
Computer Science
Technical Report

Some Lessons Learned from Coding the Burns
Line Extraction Algorithm in the DARPA

Image Understanding Environment �

J. Ross Beveridge Chris Graves Chris Lesher
Colorado State University

ross/gravesc/lesher@cs.colostate.edu

October 1, 1996

Technical Report CS-96-125

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic Engineering
Center under the auspices of the U.S. Army Research Office Scientific Services Program and monitored by Battelle. (Grant number
DAAL03-91-C-0034)

Some Lessons Learned from Coding the Burns Line Extraction

Algorithm in the DARPA Image Understanding Environment �

J. Ross Beveridge Chris Graves Chris Lesher

Colorado State University
ross/gravesc/lesher@cs.colostate.edu

October 1, 1996

Abstract

A complete implementation of the Burns Line Extraction Algorithm has been developed

within the IUE. It exercises a number of IUE object classes, including images, image regions,

3D planes and lines, and image line segments. Signi�cant code segments are included showing

how the IUE can be used to develop such an application. These are annotated with comments

regarding the representational and functional adequacy of the current IUE. Overall, the objects

available within the IUE lead to an elegant implementation. Run-times are reported for both

the IUE version compared and the straight C version upon which it is based. These numbers

demonstrate that a combination of factors conspired to make IUE V1.0 extremely slow. Running

a fair sized image could take 22 minutes compared to 15 seconds in straight C. Fortunately, in

moving from IUE V1.0 to V1.2 these times drop by well over an order of magnitude and bring

the IUE implementation run time to around 90 seconds. Some additional overhead will always

be associated with C++ versus C, and the IUE is now approaching the level of performance a

user should expect and desire.

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic

Engineering Center under the auspices of the U.S. Army Research O�ce Scienti�c Services Program and monitored

by Battelle. (Grant number DAAL03-91-C-0034)

Contents

1 Introduction 1

1.1 Overview of the Burns Algorithm : 2

2 Representation, Implementation, and Functionality 2

2.1 Images & Convolution : 5

2.1.1 Implementation : 5

2.1.2 Representation and Functionality : 7

2.2 Forming Image Regions : 7

2.2.1 Implementation : 7

2.2.2 Representation & Functionality : 7

2.2.3 Label Planes Should Be a Class in the IUE : : : : : : : : : : : : : : : : : : : 10

2.3 Pixel Voting : 11

2.3.1 Implementation : 11

2.3.2 Representation & Functionality: Using Dynamic Attributes : : : : : : : : : : 11

2.4 Plane, Line and Line Segment Spatial Objects : 11

2.4.1 Implementation : 11

2.4.2 Representation & Functionality : 13

3 Speed 14

3.1 Run-times Broken Down by Functionality : 14

3.2 Run-time Sensitivity Studies : 16

3.3 Conclusions from Run-time Tests : 17

4 Summary 21

4.1 Ease of Use : 21

4.2 Final Observations : 21

ii

List of Tables

1 Run-time Comparisons on a 128 � 128 Image : 15

2 Run-time Comparisons on a 512 � 480 Image : 15

3 Run-times for di�erent versions of Pixel Connected Components. : : : : : : : : : : : 16

List of Figures

1 Example of Lines Produced Using the IUE : 3

2 Code Segment: Overview of Complete IUE Task : 4

3 Code Segment: Estimating The Gradient : 5

4 Code Segment: Computing Gradient Magnitude and Two Gradient Orientation
Bucket Images. : 6

5 Code Segment: Building the Edge Support Regions : : : : : : : : : : : : : : : : : : : 8

6 Code Segment: The Flood�ll Algorithm : 9

7 Code Segment: Voting for the Larger Edge Support Region : : : : : : : : : : : : : : 12

8 Code Segment 1: This is the favored code for which runtime above is reported. Ob-
serve a single IUE lattice pointset 2d object tempLat is used. Each time through
the loop it is cleared, and new pixels added by the floodFill function. : : : : : : : 18

9 Code Segment 2: Create a new IUE lattice pointset 2d object into which to as-
semble the pixels of each successive region. : 19

10 Code Segment 3: Assemble pixels directly into an IUE image region 2d object. : : : 19

11 Code Segment 4: Use a sequence of regions rather than pointers to regions. : : : : : 20

12 Code Segment 5: Compile-time allocate an array of regions. Uncovers a strange
dependency run-time dependency between KBV �le IO and exiting function where
array is declared. : 20

iii

1 Introduction

The Burns line extraction algorithm has been chosen as a representative feature extraction algo-
rithm with which to test the facilities of the IUE. There already exist a clean and simple C alone
implementation developed by us which is the prototype for the IUE version. Chris Graves has been
developing this code for several months, with previous versions of the IUE going back to v0.9b. The
current version is relatively simple: the entire iue task burns �le is 800 lines including blanks.

This document has essentially two parts. The �rst describes the implementation and makes some
comments about the representational adequacy of the IUE. On the whole, the IUE's object class
representations are excellent, and there were few if any points where there failed to be an obvious
choice. This �rst section will also discuss the functional maturity of the IUE: how much of what
the representation suggests will be present actually exist in code today? By functionality, we
are referring to the IUE methods available | having chosen a representation, what methods are
available to carry out the desired task.

