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Abstract

In this paper we investigate the problem of how to schedule » independent jobs on an m x m torus based network. We
develop amode to to quantify the effect of contention for communication links on the dilation of job execution time when
multiple jobs share communication links; we then design an efficient algorithm to schedule aset of n independent jobswith
different torus size requirements on a given torus with an objective to minimize the total schedule length. We aso develop
a feasibility algorithm for preemptively scheduling a given set of jobs on atorus of given size with a given deadline. We
provide analysis for both the algorithms.

1 Introduction

The mesh and torus networks have been recognized as versatile interconnection networks for massively parallel comput-
ing. Mesh/torus-like low-dimensional networks have recently received alot of attention for their better scalability to larger
networks, as opposed to more complex networks such as hypercubes [BP95]. Examples of machines with such topologies
include the MasPar MP-1 [Mas], Intel Paragon, MIT JMachine [DDF89], Tera HORIZON [TS88], Cray T3D [Crad3,
0ed93], Polymorphic Torus[LM89], Fujitsu AP-1000, and iWarp [BCC*88].

A torusisamesh with wrap-around links. Although meshes and torii are generally regarded as close families, there are still
somedistinctions:. (i) Asopposedto amesh, all nodes of atorusaretopologically symmetric, (ii) atorushasasmaller (about
half) diameter compared to that of an equal-size mesh, and (iii) although theratio of the number of linksin atorusto that in

amesh is close to one, the bisection bandwidth! of atorusistwice that of amesh.

Several schemes have been proposed for processor allocation in mesh connected multiprocessor networks [LC91, Zhu92].
Somework has also been done for processor allocation in a partitionabl e torus connected multiprocessor [QN95]; however,

thisscheme all ocates submeshesin atorus. In this paper, we proposeaschemefor allocating subtorii in atorusnetwork. The

1 Bisection bandwidth is the minimum number of links across any hyper-plane that cuts a network in half.



motivation for doing thisis that the algorithms which are designed for torus networks would run faster under this allocation
strategy [dCVGG95].

Our scheme is targeted towards wormhole routed networks. The message propagation time in wormhole routed networks
is insensitive to routing distance in the absence of contention for the links as long as the routing distance does not exceed
athreshold. However, contention for communication links severely degrades the performance. It is thus important that
communication link contention should be avoided or minimized. This has motivated design of many algorithms for worm-
hole routed systems which perform the required communication as sequence of contention free phases. Further in order to
fully utilize the available communication bandwidth the number of communication phases are minimized by scheduling as
many communicationsin aphase as possible. Such is aso the case for algorithms designed for wormhole-routed torus net-
works[TG96, TLGP97]. However, programs based on such algorithmswould not be able to get maximum benefit from the
underlying torus network if the jobs are allocated on a submesh rather that a subtorii.

Our purposein the present paper isto investigate job scheduling in 2D torus connected networksunder different models. The
problem of job scheduling on torus connected networks can be formulated as follows. We are given a set of n independent
jobs.J = {J; : 1 < i < n}andatorusof dimensionm (i.e, Tyxm. Eachjob J; = (d;,¢;),1 < i < nrequiresa
torus of dimension d; (i.e., a d;-subtorus) for ¢; units of timewhere 0 < d; < m and t; isarational number, t; > 0. The
problem is to compute a schedul e such that the finish time (the time when all jobs are finished) is minimized (we call thisan
optimal schedule). A scheduleis called preemptive if ajob may be preempted before completion and can resume at a later
time, possibly on a different subtorus. We also assume, for the sake of simplicity (without any loss of rigor) that the jobs are

ordered, i.e, Vi, 1 <i <n,d; > d;t1.

We present job scheduling algorithms under two different models: with and without contention. The scheduling with con-
tention uses a contention model to determine the dilation in job execution time in the presence of contention for commu-
nication links. On the other hand, scheduling without contention must use some link-digjoint decomposition of the torus
to eliminate contention from other jobs in the system. However, link-digjoint decomposition precludes the use of al the

processorsin the system.

