
Computer Science
Technical Report

Fault Exposure Ratio
Estimation and Applications�

Li Naixin
Microsoft Corp.

One Microsoft Way
Redmond WA 98052

naixinli@microsoft.com

Yashwant K. Malaiya
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

malaiya@cs.colostate.edu

Technical Report CS-96-130

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This research was supported by a BMDO funded project monitored by ONR



Fault Exposure Ratio

Estimation and Applications�

Li Naixin

Microsoft Corp.

One Microsoft Way

Redmond WA 98052

naixinli@microsoft.com

Yashwant K. Malaiya

Computer Science Dept.

Colorado State University

Fort Collins, CO 80523

malaiya@cs.colostate.edu

ABSTRACT

One of the most important parameters that control reliability growth is the fault exposure ratio (FER) identi�ed
by Musa et al. It represents the average detectability of the faults in software. Other parameters that control
reliability growth are software size and execution speed of the processor which are both easily evaluated. The
fault exposure ratio thus presents a key challenge in our quest towards understanding the software testing process
and characterizing it analytically.

It has been suggested that the fault exposure ratio may depend on the program structure, however the struc-
turedness as measured by decision density may average out and may not vary with program size. In addition FER
should be independent of program size. The available data sets suggest that FER varies as testing progresses.
This has been attributed partly to the non-randomness of testing.

In this paper, we relate defect density to FER and present a model that can be used to estimate FER.
Implications of the model are discussed. This model has three applications. First, it o�ers the possibility of
estimating parameters of reliability growth models even before testing begins. Secondly, it can assist in stabilizing
projections during the early phases of testing when the failure intensity may have large short-term swings. Finally,
since it allows analytical characterization of the testing process, it can be used in expressions describing processes
like software test coverage growth.

1 Introduction

The defect removal process plays a critical role in achieving software with the desired reliability level. The
software defects occur largely because of the imperfections of the human design and coding process. In order
to plan and control the test phase of a software development project, the manager has to assess how the defect
removal process is proceeding and when the defects or the defect encounter rate would be expected to be below
an acceptable standard.

We can regard the process as being governed by two parameters.

1. The initial number of defects. This would depend on the factors that inuence the occurrence of the defects
in the �rst place as well as defect removal that may already have occurred before the current test phase,
for example during unit testing. The purpose of the current test phase would be to reduce the number of
defects to a su�ciently low level.

2. E�ectiveness of the defect removal process. If the defects are found and removed faster, the target reliability
levels will be achieved earlier. This e�ectiveness would depend on some obvious factors, like the computa-
tional performance of the CPU. It would also depend on how the tests are selected and how the remaining
defects are distributed.

�This research was supported by a BMDO funded project monitored by ONR

1



While test e�ectiveness will vary from test to test, the test manager would like to look at the overall trend.
This requires a statistical characterization of the process. This is done by use of appropriate models.

While many of the reliability growth models are purely empirical, some of the models are based on some
speci�c assumptions about the fault detection/removal process. The parameters of these models thus have some
interpretations and thus possibly may be estimated using empirical relationships using static attributes. The two
parameters of the exponential model are the easiest to explain. Using this model the expected number of faults
�(t) detected in a duration t may be expressed as

�(t) = �E0 (1� e��
E
1
t) (1)

Here �E0 represents the total number of faults that would be eventually detected and �E1 is the per fault
hazard rate which is assumed to be constant for exponential model. The data collected by Musa [1] shows that
the number of additional faults introduced during the debugging process is only about 5%. Thus �E0 may be
estimated as the initial number of faults.

It has been observed [8] that in an organization, the defect density (measured in defects/thousand lines of code)
at the beginning of the system test phase does not vary signi�cantly and thus may be estimated with acceptable
accuracy. Empirical methods to estimate defect density using programmer skill etc. have also been proposed
[9, 10, 16].