Overall, the object classes, on-line HTML documentation, and code generator have made developing
the Burns Algorithm a pleasure. Already the IUE is a rich language for representing algorithms
and we hope the code segments presented below will form the basis for a subsequent tutorial on
writing code within the IUE. In saying this, obviously the code can be further re�ned to better
exploit the capabilities of the IUE. For instance, the current code does not yet take advantage of
the most recent and e�cient image accessors.

The second part of this document addresses the issue of speed. To summarize briey what is laid
out in detail below, the IUE has seen a dramatic improvement in performance over the past year.
In an earlier draft of this technical report, prior to testing with IUE V1.2, it was reported that
a 523 � 480 image took 22 minutes to run through the algorithm. By comparison, a straight C
implementation took 15 seconds. At the time these runs were made, this caused us considerable
concern.

However, as was noted in our earlier draft, there are many opportunities for evolving C++ compiler
technology to extract one to two order of magnitude increases in run time speed. As we can now
report, just such a dramatic improvement has been witnessed between IUE V1.0 and IUE V1.2.
The task previously taking 22 minutes now completes in less than 2 minutes. The run
times, as given in detail below, suggest the IUE version of the Burne Line Extraction algorithm is
now running 6 to 8 times slower than the straigth C version. While obviously one would like to
see no penalty when moving from C to C++, such is not a realistic expectation. While continuing
e�orts are sure to be made to improve IUE run time performance, the IUE is now within the proper
order of magnitude range relative to straight C.

1

1.1 Overview of the Burns Algorithm

The Burns Algorithm was �rst described in [BHR86]. The algorithm takes in a single image and
returns straight line segments representing regions of aligned gradient orientation in the image.
Figure 1 shows a 512 by 480 image as well as the straight line segments produced for this image
using the IUE.

The Burns algorithm uses the following general types of objects/operations:

1. Byte Images.

2. Convolution to extract gradient magnitude and gradient orientation images.

3. Image segmentation into regions based on 4-connected orientation directions.

4. Label plane to identify each line-support region.

5. 3D-plane built from each orientation region, weighted by grad mag.

6. 2D-line extracted by intersecting 3D-plane with average-intensity-value (over region) 3D
plane. (actually a 3D-line, but only need X-Y plane components)

7. 2D-line segment created when 2D-line is clipped to region.

This array of objects/operations makes means that the Burns algorithm exercises various levels of
the IUE ranging from basic image convolution up through creation of spatial-objects. The steps
carried out by the algorithm are laid out below.

2 Representation, Implementation, and Functionality

This section presents examples pulled from the full code of the Burns Algorithms. The complete
code may be obtained from our ftp site: ftp.cs.colostate.edu and directory pub/vision/iue.

The overall structure of the Burns Algorithm is indicated in Figure 2. This example shows contents
of the �le iue task burns.cc with most all the internal code removed. It shows that the overall
structure is �rst the de�nition of the IUE task, followed by the implementation of the ood �ll
algorithm used to perform the connected components pixel grouping, followed by the main code
body.

2

Figure 1: Example of Lines Produced Using the IUE

3

#include "iue_task_burns.h"

#include "../stopwatch.h"

stopwatch stopWatch;

IUE_TASK(burns)

(

... Parameters ...

{ // begin IUE_task_burns

...

} // end IUE_task_burns

IUE_INT

floodFill()

{

...

return numPix;

}

void

main(int argc, char *argv[])

{

stopWatch.start();

...

IUE_task_burns(...);

stopWatch.printTotal("Finished writing out ASCII lines");

} // end main

Figure 2: Code Segment: Overview of Complete IUE Task

4

for (y = 0; y < yMax; y++) { // Iterate through image

for (x = 0; x < xMax; x++) {

if(y == yMax-1 || x == xMax-1) // last row/col are zeroed out

horz = vert = 0;

else {

if(gradOp == sobel) {

< code omitted for brevity >

}

else if(gradOp == oneByTwo) {

inImg.get_pixel(pix,x,y);

inImg.get_pixel(pix2,x,y+1);

horz = pix - pix2;

inImg.get_pixel(pix,x,y);

inImg.get_pixel(pix2,x+1,y);

vert = pix - pix2;

}

}

Figure 3: Code Segment: Estimating The Gradient

2.1 Images & Convolution

2.1.1 Implementation

The Burns Algorithm takes as input a single image. The code segment used to compute the gradient
orientation using a simple one-by-two mask is shown in Figure 3. Note no explicit mask is used,
but instead adjacent pixel values are gotten from the image and their di�erence taken. A similar
implementation of the Sobel operator also exists in the full algorithm.

After the horizontal and vertical components of the gradient at each pixel have been estimated, the
next step is to produce a gradient magnitude image and two gradient orientation images. These
gradient orientation images are derived by partitioning the gradient orientation into �xed width
buckets. Typically 8 buckets are used. These bucket labels are used later to generate connected
regions of similar gradient orientation: these are called line-support regions. Two orientation images
are produced, one with the bucket boundaries shifted 50% relative to the others. This code segment
where this is done is shown in Figure 4.