2 Job Scheduling on Toruswith Contention

2.1 Partitioninga Torus

A torusisamesh withwraparoundlinks. Formally, a Ny x N» torusTw, «x n, = (V, E), wherethevertex set V' = {(7, 7)|0 <
1< N1,0 < ] < Nz} and theedge%tE = {((ilajl); (Zz,jz))|(22 = (21 + 1)modN1 /\jl = jz) \ (]2 = (]1 + 1)modN2 A

i1 = i2)}. We assume that each edge represents a bidirectional communication link between its end nodes.

Consider thefollowingsubtorusof T, « v, T'n, /iy N Kk, = (Vi, En), Wwhere Vi = {(4,5)[(4,7) € VAimod K; = a,0 <
a < Ki,jmod Ky =b,0 < b < K>} for some constantsa and b and the edge set E; isdefined similar to E. To distinguish
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Figure 1: Partitioning of T g into four 4 x 4 Subtorii (Links are not shown for clarity).

. ; (a,b)
this subtorus from other subtorus we would refer it as TN1 Ky N K

E. In particular, an edge ((i1, j1), (i2, j2) spansthe edgesin the set {((i1, j1), (i1 + 1, J2)), ..., ((i2 — 1, 1), (i2, j2))} if

. Notice that each edgein E; spans multiple edges of

J1 = jo2, Otherwiseit spansthe edgesinthe set {((i1, j1), (i2,41 + 1)), ..., ((i1, j2 — 1), (i2,72))}. We would refer the set
of edges spanned by an edge e of a subtorusas span(e).

Definition 1 (Link-disjoint Subtorii) We say that two subtorii T3 = (Vi, By) and T\0332) o= (Va, Bn)

arelink-digoint iff span(e1) N span(ez) = ¢ for al e; € Ey andey € Es.

Remark 1 Itiseasyto seethat anytwo wbtorusTI(v"ll/’fgl) Na/Ks and T}V‘jz/ﬁ;f Na/ Ko arelink-digointiffa; # as andb; # bs.

For agiven torus, we can obtain K x K- distinct subtorii. Out of these K x K distinct subtorii we areinterested in a set
of pairwise link-digoint subtorii. A maximal set of pairwise link-digjoint subtorii has min(K;, K»>) subtorii. Further, we
can partition the K; x K, subtorii into maz (K, K») maximaly link-disjoint sets.

Example: Consider Ts,s with K, = K, = 2. Then the the four subtorii of Tss, namely, T\, (%D {10 7.b
are shown in Fig.1. We can see that 7. and 7.4} are link-disjoint and so are T\ -% and 7%}, However, 7% and
T&i) are not link-digoint. Hence, the set of 4 x 4 subtorii can be partitioned into two pair-wise link disjoint subsets with

cardinality of each set to be two.

2.2 Modd of Contention

In wormhole routed systems communication contention degrades the performance of the jobs. In this section we present
amodel of contention which we will use to dialate the finish time of the jobs that are allocated to subtorii sharing some

communication links and which overlap in time.

Definition 2 (Contention Model) If ajob J;, of duration ¢, isallocated to a subtoruswhich hasa communication link which

is shared by (n — 1) other subtorii for a time duration of A then the duration of job .J;, is dilated by an additive factor of



(n —1)A/m, wherem is the maximum number of subtorii which can share a communication link. Hence, under this model

job .J;, will occupy the subtorusto which it is allocated for a duration of ¢, + (n — 1)A/m.
Definition 3 (Job Load) The time duration by which a job gets dilated is called the |oad of that job.

Example: Suppose jobs J; and .J» are allocated to subtorii 7" and T";") of torus Tss and they overlap in time then
these jobs will compete for the row links. According to the contention model the job duration of these jobs would become

t1 + A/2and t2 + A/2, respectively, assuming that the duration of overlapis A.

The contentionmodel can bejustified asfollows. Supposethat ajob requires A communication time without any contention.
Hence,
A=V/B,

where V' is the data volume communicated and B is the bandwidth of each link. Then, in the presence of contention from

(k — 1) other jobs the communication time can be approximated to be:
A" =V/(B/k) = k(V/B) = kA,
assuming that each job gets equal share of the bandwidth. Hence, the job duration would be dilated by

A —A=(k-1)A.