The estimation of the other parameter �E1 is more complex. Musa et al. have de�ned a parameter K, called
fault exposure ratio (FER) which can be obtained by normalizing the per-fault hazard rate with respect to
the linear execution frequency, which is the ratio of the instruction execution rate and the software size. For 13
software systems they found that the overall FER varies from 1:41� 10�7 to 10:6� 10�7, with the average value
equal to 4:2� 10�7 failure/fault. Once we know the value of K, �E1 can be estimated using,

�E1 =
K

TL
(2)

where TL is the linear execution time [1], given by TL = IsQr
1
r
; Is is the number of source lines of code; Qr is

the average object instructions per source statement; r is the CPU instruction execution rate.

If N(t) is the total number of defects still present at time t, we can show that [4],

dN(t)

dt
= �

K

TL
N(t) (3)

Thus the defect �nding rate �dN(t)

dt
is proportional to the fault exposure ratio. Note that in the above equation,

the e�ect of the software size and the instruction execution rate of the CPU has been taken into account separately
in the term TL.

If we wish to characterize the defect removal process accurately, we need to identify the factors that control
FER. Once we have done that, we can empirically estimate FER and hence the defect removal rate. We will also
be able to assess the potential techniques for enhancing the defect removal rate. The researchers have considered
the following as possible factors.

Program Structure: Musa et al. [1] have speculated that FER may depend on the program structure in some
way. However, they suggested that for large programs, the \structuredness" (as measured by decision
density) may be average out. [1]. von Mayrhauser and Teresinki [11] have suggested that FER may depend
on static metrics like \loopiness" and \branchiness" of the program. However, because of lack of su�cient
data, the results are not conclusive [12]. Malaiya et al. [3] have identi�ed a factor that depends on the
program structure, but they show that its a�ect is counterbalanced by another factor, and thus FER should
be relatively unchanged with program structure. Further studies are needed to see if the program structure
has any inuence on the FER.

Program Size: Musa has also presented reasons why FER should be independent of program size [2].



Testing e�ectiveness: Malaiya et al. [3] have suggested that test strategies cause FER to vary. Since real
testing is not random but directed, it becomes more e�ective in comparison with random testing as testing
progresses. Their analysis of several data sets supports this hypothesis.

In this paper we relate FER to the stage of testing as discussed in the next section.

A study of the factors a�ecting FER is of considerable signi�cance. If we can accurately model the behavior
of K, there are two ways in which the debugging process can be better planned.

� When both parameters can be known a priori, the testing time needed to achieve target reliability can be
calculated and hence, optimal resource allocation can be done even before testing begins.

� In early phases of testing, the failure intensity values observed contain considerable noise. the use of
reliability growth models in the early phases can sometimes result in grossly incorrect projection. The
accuracy can be enhanced by using a priori parameter values in such cases.

In this paper we refer to two well known SRGMs, the exponential model referred above and the logarithmic

model. Both are 2-parameter models and are thus comparable. The exponential model o�ers the advantage
that the physical meaning of its two parameters is easily understood, however studies have shown that in most
cases the logarithmic model provides much better predictive accuracy. It is possible to regard the exponential
model as a convenient approximation of the logarithmic model. Both models have been used in industry and by
researchers. There are other models that work well in speci�c cases, however they are not considered here.

In this work we are primary concerned with the relation between FER and initial fault density D0. Starting
with the logarithmic SRGM model, we obtain a model giving variation of FER with defect density D. We next
discuss how this model can be used in software reliability engineering.

2 Variation of FER with Fault Density

The detectability of a fault is de�ned as the probability that the fault is detected by a randomly selected test
input [3]. For truly random testing, faults with high detectability tends to be detected earlier in time, so FER
should in general decline with time. However experiments with real reliability data indicates a reversal of this
trend at low defect densities [3]. One possible explanation for this phenomenon is that at the later stages of the
testing phase testing becomes more and more directed, rather than being random. The testers have a good idea
of what part of the functionality has not yet been exercised, and they would tend to use tests that are likely to be
more e�ective. Another possibility is that some faults may block access to some other faults, and thus removal
of some faults may allow more faults to become accesible.