5

// assign magnitude and orientation

pix = (IUE_UINT8)(sqrt((IUE_DOUBLE)(horz*horz+vert*vert))+0.5);

outGM->set_pixel(pix,x,y);

if (horz == 0 && vert == 0) {

outGM->set_pixel(0,x,y);

outGO1->set_pixel(0,x,y);

if(use2ndGradO)

outGO2->set_pixel(0,x,y);

}

else if(pix < magThresh) {

outGO1->set_pixel(0,x,y);

if(use2ndGradO)

outGO2->set_pixel(0,x,y);

}

else { // compute gradient orientation (-PI to PI)

tempOrient1 = atan2((double)vert,(double)horz);

// shift to zero-2PI range

tempOrient1 += PI;

tempOrient2 = tempOrient1;

// account for bucket offset-- first image

tempOrient1 += buckOffset1/100. * ((2. * PI)/numBuckets);

// account for offset shift over 2PI

if (tempOrient1 > (2. * PI))

tempOrient1 -= (2. * PI);

// compute integer bucket value of orientation and store

tempOrient1 *= numBuckets/(2. * PI);

outGO1->set_pixel((IUE_UINT8) floor(tempOrient1) + 1,x,y);

if(use2ndGradO) {

// account for bucket offset-- second image

tempOrient2 += buckOffset2/100. * ((2.* PI)/numBuckets);

// account for offset shift over 2PI

if (tempOrient2 > (2. * PI))

tempOrient2 -= (2. * PI);

// compute integer bucket value of orientation and store

tempOrient2 *= numBuckets/(2. * PI);

outGO2->set_pixel((IUE_UINT8) floor(tempOrient2) + 1,x,y);

}

} // end else

}

} // end double for

stopWatch.printLap("Finished gradient images");

6

2.1.2 Representation and Functionality

Overall, the IUE image handling capabilities have worked very well, and images are the most mature
and robust of all the classes with which we have worked so far.

In future versions, a case could be made for using the functionality of the �lter classes to perform
the gradient magnitude and orientation estimation outside of the Burns Algorithm. However, this
is not a critical issue at this point. Moreover, while it may be tempting to break the algorithm into
pieces in this way, it actually has been found to be cumbersome to use such a version. The UMass
version of the Burns Algorithm under Khoros is highly modular, with separate glyphs for di�erent
steps. One consequence is many students �nd using the algorithm confusing and make mistakes in
setting it up. Hiding the details in this case makes for a nicer end product.

There does not appear in our experience to be a signi�cant advantage in the current version of
images over the previous version. This is in part because we are not yet taking advantage of the
get-row access capabilities. Perhaps the underlying representation is much better, but something
that has been lost are simple accessors that return a value as was done in previous versions. This
would make aspects of coding a lot cleaner, and more in line with other IUE methods.

The IUE is still missing practical functionality for various image types; IO methods are needed for
various image formats.

2.2 Forming Image Regions

2.2.1 Implementation

A recursive ood�ll algorithm is used to perform the connected components of each region in the
orientation images. Flood�ll is a standard computer graphics algorithm and while not quite as
e�cient as some others, it is simple to understand, to code, and it run in quite reasonable time.
The essential idea is that seed pixels are repeatedly selected from the image, regions grown or
ooded until no further pixels can be added. This process is repeated until all pixels have been
examined. A label-plane serves two purposes in this algorithm. First, it keeps track of the region
number to which each pixel belongs. Second, it is used to keep track of pixels already included in
regions. The code for the region formation is shown in Figure 5. Note this code uses a function
called floodFill which is shown in Figure 6.

2.2.2 Representation & Functionality

The current representation of image regions is less than adequate. However, it is understood that
this class is is only partially implemented. Each de�ned constructor requires a pointer to an image,

7

//***

// REGIONS

// Create region image one

for (y = 0; y < yMax-1; y++) // -1 because last row/col always 0

for (x = 0; x < xMax-1; x++) {

outGO1->get_pixel(pix,x,y);

// do not process pixels without orientation, and do not

// process pixels already covered

if(pix > 0 && labelPlane1(x,y) == -1) {

tempLat = emptyLat;

// if region size meets minimum, add to sequence

if(floodFill(*outGO1,labelPlane1,tempLat,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

tempReg = new IUE_image_region_2d(tempLat,&inImg);

regions.append(tempReg);

DAtype<IUE_INT>::put(*regions.last(),"votes",0);

regLabel++;

}

else // region too small, tag with 999999 so all pixels skipped

floodFill(*outGO1,labelPlane1,tempLat,

xMax-1,yMax-1,x,y,pix,999999);

}

}// end double for

// Return all too-small regions back to -1 label

for(a2dIter=labelPlane1.begin(); a2dIter!=labelPlane1.end(); a2dIter++)

if(*a2dIter == 999999)

*a2dIter = -1;

stopWatch.printLap("Finished region segmentation 1");

Figure 5: Code Segment: Building the Edge Support Regions

8

IUE_INT

floodFill(IUE_scalar_image_2d_of<IUE_UINT8> &go,

IUE_array_2d<IUE_INT> &labelPlane,

IUE_lattice_pointset_2d &tempLat,

IUE_INT xMax, IUE_INT yMax, IUE_INT x, IUE_INT y,

IUE_UINT8 pixel, IUE_INT label)