Wedilate the duration of each jobinvolved withthisamount?. Wefurther normalizethisdilation by 1, the maximum number

of jobswhich can compete for a communication link.

2.3 Load Update

In the following, we would be using this model to update the time duration of all the competing jobs. The jobs will be
allocated to subtorii one by one. Placement of ajob .J;,, on a free subtorii T increases the load of al the jobs allocated to
subtorii sharing communication links with T'. The loads of these jobs needs to be updates. Further, the current load of job

Ji, needsto be computed. The load of job J;, and all the competing jobs are updated according to the following theorem.

Theorem 1 Letjob J;, overlap withjob J; for duration A;, 1 < ¢ < k when it becomes active. Assuming that all the k jobs
compete for same communication link, theload I; of job J;, 1 < i < k needsto beincremented by A;/m, i.e,

lLi=10+ Ai/m.
Further, the current load of job J}, isl;, = Zi.‘;l A;/m, and thedilated finish time ¢t';, of Jj. is.

'y =tr + 1.

2We are assuming that al the jobs communicate equal amount volume of datain same time duration. Further note that, for simplicity, we are assuming

that the jobs are communicating the entire duration they occupy a subtorus.



Proof : ssume that job .J; was competing with n other jobs for a communication link during duration A; before job Jj,
was introduced. With the presence of job J, job J; now competeswith n + 1 other jobs. The difference between adjusted

duration of job J; after job .J;, was introduced and beforeit was introduced is:

(ti + (n+ I)Al/m) - (ti +nAi/m) = Al/m

As opposed to uniformly competing with n jobs during the duration A, it can so happen that job .J; competeswith different
number of jobs. For example, supposejob .J; competeswith n; jobsduring duration A; ; and n, jobsduring duration A; »,
where A; = A; 1 + A; ». So, the difference between the adjusted duration for job J; after and before introduction of job J;,

is.
(t; + (1 + DA 1 /m+ (ne + 1)As2/m) — (6 + n1di1/m+n2;2/m) = Aj 1 /m+ A2 /m = Ay /m.
This can be easily generalized. Hence, each job J;'sload has to beincremented by A; /m.

Now consider job J;,. Note that if two jobs contend for acommunication link their duration is dilated by equal amount of
time. Hence, it can be easily concluded that ¢;,'s time duration should be dilated by ' A; /m. O

2.4 Job Scheduling with Contention

In this section, we will look at non-preemptive scheduling. Further we assume that all the requests are for square subtorus

and that the dimension are power of two.

Problem: We are given aset of n independent jobs.J = {J; : 1 < i < n} and atorus of dimensionm = 27 (i.e.,, Tryxm-
Eachjob J; = (d;,t;),1 < i < n requiresatorusof dimension d; = 2% for ¢; unitsof timewhere0 < d; < m andt; isa
rational number, ¢; > 0. The problem isto compute a schedule such that the finish time (the time when all jobs are finished)

isminimized in presence of link contention.

Our agorithm attempts to minimize the overall contention (under the contention-model presented before) experienced by
the jobs. It is based on the following greedy strategy: A job is scheduled on an earliest available subtorus with minimum
load. The algorithmisgivenin Fig.2.

2.4.1 Availability Matrix

The agorithm uses Availability Matrix A to keep track of the availability of each subtorii. Recall that T» 2» torus can be
partitioned into 2P~° x 2P—¢ of size 2® x 2°. We will use the notation o to denote 2P~*. Hence, if al the job requests are
of same size, say 2° x 2° then we need an A of size o, X o, Since entry AJi, j] can track of the availability of subtorus
Tz(azb) 0 < a,b < o, Inparticular, if s = p then we need an A with just one entry and if s = 0 (i.e. each request is

for single processor) then we need an A of size 2P x 2P. Since job requests can be for subtorii of different dimensionswe



Algorithm CNP_Alloc
Input:

J:joblist {Ji,..., J.}, where J; = (2°¢,t;),1 < ¢ < n.
Output:

S: Job schedule with job J;, start timeto be S[k].start

on subtorus 7, ff1-rew-S1kl-con.

make_span : Schedule length.
begin
1) Ali,jl.tm =0, Afi, j].sz = s1, A[4,j].id = 0,0 < i, 5 < m.
2) time =0, sp = s1.
3) done(i,j) = false,1 <i,5 <n.
4) FORk = 1,n/* Schedulejob Jj, */
5  If (sk # sk—1) /* Expand A to next level */
6) FORi=0,0,_,
7) FORj =0,05,_,

8) A[i + Osp_ 7]] =A[i7j + Usk—l] = A[i +0s, 4,5+ JSk—l] = A[i,j]

9) ENDFOR ENDFOR

10)  Endif

11) Determine Freesubtorii set B:

12)  min =min(A[0: 05, -1,0: 05, —1]).