The logarithmic model, has been shown to have higher predictive capability in general than other two-parameter
software reliability models by several researchers [14, 1, 7]. Malaiya et al [7] have shown using a number of diverse
data sets that the superiority of the logarithmic model is statistically signi�cant. The model is characterized by
these equations.

�(t) = �L0 ln(1 + �L1 t) (4)

�(t) =
�L0 �

L

1

1 + �L1 t
(5)

where �(t) is the failure intensity at time t, �(t) is the mean value function and �L0 and �L0 are the two parameters
for the logarithmic model.

In [3] it is shown that the general trend observed for FER is consistent with what would be expected for a
process obeying the logarithmic model.

In order to relate FER to the test stage, we need a quantitative metric that measures the stage of testing. The
actual amount of testing done in phases like unit testing and integration testing can very signi�cantly for di�erent



projects. Thus if we only use the testing time in a speci�c phase, it would not take into account the debugging
that has taken place in the prior phases. Here we use defect density as a measure of the test stage, because it is
independent of the project to project variation of the speci�c stage at which a given test phase begins.

An expression for FER in terms of the testing time is derived in [3]. Here we will obtain an expression for
FER in term of the fault density D, which is a function of the testing time t. Taking logarithm on both sides of
Equation 5, we get

ln(�(t)) = ln(�L0 �
L

1 )� ln(1 + �L1 t) (6)

Using Equation 4

ln(�(t)) = ln(�L0 �
L

1 )�
1

�L0
�(t) (7)

Also, by de�nition,

D(t) =
N(t)

Is
(8)

Since,

�(t) = �
dN(t)

dt
(9)

Equation 3 yields,

K(t) = TL
�(t)

N(t)
(10)

Using Equation 8 and Equation 10 we obtain,

ln(K(t)D(t)) = ln(TL
�(t)

Is
) = ln(

IsQr
1
r

Is
�(t)) (11)

Reorganizing,

ln(�(t)) = ln(K(t)D(t)) � ln(
Qr

r
) (12)

Since �(t) can also be expressed as,

�(t) = N0 �N(t) = N0 � IsD(t) (13)

substituting Equation 12 and Equation 13 into Equation 7, we obtain,

ln(K(t)D(t)) � ln(
Qr

r
) = ln(�L0 �

L

1 )�
1

�L0
(N0 � IsD(t)) (14)

Rearranging, we get,

ln(K(t)D(t)) = ln(�L0 �
L

1 ) + ln(
Qr

r
)�

N0

�L0
+

Is

�L0
D(t) (15)

Both defect density D and the FER vary as testing proceeds. The exact process of defect detection and removal
depends on the testing strategy, CPU speed, etc. Including other factors in the parameters, we will express FER
as a function of D. Other factors will be manifested through variation in D. Let us rewrite the above equation
as:

ln(KD) = ln(�0) + �1D (16)

where the parameters �0 and �1 are given by,

�0 =
�L0 �

L

1 Qr

r
e
�
N0

�L
0 (17)

�1 =
Is

�L0
(18)



This allows us to write FER as,

K =
�0

D
e�1D (19)

To illustrate the nature of Equation 19, let us assume that a debugging process for a system with N0 = 200
is exactly described by a logarithmic model with �L0 = 60 and �L1 = 1. We can calculate the values of FER at
di�erent densities. The values are plotted in Figure 1 along with the �tted model of Equation 19. Figure 2 is a
plot of ln(KD) against D. These plots can be used to compare actual variation in FER in a speci�c case against
the behavior predicted by Equation 19.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20

K

Density

Ideal sample
Model

Figure 1: FER against D for an ideal case

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

l
n
(
K
D
)

Density

Ideal sample
Model

Figure 2: ln(KD) against D for an ideal case

3 Estimation of Fault Exposure Ratio

Adams [13] noticed that software's failure rates in operational phase had a distribution which observes Zipf's
law, the failure rate of a fault i is inversely proportional to a power of i, when faults are ranked by decreasing

failure rate [15]. Trachtenberg [15] proposed a software reliability model based on Zipf's law which �tted Adam's
reliability data with an very high correlation coe�cient.