{

IUE_INT

numPix = 0;

IUE_UINT8

pix;

// if flood pixel value == current x,y pixel value &&

// current pixel does not already belong to a region.

go.get_pixel(pix,x,y);

if(pix == pixel && labelPlane(x,y) != label) {

numPix++; // increase number of pixels for this lattice-2d

labelPlane(x,y) = label;

if(label != 999999)

tempLat.insert(x,y);

// flood up

if(y > 0) // not in first row

numPix += floodFill(go,labelPlane,tempLat,

xMax,yMax,x,y-1,pixel,label);

// flood forward

if(x < xMax-1) // not in last col

numPix += floodFill(go,labelPlane,tempLat,

xMax,yMax,x+1,y,pixel,label);

// flood back

if(x > 0) // not in first col

numPix += floodFill(go,labelPlane,tempLat,

xMax,yMax,x-1,y,pixel,label);

//flood down

if(y < yMax-1) // not in last row

numPix += floodFill(go,labelPlane,tempLat,

xMax,yMax,x,y+1,pixel,label);

}

else

return 0;

return numPix;

}

Figure 6: Code Segment: The Flood�ll Algorithm

9

which clearly is meant to tie together the region and corresponding image. However, there are
only a few methods de�ned for regions that depend on image information. Of these, the only
useful method for my application is mean(), which failed to work. Mean() depends on the soft slot
intensity distribution, which is not yet initialized in any of the constructors, and is disabled
otherwise.

Missing is an iterator or iterators, that will return both the X-Y (in the 2D case) cell address
and the intensity value for that cell. An iterator is available for IUE cell lattice 2d of course
(parent to IUE image region 2d), but this has nothing to do with the image and only returns the
coordinates. To obtain a mean value across the image, one must extract the X-Y coordinates from
the cell-lattice-2d iterator, and then get the intensity value from the image itself. If regions are to
be tied to a speci�c image upon creation, the intensity values should be readily available, or even
stored for each region cell.

Image features should be convertible to spatial objects. A natural conversion of a 2D region would
be to a discrete-functional surface. Access to the intensity values is necessary for this.

For the Burns Algorithm, a region-of-interest-2d class would be much more useful. The Burns
algorithm requires information from three di�erent images in the formation/use of each ROI. The
ROI is formed on the gradient orientation image, but the orientation values are irrelevant beyond
formation of the region. Values from the intensity image and gradient magnitude image are then
gathered for each ROI to form a plane. An ROI class that is sibling to image-region-2d would
be perfect. In fact, all methods and constructors could mirror those of image-region-2d with one
change in philosophy: drop the image pointer requirement in the constructors and add it to the
methods that return image related information. I used regions in my application, but only accessed
the cell-lattice-2d methods.

2.2.3 Label Planes Should Be a Class in the IUE

A label plane produced during a region segmentation is common enough, and should have its
own class perhaps. Natural inclination would lead me to hang it o� o� the spatial-index class;
however, according to IUE documentation, this is just meant to e�ciently index a collection of
IUE-objects. Here we represent a label plane as just an array of integers, initialized with the image
size. Accessing the LP with image coordinates produces an integer value, which indexes a sequence
of regions producing the appropriate region covering the image location. Using a spatial-index
would improve my implementation; however, I predict no gains in run-time.

A class for label plane is a good idea from a run-time standpoint, at least for this algorithm. For a
512x480 image, I was able to create as many as 28,000 regions, of which approximately 15,000 lines
were created. A label plane class would eliminate the need for regions in this case, and regions-
of-interest for that matter. A label plane would be created with a pointer to an image, but not

10

necessarily tied to a particular image. All contiguous regions (according to connectivity) would
be uniquely labeled and indexed by location. An option would be to form non-contiguous regions
based on distinct image values. In any event, given a label plane, I would like to apply it to any
arbitrary image. Methods would be similar to region-of-interest described above. Given a pointer
to an image and either a region label or coordinates, I would like to know the size of region, mean
intensity value, and so on. In addition, an ROI or region object should be available as a method
return. Run-time would be signi�cantly reduced with this class.

2.3 Pixel Voting

The two sets of regions are created in order to protect against orientation bucket boundaries slicing
through the average orientation of a particular aligned gradient region in the image. In other words,
if the boundary splits the region in one segmentation, it will not in the other. A consequence is
more lines are produced than are really desired, and the way this is handled is each pixel expresses
a preference for the more signi�cant of the two regions in which it participates. In short, each
pixel votes for the larger of the two regions. This will allow the �nal line segments produced by
the algorithm to be �ltered based upon how well they are supported by their member pixels: how
many votes they receive.

2.3.1 Implementation

The code segment for the voting is shown in Figure 7.

2.3.2 Representation & Functionality: Using Dynamic Attributes

An interesting aspect of this part of the algorithm is it demonstrates the usefulness of dynamic
attributes. It would be awkward and undesirable to create a new hard slot for each region indicating
the votes cast for that region. Instead, a dynamic attribute is used to accumulate the votes.