13) A[0:04,-1,0:05,-1] = A[0:05,-1,0: 05, —1] — min.
14)  time+ = min.

15 B ={(i,))|Ali, j] = 0}.

16) Determine minimum loaded subtorii from B:
17)  ((4,7),load) = min_loaded(B).

18)  Assign Jj to (3,5).

19)  (S[k].start, S[k].row, S[k].col) = (time,1,j).
20) Update Availability matrix:

21)  Afi, j]l.tm =ty + load.

22)  Ali,j].sz = s, Ali, jl.id = k.

23y FORr=0,0,, — 1.

24) s = Ali,r].s2,8' =imod oy, =r mod os.

25) IF(—~done(A[i, r'].id, k))

26) A[i' r'tm = Al ' .tm + min(te, A[i', r'].tm) * 1/osy,.
27) Ali' + zx 05,7 +yxos] = Afi,r].tm, 0 < z,y < 2°7 %,
28) done(A[i',r'].id, k) = true

29) ENDIF

30) ENDFOR

3) FORc=0,04, — 1.

2 ..

33) ENDFOR

34) ENDFOR

35) Compute Schedule Length:
36) make_span = time + maz(A[0: o5, —1,0: 0,5, —1]).
end

Figure 2: Algorithm for Scheduling Subtorii with Contention.
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Figure 3: Availability Matrix Structurefor Ty 5.

need an availability matrix of maximum possiblesize, i.e. o5,,,, X 05, , Where s, = min(sy,...,s,). Wewill call the
availability matrix for requests for subtorii of size 2° x 2% asthe availability matrix at level s. Besides, the availability of

subtorii the availability matrix is also used to keep track about the size of the job and theid of the job assigned to a subtorii:

Definition 4 The Availability Matrix A at Level 5,0 < s < p,isao, x o5 matrix. Each entry A[i, j], 0 < i,j < o, of

matrix A hasthree fields:

o A[i, j]-tm: isthe timewhen the subtorii 7" isavailable.
o Ali, j].sz: isthe size of the job active on this subtorii.

e Ali,j].id: istheid of thejob active on this subtorii.
Remark 2 Notethat Afi, j].sz > s. Ift = Afi, j].sz > s thenjob J; ;1 . Which was assigned to T3, 7i°% 77 ™ 74) js

also occupying T4%3) since T4:"3) isa subtorus of Toy; 7:°* 77 ™% 7¢),

If the job requests are ordered in the decreasing order of their dimensions then we need to maintain an availability matrix
at afixed level aslong as the job request dimension remains the same. And whenever the job requests size decreases from
2% x 2% t0 2! x 2 we need to expand the avail ability matrix fromlevel s tolevel t. Notethat the availability matrix at level ¢ is
25—1x 25—t timesthe availability matrix at level s. If t = s—1 thenthe availability matrix doublesin each dimension. Further
note that each subtorusTéf;;’,? ,s > 1, of dimension 2% x 2¢ consists of four subtorii Tz(fﬂ)725_1, Tz(ffl‘f;;b_)l, Tz(ff’lf;j_)l, and
TQ(fi‘f;;bj‘“) each of dimension 2°~1 x 2°~1. Hence, when expanding the availability matrix from level s tolevel s — 1 each
entry Afa,b] isreplicatedto Afa + o5, b],Ala, b+ o], and A[a + o5,b+ o). That isto say, subtorii Téfﬂ{zg,l : Tgffl‘fg;b,)l ,
74047 and TP 7) gre (not) available only if T(?ij,? is (not) available. Figure 3 illustrates the structure of the

25—1725—11 25—1725—1

availability matrix for Tg«s. It also shows the pattern of expansion from each level to next lower level.