If we regard the testing phase as a compressed form of operational use [1], then the failure rates for di�erent
defects during the testing phase may also have similar distribution for di�erent software projects. Further we



suspect that at the beginning of system testing phase, the detectability pro�les [3] of software projects may have
similar shapes in accordance with the Zipf's law.

If the testing activity is conducted in the same way, FER would be primarily determined by the detectability
pro�le. In case of truly random testing, FER would be an weighted average of the detectability of each individual
fault [3].

Here we will obtain a form of Equation 19 that will relate the FER to the initial defect density. The expo-
nential model assumes that FER does not change over time. The exponential model can be considered to be
an approximation of the logarithmic model. Let us de�ne the overall exponential model based FER (EFER),
represented by K̂, as the value obtained by �tting the exponential model to the test data. If we would calculate
the EFER during the test phase using the exponential model, we should expect it to vary with the defect density
present at the beginning i.e. at t=0. Here we obtain a mapping of our model described by Equation 19 on to the
exponential model that relates the average defect density and EFER.

Let us assume that Equation 19 is applicable when when instead of instantaneous values K and D, we use
their average values K̂ and D̂, averaged over the test duration. Then we can write:

K̂ =
�0

D̂
e�1D̂ (20)

In Musa et al [1], the values of EFER were computed assuming the exponential model. According to the
exponential model, from Equation 1,

N0 � �(t) = �E0 e
��

E
1
t (21)

or,

N(t) = �E0 e
��

E
1
t (22)

Since N(t)=Is = D(t), N0=Is = D0, we have

D(t) = D0e
��

E
1
t (23)

Let us assume that t varies from 0 to T such that D(T ) = D0=10, then

T = �
1

�E1
ln(0:1) =

2:303

�E1
(24)

Now D̂, the average value of D(t) from 0 to T is given by

D̂ =
1

T
D0

Z
T

0

e��
E
1
tdt =

D0

�E1 T
(1� e��

E
1
T ) (25)

Substituting using Equation 24, we get

D̂ =
D0

2:303
(1� 0:1) = 0:39D0 (26)

Since Equation 26 is a simple linear expression, D0 may be used instead of D̂ in an empirical analysis.

This allows us to rewrite Equation 20 as

K̂ =
�0

0:39D0

e0:39�1D0 (27)

renaming the parameters we get,

K̂ =
�

0

0

D0

e�
0

1
D0 (28)



In Equation 19 and Equation 28, the parameters �0 and �
0

0 represent the scale factors forK and K̂ respectively.
To see the signi�cance of �1 or �

0

1, let us solve for the minimum value of K. Taking the derivative of the RHS of
Equation 19 and equating it to zero, we get,

@K

@D
= �0(

�1e
�1D

D
�

e��1D

D2
)

= 0

yielding D =
1

�1

(29)

Substituting this in Equation 19, we get

Kmin = �0�1e (30)

Thus 1=�1 gives the minimum of the curve. The available data suggests that it occurs at about D0 = 5. This
corresponds to the minimum at approximately D = 5 � 0:39 = 2. Further studies are needed to see if the two
parameters vary with variation in the testing practices.

Table 1, obtained using [1], relates initial defect density and overall fault exposure ratio. Here 10% of the total
initial defects are assumed to be present by the end of the testing phase.

Table 1: K̂ vs. D0 [1]

(K̂ in units of 10�7)

Data Size (K) D0 K̂

T1 21.7 6.89 1.87
T2 27.7 2.14 2.15
T3 23.4 1.79 4.11
T4 33.5 1.74 10.6
T5 2445 0.374 4.2
T6 5.7 14.08 3.97
T16 126.1 0.357 3.03
T19 61.9 0.675 4.54
T20 115.35 20.89 6.5

Using the form as given in Equation 16 and using the data given in Table 1, we get the following estimates of
the parameters �

0

0 and �
0

1:

�
0

0 = 3:058� 10�7 (31)

and,
�

0

1 = 0:195 (32)

when the defect density is expressed in terms of per one thousand lines of object code. The correlation
coe�cient value was 0.89 which indicates that the Equation 28 can satisfactorily describes the relation between
K̂ and D0. If D̂ was used in place of D0, we would get �0 = 1:205� 10�7 and �1 = 0:492 using Equations 20
and 26.