2.4 Plane, Line and Line Segment Spatial Objects

2.4.1 Implementation

After the line-support regions have been created, a line segment abstraction for each region is
computed in the following manner. First, a best-�t 3D plane is �t to the image intensity data in
the region. Often this �t is weighted by the gradient magnitude at each pixel. Next, an in�nite
line is created by intersecting this plane with a horizontal plane with height equal to the average

11

//**

//VOTING

// if there are 2 region plane images then vote for each region in both

if(use2ndGradO) {

for (y = 0; y < yMax-1; y++) // iterate through labelPlanes

for (x = 0; x < xMax-1; x++) {

reg1 = labelPlane1(x,y); // get reg. num. of pixel for plane one

reg2 = labelPlane2(x,y); // get reg. num. of pixel for plane two

if((reg1 > -1) && (reg2 > -1)) { // Making decisive vote

// if region 2 at least as big as region 1, cast vote

// for region 2

if(regions(reg2)->area() > regions(reg1)->area()) {

// cast vote for region 2

vote = DAtype<IUE_INT>::get((*regions(reg2)).get("votes"));

DAtype<IUE_INT>::put(*regions(reg2),"votes",vote+1);

}

else { // cast vote for region 1 if >= region 2 size

vote = DAtype<IUE_INT>::get((*regions(reg1)).get("votes"));

DAtype<IUE_INT>::put(*regions(reg1),"votes",vote+1);

}

} // end if

else if(reg1 > -1) { // a vote for reg of first plane

vote = DAtype<IUE_INT>::get((*regions(reg1)).get("votes"));

DAtype<IUE_INT>::put(*regions(reg1),"votes",vote+1);

}

else if(reg2 > -1) { // a vote for reg of second plane

vote = DAtype<IUE_INT>::get((*regions(reg2)).get("votes"));

DAtype<IUE_INT>::put(*regions(reg2),"votes",vote+1);

}

} // end double for

stopWatch.printLap("Finished voting");

} //endif

Figure 7: Code Segment: Voting for the Larger Edge Support Region

12

intensity in the region. Finally, a bounded line segment is computed by intersecting the region with
the in�nite line. The actual code for these processes is fairly long and is not included in this report.

A large portion of the code in this section clips the in�nite lines to the regions. As the IUE matures,
and intersection is supported between these two spatial object classes, this complex operation
will reduce to a single call to the IUE's own intersection code. However, intersection between
IUE parametric line 2d and IUE image region 2d is not currently implemented.

2.4.2 Representation & Functionality

We have found the spatial-objects for planes and lines to be excellent. Lines have been formed using
the method outlined in the AAI Vision Tutor Guide. In the abstract, two planes are intersected,
producing a 3D line. This line is projected straight down to the XY plane to give the desired 2D
line. In practice, doing the linear algebra for plane coe�cients produces the �nal 2D line coe�cients
given the average intensity value, so the plane intersection is unnecessary.

However, we took the intersection routine for a test drive anyway. The plane constructor is straight-
forward, as is the intersection routine. We also tried the 3D line constructor using two planes. All
the lines produced were perfect according to theory | parallel with the Z = 0 plane. As a further
test, we extracted the 2D line from the 3D line, checking in every case that the Z component of
the tangent vector was zero. Comparing compared these lines with the 2D lines created directly
from coe�cients, the results were perfect: an assert function based on equality between the two
di�erently formed 2D lines never fails.

Two form bounded 2D line segments, the in�nite lines are clipped �rst to the bounding box of
region, and then to the region pixels themselves. There was a problem during this process due to
the current implementation since it was possible only to get the discrete version of the axis-aligned
extents box for the region. In the IUE, it appears that \cells" are represented by the point in the
lower left corner, e.g. the (0; 0) cell is the space fromX = Y = 0 up to but not includingX = Y = 1:
a one by one box. When returning the discrete bounding box, all cells on the right-hand side of
the regions are essentially lost.

Since our initial clipping was to the discrete box, we lost some representation of the region. When
clipping to the region, a parameterized point on the line is checked to see if it is \in" the region.
This is the stopping criteria since the line is guaranteed to pass through the region. The \in"
function simply truncates the point to a discrete version using the oor function | in accordance
with the cell representation | and checks to see if the point is in the cell-lattice. Several cases were
found where the \in" function failed to clip the line to the region. If the line is initially clipped using
the correct bounding box, this problem won't occur. This problem was solved by �rst rounding
the point on the line to a discrete point before calling the region.in() method. In any event, these
problems will be �xed when it is possible to use the correct but yet to be implemented axis-aligned

13

box.

3 Speed

3.1 Run-times Broken Down by Functionality

Part of our experimentation has been looking at di�erences in run-time due to code style. Tests
were run using two versions of the IUE: 1.0b1 and 1.2alpha. It was found that version 1.2alpha
was much faster than 1.0b1 (which was itself much faster than version 0.9).

Times were measured on a Sparc 20 running Solaris with 256MB of RAM. The times are obtained
using a stopwatch facility we built on top of the clock() function. The times are check-pointed
after completion of key steps in the algorithm and some of the check-pointing calls could be seen
in the code segments shown above. Here let us review briey the stages in the algorithm for which
times are reported:

Gradient images Includes reading the input image from a �le, convolving the image with the
gradient mask, and generating three additional images: one gradient magnitude and two
gradient orientation images.