Hence, for simplicity, we make the following assumptions:

1. Jobs are sorted in non-increasing order of their dimensions, i.e. s; > so > ... > s,.



2. A jobrequest for each s, s; > s > s, ispresentin thejob list®. This ensuresthat we need to expand the availability

matrix by at most one level for each job.

In Fig.2, lines 5-9 expand the matrix A to next lower level whenever the size of the subtorii requested by the current job is

not the same as the size of the subtorii requested by the previousjab.

2.4.2 Determining Earliest Available Minimum L oaded Subtorus
When scheduling Jy, it is assigned to a minimum loaded subtorus from among the earliest available subtorii.

Definition 5 (Load on a Subtorus) The load on a subtorus 7" (with respect to job J) isthe load job .J would experienceif it

were assignedto 7.

Oncetheavailability matrix of theright level has been obtained, the next thing the algorithm doesisthat it determinesthe set
of freesubtorii B. Thevariabletime isusedto keeptrack of thetimewhentherewill beafreesubtorii of thedesiredsize. The
updation of time and determination of set B isdone by first computing the minimummin of the A[i, j].tm,0 < i,j < os,,
where s, is the size of subtorii requested by the current job J;,. Then, min is added to time and decremented from all

Ali, j].tm, 0 <i,j < 04, . Theset B isdetermined to {(i, j)| A[¢, j].tm = 0}.
Remark 3 If (a,b) € B then Té?,;{’;sk is availableat time time.

Job Jj, is alocated to the minimum loaded subtorii in set B. The load of each subtorusTQ(f;jfm is computed as follows:

1) load=0

2) Forr=0,04,-1

3) load = load + min(ty, Alr, j].tm)
4) Endfor

5) Forc=0,04,1

6) load = load + min(ty, Ali, c].tm)
7) Endfor

8) load =load/os, .

Recall that 7.7, and T2}, arenot link-digointiff i = r or j = ¢. Hence, ajob on 7.2}, competesfor row linkswith
al the jobs assigned to subtorii Tgf;?lk, 0<c<os Ac#j. Smilarly, ajobon Téf;f?lk competes for column links with
all the jobs assigned to subtorii Tz(f,ﬁzk ,0<r <o, Ar#i. Intheabovecode, min(ty, Alr, j].tm) givesthe duration of
overlap between job .J;, (if it were to be assigned to 71"/}, ) and the job assigned to T.\%:7), . The r-loop (c-loop) does not

check for r =i (¢ = j) since AJi, j].tm = 0. Line 8 normalizes the computed load according to our contention model.

3If some s ismissing in the origina job list then introduce adummy job (22, 0) in thejob list.
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Figure 4: Load computation for interfering jobson 7" and 735"

In Fig.2, the function call min_loaded(B) returnstheentry (i, ) of B for which the load computed was minimum. Job Jj,
isassigned to torus T,f,fi)k and the scheduleis accordingly updated. The algorithm then adjuststheloads of all thejobswhich
get affected by J;, and accordingly updates the availability matrix.

2.4.3 Updating Availability Matrix

A job Jj, assigned to subtorus 7%;’),., competes with all jobs (overlapping in time with ;) assigned to subtorii T35/}, ,

r # i, for the column links and al jobs (overlapping in time with J;,) assigned to subtorii T2(f;f7)23k ,c # j,forrowlinks. Let

AL"") bethe overlap duration between job .J;, and the job assigned to Tél’ ,j )“ and ALY be the overlap duration between

job J;, and the job assigned to Téf;f}zsk. Then according to Theorem 1, the time of job J;, should be dilated by load =
(row)

Y AT Y AlD Thisis exactly the value of load returned by min,oaded(). Hence, the time of J;, is dilated
by load and Ali, j].tm isassigned t;, + load.

At any given time jobs on different dimension subtorii can be active simultaneously. In our algorithm a job on subtorus
T4, istreated as4 jobs (with samefinishtime) of dimension 22— x 25~ on subtorii 7.\ rietesh)  plabies)

25—1><25—11 25—1><25—11 25—1><25—11
and Téfj’{’;é”:