Figure 3 depicts the relation between EFER and D0 for both the real data and the model with parameters
evaluated from the real data. Each point represents a di�erent data set. Figure 4 depicts ln(K̂D0) against D0.
Note that the lower density values correspond to the later parts of testing.

Both the data analyzed and our model suggest that until a defect density value of about 5, the EFER declines
gradually and then at lower defect densities starts rising.

The data sets in Table 1 were collected at AT&T. High quality data sets that are available in the literature
are still limited. In [4], several other data sets were examined. When the variation of K within one AT&T data



1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25

K

Density

Real Data
Model

Figure 3: EFER against D0: model compared with the real data

0

1

2

3

4

5

6

0 5 10 15 20 25

l
n
(
K
D
)

Density

Real Data
Model

Figure 4: ln(K̂D0) against D0: model compared with the real data

set was examined, it showed a minimum at density value 2. Three data sets from IBM with D0 values of 0.11,
0.07 and 0.32 all exhibited a rising value of K and one data set with D0 equal to 8.77 showed a minimum at
about 3. Two data sets from Japanese industry with D0 values equal to 0.66 and 0.17 showed K rising. These
are in con�rmation with the model presented here. One AT&T data set did not match out model. The fact that
the logarithmic SRGM has good predictive capability, also supports our model indirectly, since it leads to the
logarithmic SRGM.

If more failure data are available, the value of �0 and �1 can be determined more exactly.

It should be noted that the defect density shown in Table 1 was calculated using the object instruction count.
It might be possible to get even better correlation between FER and D0 if we consider only the projects using
high-level languages, or only the projects which used assembly languages.

4 Fault Exposure Ratio in Software Reliability Engineering

FER plays an important role in software reliability growth. A manager can use it to plan the test resources
need to achieve the desired quality level, even before testing begins. In the early stages of testing, only a limited
number of data points are available, which are not often enough to establish the long term trend. This makes
parameter estimation for SRGMs unstable. The FER can be used to stabilize the early projections. Use of
coverage information for reliability is just emerging. For coverage based modeling, use of FER can be used for
initial estimates of the parameters involved.



4.1 A priori planning

It is relatively straightforward to use FER to estimate the parameters of the exponential model, as illustrated
in this example.

Example 1: Assume there is a software system whose initial defect density is estimated to be 16 defects per
thousand lines of source code. It has 50,000 lines of source code. The machine to be used for testing has MIPS
rating of 16. The source to object instruction ratio is 4. Here we will calculate the total expected testing CPU
time needed to achieve a failure intensity objective of 2� 10�4.

The initial defect density D0 is

D0 = 16=4 = 4 per thousand object lines (33)

The total expected number of faults is
�E0 = 50� 16 = 800 (34)

The average fault exposure ratio EFER is

�
0

0

4
e�

0

1
�4 =

3:089� 10�7

4
e0:192�4 = 1:66� 10�7 (35)

The linear execution time can be estimated as,

TL =
IsQr

r
=

50000� 4

16000000
= 0:0125 (36)

The per fault hazard rate can be obtained as,

�E1 =
K̂

TL
=

4:167� 10�7

0:0125
= 1:33� 10�5 (37)

Thus we have the following exponential model describing the failure process during system testing,

�(t) = 800(1� e�0:0000133t) (38)

and,
�(t) = 0:0267e�0:0000133t (39)

where t is measured in CPU seconds. Solving this for the failure intensity objective, we get t = 82:95 CPU hours.
By the time testing is terminated, there will be about 785 failures encountered.

Notice that this is obtained before real system testing starts. When enough actual failure data from system
testing phase is available, one might consider to use real data and the logarithmic model to get a more accurate
projection.

A possible procedure to estimate the parameters of the logarithmic model can be based on the results obtained
in [3]. A model relating FER with time as described by Equation 40 was proposed which characterizes the
variation of FER with time t.