Region Segmentation Performs a connected components operation using a ood-�ll style algo-
rithm to build aligned-gradient-orientation regions. A label-plane is constructed along with a
sequence of regions. In the nomenclature of the Burns algorithm, these are called line-support
regions. Region segmentation is done twice and the two runtimes are always nearly identical.

Voting Each image pixel belongs to two line-support regions. In this step, each pixel \votes" for
the larger of these two regions; more votes mean a larger and more salient line structure. This
part of the code uses dynamic attributes to accumulate votes.

Compute Lines One IUE-parametric-line-segment-2d is created for each line-support region. Con-
ceptually, this is accomplished by taking the intersection of a plane �tted to the sampled in-
tensity surface in the line-support region and a horizontal plane with height set to the average
intensity of the line-support region. This in�nite line is then clipped so as to lie inside the
line-support region.

Tables 1 and 2 show the fastest times obtained for IUE versions 1.0b1 and 1.2alpha on a small
and medium sized image, respectively. Run-times for a straight C version of the algorithm running
stand-alone are also shown.

14

Algorithm Straight IUE IUE Improvement Penalty
Step C Code V1.0b1 V1.2� V1.0 / V1.2 V1.2 / Straight C

Gradients 0.19 2.0 0.25 800% 132%
Segmentation 1 0.10 23.0 1.89 1,217% 1,890%
Segmentation 2 0.10 23.0 1.80 1,277% 1,800%

Voting 0.17 4.0 1.16 345% 682%
Extract Lines 0.45 59.0 2.98 1,980% 662%

Total Elapsed 1.01 113.0 8.08 1,399% 800%

Table 1: Run-time Comparisons on a 128 � 128 Image. Run times are in seconds on a Sparc 20
and are for a stand-alone straight C implementation of the Burns Line Extraction algorithm as
compared to the IUE implementation in IUE Versions 1.0 and 1.2

Algorithm Straight IUE IUE Improvement Penalty
Step C Code V1.0b1 V1.2� V1.0 / V1.2 V1.2 / Straight C

Gradients 2.78 23.0 3.79 607% 136%
Segmentation 1 1.76 309.0 22.71 1,361% 1,290%
Segmentation 2 1.71 314.0 24.02 1,307% 1,405%

Voting 1.92 47.0 11.78 399% 614%
Extract Lines 6.30 643.0 30.98 2,076% 492%

Total Elapsed 14.47 1,364.0 93.28 1,462% 645%

Table 2: Run-time Comparisons on a 512 � 480 Image. Run times are in seconds on a Sparc 20
and are for a stand-alone straight C implementation of the Burns Line Extraction algorithm as
compared to the IUE implementation in IUE Versions 1.0 and 1.2

Note that the timings for the two versions were done when the machine had di�erent loads. For
IUE version 1.0b1 the machine was virtually unloaded, whie for the 1.2alpha test the machine had
an average load of 1.37. So this means that the improvement in speed between the two versions
is even better than the timings indicate, since on an unloaded machine the times for the 1.2alpha
version would be lower.

The last two columns in Tables 1 and 2 show the relative speedup for IUE V1.2 versus V1.0 and
the relative slow-down of V1.2 relative to the straight C code. Note that the improvements seen
in the past year in the IUE have moved IUE V1.2 more than half the distance between the worst
case performance of V1.0 and the best case performance of the straight C code.

15

Code Figure Pixel Collector Re-use Sequence Run-time Run-time
Segment Representation 1.0b1 1.2alpha

1 8 IUE lattice pointset 2d Yes Sequence of Pointers 21.0 1.85
2 9 IUE lattice pointset 2d No Sequence of Pointers 29.5 2.01
3 10 IUE image region 2d No Sequence of Pointers 38.0 1.84
4 11 IUE lattice pointset 2d No Sequence of Regions 45.5 3.70
5 12 IUE lattice pointset 2d No Array of Regions 21.0 2.65

Table 3: Run-times for di�erent versions of Pixel Connected Components.

3.2 Run-time Sensitivity Studies

Most of the time is spent either building the connected components for the edge support region
or in extracting the straight line segments from these regions. This section presents a �rst set of
sensitivity studies carried out using slight variations of the connected components code. These
studies illustrate how small changes in choice of objects and coding style alter run-time. The only
di�erences between the cases are the changes in the connected components section and the speci�c
code is shown.

The code segment in Figure 8 is the one considered best. The run-times reported above are for this
case. Enough code is shown to include the data types and comments. The variations upon this
code segment in Figure 8 are tested to show runtime implications of using di�erent object classes
and di�erent object creation/deletion strategies.

Two alternative IUE object classes are used to gather pixels into sets subsequently used to construct
regions of type IUE image region 2d: IUE lattice pointset 2d and IUE image region 2d. The
choice of object class can a�ect the runtime. As expected, changes which lead to underlying changes
in how memory is managed also alter run-times. One key issue explored in the tests is what to
do when objects are conceptually needed for a short time and are then discarded. One option is
to create a single scratch object and use it repeatedly. The other option is to create a new object
each time one is needed and to delete it when we are �nished using it. Observe that in Figure 8,
the former approach is taken.

