of the results.
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1 INTRODUCTION

Neural networks are often used to extract complex, nonlinear relationships among the variables of a set
of data. However, in this article we use the nonlinear mapping capability of neural networks to reduce
the computation associated with an essentially linear procedure{template matching for automatic target
recognition (ATR).

Template matching for vehicle identi�cation in ATR requires the application of numerous templates to
rectangular windows of an image [12, 8, 5, 6]. Each template corresponds to a particular type of vehicle at
a particular orientation. The windows are small, rectangular subsets of pixels just large enough to contain
each vehicle. After all templates are applied to an image, the vehicle type and orientation corresponding to
the best matched templates are returned as the most likely to be present in the image [3].

In order to detect a wide range of vehicle types and orientations, a large number of templates must be
applied. Computation time for template application is usually O(n) where n is the number of templates.
Two methods are typically used for reducing this processing time: parallel hardware is added to increase
computation speed [4, 7], and focus-of-attention mechanisms are used to predict the vehicle location [1].
Neither method reduces the number of templates to apply.

A di�erent approach is to index, or select, a subset of the available templates to apply to each window.
Here we describe how neural networks can be used to predict the utility of applying each template to a
window. Only those templates predicted to match well are applied. We show that our neural-network
indexing approach reduces the computation time by a factor of 5 without sacri�cing vehicle and orientation
identi�cation on real images.

The remainder of this article is organized as follows. In Section 2, we describe the methods with which we
generate and use templates, collect the training and testing data, and train and apply the neural networks.
In Section 3, we present the results of our experiments and our conclusions are stated in Section 4.

2 METHODOLOGY

In this section, we �rst de�ne the standard, brute-force approach of applying all templates. Then, we describe
how we train and use neural networks to select a subset of the templates to apply. Figure 1 provides an
overview of the entire system detailed below.
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Figure 1: Overview of template generation, selection by neural networks, and application to LADAR image.

2.1 GENERATION AND USE OF TEMPLATES

Template generation begins with the generation of synthetic images from three-dimensional models. The
models used were reduced from highly-detailed BRLCAD models [11] to a level-of-detail more closely related
to the granularity of a LAser raDAR (LADAR) sensor [10]. The reduction phase preserves salient features
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which are typically present in actual, coarse, range data that is obtained by a LADAR sensor as it scans a
scene and produces an image of depth values.

Models of three vehicles, designated M113, M35, and M601, were used. In order to generate a template
of a vehicle at a particular orientation, the model is placed into a scene and ray traced. The result is a
binary image of ray hits and misses. Figure 2 shows templates generated for each vehicle in a sideways
orientation; white represents a ray intersection with the vehicle and black represents a miss. Each vehicle
is placed in 1,800 di�erent orientations (72 changes in azimuth x 5 changes in elevation x 5 changes in up
angle), resulting in 5,400 templates for the three vehicles. Our templates were all 40 x 20 pixels.

a. M113 b. M035 c. M060

Figure 2: Example templates for sideways orientations of each vehicle.

For each template, we calculate its co-occurrence matrix. A co-occurrence matrix is a sparse, binary
matrix of as many rows and columns as there are pixels in the template. Each entry in the matrix corresponds
to one pair of pixels in the image. Nonzero entries are those for which the pair of pixels contain di�erent
values in the binary template and are within two rows and columns of each other in the template.

To match the templates against a range image, the image is divided into all windows of the same shape
as the templates and each window's co-occurrence matrix is calculated. First, the range data is scaled to the
appropriate depth of the template. Median smoothing is also used to reduce sensor noise. Nonzero elements
of the data co-occurrence matrix are those for which the di�erence in range data is greater than the expected
depth di�erence between an on and o�-vehicle pixel.

Once the co-occurrence matrix for a window has been generated, it is component-wise ANDed with the
co-occurrence matrix for each template. The number of nonzero bits in the resulting matrix are counted and
divided by the number of nonzero elements in the template co-occurrence matrix. The result is a number in
the range [0; 1] representing the quality of that template's match to the data in that window. The twenty-�ve
templates which best match any sub-window across the entire range image are recorded. Templates whose
degree of match less than 0:6 are discarded to reduce the number of false positives. The remaining templates'
vehicle types and orientations along with the locations of the windows' center pixels are stored as predictions
of the vehicles present in the LADAR data.

2.2 TRAINING AND USE OF NEURAL NETWORKS FOR INDEXING

Typically, all templates are applied to a given window of an actual range image. Computational requirements
can be reduced if we can limit the number of templates to compare to a given window using a decision process
requiring less computation than that of the all-templates method.

We used three feed-forward neural networks, one for each vehicle type, to implement such a decision
process. Each network receives as input a portion (speci�ed below) of the co-occurrence matrix of the
window being processed. The outputs of the networks are predictions of the degree of match between the
window and all templates for the corresponding vehicle. Rather than requiring the networks to learn accurate
predictions, we only assume the predictions are approximately correct in relative ranking. The twenty-�ve
templates predicted by the networks to best match the window are then directly compared to the data using
the same component-wise AND operation described earlier.