K(t) =
K0N(0)

N(t)(1 + at)
(40)

where a is a parameter depending on the \detectability pro�le" of the software [3].

From this model we can derive the well-known logarithmic software reliability growth model with the following
interpretation for the parameters:

�L0 =
K0N0

aTL
(41)

�L1 = a (42)

The problem of estimating the parameter a need to be further investigated.

An alternative way to estimate the parameters of the logarithmic model is to �rst estimate the parameters of
the exponential model, and then use them to obtain the parameters of the logarithmic model. An approximate
procedure is given in [5]



4.2 Stabilizing parameters in early test stages

When failure intensity is plotted against time, it shows a lot of noise superimposed over the long term trend.
When su�cient number of data points are available, we can extract the long-term trend as described by a suitable
SRGM. However at the beginning of the test phase, only a few data points are available. Any projections based
on these are signi�cantly inuence by noise. It would be very desirable for a manager to be able to plan the rest
of the test phase based on early data, and thus we need techniques to stabilize parameter estimation.

Stabilization can use a combination of static metrics with actual test data.

When the exponential model is being used, the following possible stabilization technique can be used. Let us
assume that we are at the stage where no clear reliability growth trend (i.e. decline in failure intensity) is yet
apparent.

1. Obtain average of failure intensity. This provides an estimate of �0 = �E0 �
E

1 .

2. Empirically estimate FER and hence �E1 .

3. Obtain an estimate for �E0 as �0=�
E

1 .

For the logarithmic model, we can use results from [3], where the parameter �L0 was related to initial fault
exposure ratio K0 and �L1 . If we can estimate K0, the initial failure intensity �0 can be evaluated through,

�0 =
K0N0

TL
(43)

Let t = 0 in Equation 5,
�0 = �L0 �

L

1 (44)

Thus Equation 4 can be rewritten as,

�(t) =
�0

�L1
ln(1 + �L1 t) (45)

Thus if we can estimate K0, the logarithmic model will have only one unknown parameter �L1 . This can be used
to stabilize the use of the logarithmic model in the very early phases of testing.

4.3 Coverage based modeling

In [17], a model is presented that computes the defect coverage C0 in terms of a software test coverage measure
Ci which may be one of block coverage, branch coverage, p-use coverage etc.

C0 = pi0 ln[1 + pi1(exp(p
i

2C
i)� 1)]

i = 1 to 4 C0
� 1 (46)

It was shown that this model con�rms with experimental data available.

Equation 46 gives us a three-parameter model for defect coverage in terms of a measurable test coverage metric.
It is possible to approximate Equation 46 by a linear relation, but it would be valid for only a small range. Because
three parameters are involved, the �tted values of the parameters can be very sensitive to the initial values.

This approach models coverage of an enumerable (like a branch or a p-use) just like coverage of a defect. The
superscript 0 indicates defects and superscript i indicates one of the test enumerables. The �rst parameter of
Equation 46 then is [17],

pi0 =
K0(0)

a0TL
(47)



Estimation of ai remains an open problem. The third parameter is given by,

pi2 =
aiTL

Ki(0)
(48)

This allows the possibility of empirically estimating two of the parameters. These values then can be used
as initial estimates. This reduces the problem of obtaining parameter values that are stable, i.e. do not depend
greatly on the initial values assumed when numerical curve �tting is done.

5 Concluding Remarks

We have presented an empirical model which allows us to estimate the fault exposure ratio and hence the
parameter �E1 of the exponential model. Since estimation of �E0 can already be done satisfactorily, we can now
use the exponential model before testing begins.

The fault exposure ratio FER describes the e�ectiveness of the testing process. Besides the defect density,
FER may also depends on the testing strategy and perhaps the individual software structure. These may vary
from project to project. However, within the same organization, these might not very signi�cantly for di�erent
projects and thus FER may be estimated directly from D. More accurate estimation of FER can be done if the
parameters �0 and �1 are obtained by �tting Equation 19 to the data from similar projects. When there is no
previous data available within an organization, K̂ can be estimated using parameter values for �

0

0 and �
0

1 from a
variety of projects from other organizations.