Table 3 summarizes the results of the sensitivity study. Here is an explanation of what is reported
in each column of the table.

Figure The �gure in which the code segment is displayed.

Pixel Collector what type of IUE object is used to collect pixels into regions are they are being
constructed by the recursive ood-�ll algorithm.

16

Re-use 'Yes' indicates a single scratch object is re-used to assemble each successive region. 'No'
indicates a new pixel collector object is created each time through the loop.

Sequence Representation The �nal result is a sequence of regions which can be represented
as a sequence of pointers, IUE indexed sequence via array<IUE image region 2d *>, a
sequence of regions, IUE indexed sequence via array<IUE image region 2d>, or an array
of regions, IUE array 1d<IUE image region 2d>.

Run-time 1.0b1 The average number of seconds required to perform connected components for
the two segmentations using IUE 1.0b1.

Run-time 1.2alpha The average number of seconds required to perform connected components
for the two segmentations using IUE 1.2alpha.

Code segment 3, in Figure 10, uses IUE image region 2d objects directly to assemble the pixels
included in the region. This is not as e�cient as the previous code segments, even though it
conceptually limits the number of objects being created and builds the regions in the most obviously
appropriate object class. Even neglecting to delete unwanted objects, the run-time is 28 seconds.
Since regions found to be too small should be deleted, including this delete further increases
run-time to 38 seconds. This segment therefore requires twice the time of the �rst code segment.

Code segment 4, in Figure 11, is similar to code segment 2, but uses a sequence of regions rather
than pointers to regions. This forces a more signi�cant new operation during the sequence append,
and also adds the delete on tempReg. In developing this code segment, a bug was found in the
dynamic attribute mechanism that caused dynamic attributes to fail to be copied into the sequence's
region. This bug has been reported and is being addressed. This version is easily the slowest of the
�ve.

Code segment 5, in Figure 12, is similar to code segment 1 with one change: a �xed size array of
regions is used instead of a sequence of regions to return the result of the connected components
operation. In this case, enough memory is allocated ahead of time in an array to contain the
maximum number of expected regions: 10,000 in the example. Then a new operation is done \in
place", similar to the way a sequence append works using STL code (we think). Thus, object
initialization functions will execute but now new memory need be allocated. One might suspect
some time would be saved by giving the address of this already existing object. However the
run-times are not much di�erent from those for code segment 1.

3.3 Conclusions from Run-time Tests

It appears in all the above examples that IUE memory deallocation is quite expensive; several of
the code-segments above show signi�cant savings is run-time when dropping even a single delete

17

IUE_array_2d<IUE_INT>

labelPlane1(0,xMax-1,0,yMax-1,-1),

IUE_indexed_sequence_via_array<IUE_image_region_2d *>

regions;

IUE_lattice_pointset_2d

tempLat,

emptyLat;

// Create region image one

for (y = 0; y < yMax-1; y++) // -1 because last row/col always 0

for (x = 0; x < xMax-1; x++) {

outGO1->get_pixel(pix,x,y);

// do not process pixels without orientation, and do not

// process pixels already covered

if(pix > 0 && labelPlane1(x,y) == -1) {

----> tempLat = emptyLat;

// if region size meets minimum, add to sequence

if(floodFill(*outGO1,labelPlane1,tempLat,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

----> tempReg = new IUE_image_region_2d(tempLat,&inImg);

DAtype<IUE_INT>::put(*tempReg,"votes",0);

----> regions.append(tempReg);

regLabel++;

} else {

// region too small, tag with 999999 so all pixels skipped

floodFill(*outGO1,labelPlane1,tempLat,

xMax-1,yMax-1,x,y,pix,999999);

}

}

}

Figure 8: Code Segment 1: This is the favored code for which runtime above is reported. Observe a
single IUE lattice pointset 2d object tempLat is used. Each time through the loop it is cleared,
and new pixels added by the floodFill function.

18

if(pix > 0 && labelPlane1(x,y) == -1) {

----> tempLat = new IUE_lattice_pointset_2d;

if(floodFill(*outGO1,labelPlane1,*tempLat,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

tempReg = new IUE_image_region_2d(*tempLat,&inImg);

DAtype<IUE_INT>::put(*tempReg,"votes",0);

regions.append(tempReg);

regLabel++;

} else {

floodFill(*outGO1,labelPlane1,*tempLat,

xMax-1,yMax-1,x,y,pix,999999);

}

delete tempLat;

}

Figure 9: Code Segment 2: Create a new IUE lattice pointset 2d object into which to assemble
the pixels of each successive region.

if(pix > 0 && labelPlane1(x,y) == -1) {

----> tempReg = new IUE_image_region_2d;

if(floodFill(*outGO1,labelPlane1,*tempReg,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

DAtype<IUE_INT>::put(*tempReg,"votes",0);

regions.append(tempReg);

regLabel++;

} else {

floodFill(*outGO1,labelPlane1,*tempReg,

xMax-1,yMax-1,x,y,pix,999999);

delete tempReg;

}

Figure 10: Code Segment 3: Assemble pixels directly into an IUE image region 2d object.