The size of the input vectors to each network was reduced as follows. The co-occurrence matrices for
the entire template set for each vehicle was examined and elements which were zero across all matrices were
discarded. For our 40 x 20 pixel templates, a full co-occurrence matrix is 800 x 800 and contains 640,000
entries. Retaining only nonzero elements reduced this to 3; 400 values, still a large number but much more

1The M113 is an armored personnel carrier (APC), M35 a truck, and the M60 is a tank.
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practical than 640; 000. Each network must have an output for each possible template. For each vehicle type
there are 1; 800 templates, so each network has 1; 800 outputs.

The networks were trained with standard error back-propagation with momentum [9]. The training data
was generated from 250 synthetic LADAR images with the various vehicles placed in the scene at a depth
of 85m and at di�erent orientations. Figure 3 shows two such images. For each window of these images,
the data co-occurrence matrix is compared with the matrices for all templates and the degrees of match are
recorded. The training data is formed by pairing each co-occurrence matrix for all windows with the degrees
of match for all templates. This results in approximately 50; 000 examples per network. A cross-validation
procedure was used for which the data was randomly divided into 80% for training, 10% for validating, and
10% for testing. The validation set was used to choose the best training epoch, but, for the results reported
in the next section, the best epoch was always the last.

Figure 3: Two synthetically generated LADAR images.

Each network has one hidden layer of �ve units. The learning rate was a constant 0:0001 and the
momentum rate was 0:1. The networks were trained for 12 epochs, requiring two days on a Sun Sparc 20.
The RMS error on the test data after 12 epochs was 0:056 for the M113 network, 0:063 for the M35 network,
and 0:055 for the M60 network (recall that the network outputs are constrained to the range [0; 1]).

3 RESULTS ON ACTUAL LADAR DATA

As described in the previous section, the networks were trained only on synthetic imagery. After training,
the networks were tested on 15 real LADAR images2 from the Fort Carson data set [2]. Figure 4 shows
four of the �fteen images tested. Shown in each �gure are the original range image and the pixels at the
center of windows for which the all-templates and the neural-network indexing methods predicted degrees of
match greater than 0.6. For actual LADAR images, lighter pixels are those farther from the sensor whereas
darker are closer. The template matching results are displayed as black for M60 templates, gray for M113
templates, and light gray for M35 templates.

To assess if the correct vehicles are found at the proper orientations, the top 25 templates were recorded
for each image for both methods. This results in a total of 375 templates for all 15 images. When all
templates were applied, the correct template was found for only 65 of the 375 cases, a success rate of 17:3%.
A template was labeled correct if the template's center pixel was within 1 pixel of the ground truth and within
45� degrees of the true vehicle orientation. The all-template algorithm completely failed to detect any vehicles
in 4 of the 15 images examined. Thus, better templates are needed in order to improve performance.

To assess if the neural-network was able to correctly predict which templates to use, values from the
all-template method and the neural-network indexing method were recorded. Figure 4 shows the di�erence
between the two methods. As can be seen in these images, neural-network indexing performs equally well
when the vehicle is actually present in the window being processed. The largest discrepancies occur when
no vehicle is in the vicinity of the pixel being processed. By adjusting the threshold value, the number of
false positives in each case is reduced, thus removing some of the clutter in the di�erence image.

In addition to examining the di�erence images, we also looked at how many times the neural network
failed to predict the best probe to apply for a given image. Out of the 375 templates, the network failed to
predict the best probe only 14 times for a success rate of about 96%. Thus the neural-network was able to
correctly index the top twenty-�ve probes which should be applied at each pixel.

The greatest advantage in using the neural-network indexing approach is the substantial decrease in
processing time. Figure 5 shows a graph of performance time for all 10; 000 windows examined in the 15
Fort Carson data images. Figure 5a shows the cumulative time, and Figure 5b shows the time in seconds
for each window using the two approaches, which were run simultaneously (on a heavily-loaded Sparc 20

2The entire Fort Carson data collection is publicly available through our web site: http://www.cs.colostate.edu/�vision
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Figure 4: Sample Fort Carson data images and vehicle predictions made by applying all templates and only
those selected by the neural-network indexing method. M60 matches are black, M113 matches are gray, and
M35 matches are light gray.
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Figure 5: Execution time for all windows in 15 images.

with 96 MB of RAM) to obtain a more accurate measurement. The large drop in time per window for the
all-templates method corresponds to the completion of the neural-network indexing method.
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The relative computational savings of the neural-network indexing method make sense in light of the
following calculation. The network for one vehicle with �ve hidden units requires 3; 400 x 5 multiplications
for the �rst layer and 1; 800 x 5 for the output layer, for a total of 26; 000. Applying all templates for
one vehicle requires 3; 400 x 1; 800, or 6; 120; 000 Boolean operations. While the comparison is naive and
neglects other important factors, such as the summation and ranking operations, the reduced processing for
the neural-network is still quite obvious.

4 CONCLUSION

The neural network approach is a viable method for predicting the templates that must be applied to each
window of the range image. The weak link in the process appears to be in the all-templates algorithm which
is unable to successfully detect, identify and determine the orientation of vehicles in the scene. In future
work we will improve the performance of the all-templates method.
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