Just as size can be used to estimate the number of total expected defects fairly accurately, the model here
provides an estimate of K or K̂ using D0. Further research is needed to identify and quantify the e�ect of other
factors so that K or K̂ may be estimated more accurately, just as the frequency of speci�cation changes, etc. can
enhance the accuracy of estimating the total number of defects [9].

The model can be re�ned further when additional data is available. If there is data available to relate K
to D, then we can estimate K̂ and hence the parameter �0 of the logarithmic model (ref. Equation 45) at the
beginning of system testing phase. Estimation of the other parameter �L1 for the logarithmic model requires
further investigation.

We have also presented approaches for using FER for enhancing the accuracy of software reliability analysis
techniques. These approaches promise better accuracy in both time based and coverage based modeling.

References

[1] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability - Measurement, Prediction, Applications, McGraw-
Hill, 1987.

[2] J. D. Musa, Rationale for Fault Exposure Ratio K, ACM SIGSOFT Software Engineering News, July 1991,
pp. 79.

[3] Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, The Nature of Fault Exposure Ratio, Proc. Interna-
tional Symposium on Software Reliability Engineering, October 1992, pp. 23-32.

[4] Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, An Examination of Fault Exposure Ratio, IEEE
Trans. Software Engineering, Nov. 1993, pp. 1087-1094.

[5] Y. K. Malaiya, Early Characterization of the Defect Removal Process, Proc. 9th Annual Software Reliability
Symposium, May 1991, pp. 6.1-6.4.

[6] Y. K. Malaiya, A. von Mayrhauser and P.K. Srimani, The Constant Per Fault Hazard Rate Assumption,
Proc. 2nd Bellcore/Purdue Workshop on Issues in Software Reliability Estimation, October, 1992, pp. 1-9.



[7] Y. K. Malaiya, N. Karunanithi and P. Verma, Predictability of Software Reliability Models, IEEE Trans.
Reliability, December 1992, pp. 539-546.

[8] G. A. Kruger, Validation and Further Application of Software Reliability Growth Models, Hewlett-Packard
Journal, April 1989, pp. 75-79.

[9] M. Takahashi and Y. Kamayachi, An Empirical Study of a Model for Program Error Prediction, in Software
Reliability Models, IEEE Computer Society, 1991. pp. 71-77.

[10] T. M. Khoshgoftar and J. C. Munson, The Line of Code Metric as a Predictor of Program Faults: a Critical
Analysis, Proc. COMPSAC'90, pp. 408-413.

[11] A. von Mayrhauser and J. A. Teresinki, The E�ects of Static Code Metrics on Dynamic Software Reliability
Models, Proc. of Symposium on Software Reliability Engineering, April, 1990, pp. 19.1-19.13.

[12] J. M. Keables, Program Structure and Dynamic Models in Software Reliability: Investigation in a Simulated
Environment, Ph.D Dissertation, Computer Science Dept., Illinois Institute of Technology, 1991.

[13] E. N. Adams, Optimizing Preventive Service of Software Products, IBM Journal of Research and Develop-
ment, vol. 28, no. 1, January 1984, pp.2-14.

[14] W. H. Farr, A survey of Software Reliability Modeling and Estimation, Naval Surface Weapons Center, TR
82-171, Sept. 1983.

[15] M. Trachtenberg, Why Failure Rates Observe Zipf's Law in Operational Software, IEEE Trans. Reliability,
vol. 41, no. 3, September 1992, pp. 386-389.

[16] N. Li and Y.K. Malaiya, ROBUST: A Next Generation Software Reliability Engineering Tool, Proc. IEEE
Int. Symp. on Software Reliability Engineering, pp. 375-380, Oct. 1995.

[17] Y.K. Malaiya, N. Li, J. Bieman, R. Karcich and B. Skibbe, The Relationship between Test Coverage and
Reliability, Proc. Int. Symp. Software Reliability Engineering, Nov. 1994, pp.186-195.