19

IUE_indexed_sequence_via_array<IUE_image_region_2d>

regions;

if(pix > 0 && labelPlane1(x,y) == -1) {

tempLat = new IUE_lattice_pointset_2d;

if(floodFill(*outGO1,labelPlane1,*tempLat,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

tempReg = new IUE_image_region_2d(*tempLat,&inImg);

----> DAtype<IUE_INT>::put(*tempReg,"votes",0);

----> regions.append(*tempReg);

----> delete (tempReg);

regLabel++;

} else {

floodFill(*outGO1,labelPlane1,*tempLat,

xMax-1,yMax-1,x,y,pix,999999);

}

delete tempLat;

}

Figure 11: Code Segment 4: Use a sequence of regions rather than pointers to regions.

IUE_array_1d<IUE_image_region_2d> regions(0,10000);

if(pix > 0 && labelPlane1(x,y) == -1) {

tempLattice = new IUE_lattice_pointset_2d;

if(floodFill(*outGO1,labelPlane1,*tempLattice,

xMax-1,yMax-1,x,y,pix,regLabel) >= pixPerReg) {

regions(regLabel) = IUE_image_region_2d(*tempLattice, &inImg);

DAtype<IUE_INT>::put(regions(regLabel), "votes", 0);

regLabel++;

} else {

floodFill(*outGO1,labelPlane1,*tempLattice,

xMax-1,yMax-1,x,y,pix,999999);

}

delete tempLattice;

}

Figure 12: Code Segment 5: Compile-time allocate an array of regions. Uncovers a strange depen-
dency run-time dependency between KBV �le IO and exiting function where array is declared.

20

operation. It also appears that at least in the cases tested, object creation with new is not a source
of appreciable overhead. Neither of these �ndings is particularly obvious, and more work must be
done to better understand what is taking place.

4 Summary

4.1 Ease of Use

The following are some personal observations of Chris Graves after spending many months working
with the early releases of the IUE. First, The IUE is large, complex and is not fully implemented
yet. Two properties of the IUE make it manageable in its current form: the associated HTML
documentation and the uniformity imposed by the latex code generator.

I, Chris Graves, �nd the HTML pages to be faithful to the corresponding source code. For the most
part, I only had to inspect source code when the class documentation header indicated \partial"
implementation. Any criticism of the HTML pages are addressed in the recent release of v1.0b2,
which improves on this already excellent tool.

When inspecting source code, the uniform style evident throughout the IUE makes this an easy
task once the format is understood.

4.2 Final Observations

Our experience con�rms what is well understood within the technical community developing the
IUE: that the emphasis to date has been on representation primarily, functionality secondarily, and
concerns of e�ciency last. The one area where e�ciency has been a concern from the beginning is
the image classes, and the results shown above suggest images are doing �ne.

The IUE design and it's hundreds of classes covers a great array of IUE areas. The current IUE ver-
sion still seeks to esh out the representation of many classes and functionality lags representation.
Even with the tremendous e�ort underway, many functionalities promised by the representation
are not yet present. The intersection routines for lines and regions are one example. At one level
this seems a failing, but at another it points to one of the great strengths of the IUE design. This
strength is how clearly the representation uniformly suggests an incredible array of functionali-
ties. This, in turn, will encourage development of shared implementations as opposed to the more
current norm of building most components from scratch.

Provided the IUE continues to mature and develop, the functionality will come. There is still a
bit of a circular dependency, with more functionality needed to attract users while more users are

21

needed to expand the functionality. In our experience so far, it has been exciting to �nd so much
already in place. For example, even though they were not in the end needed, the functionality to
handle 3D planes and plane intersections represents a dramatic step forward in supporting user
development. These classes are easy to use and the routines work awlessly. Even with signi�cant
run-time slowdown, such convenience is vastly preferable to the alternative | coding all from
scratch.

Overall, getting the IUE to the point it has reached is a signi�cant achievement. The code generator,
the HTML documentation, the templated code, and perhaps more importantly their complete
integration through the code-generation process, is a fantastic advancement. It is the envy of some
of our software engineering faculty who have taken serious note of the IUE and are preparing to
study it as a test case. Few systems have such excellent hyper-text documentation. The IUE
project is at the vanguard in this respect. We have taken the time in our own use of the IUE to
learn the tools and �nd they are essential when managing a complex object oriented system. Given
the grand design of the IUE, it is no small achievement that the IUE has reached its current form
given the current state of C++ compilers, and how they deal with templated code.

Lastly, as should be clear from what we have said above, our early experience gave us great fear
as to the practicality of IUE. Its use of templates, it could be argued, pushed the G++ compiler
over the edge back in 1995. The most devastating consequence was that of seeing a 15 second
algorithm turn into a 22 minute algorithm. The good news has clearly been that in less than one
year we have seen this problem largely disappear. Run time on this case is down to a manageable
90 seconds, and while everyone hopes for further improvements, the IUE is now operating in an
acceptable range in terms of run time e�ciency.

References

[BHR86] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines. IEEE Trans.

on Pattern Analysis and Machine Intelligence, PAMI{8(4):425 { 456, July 1986.

22

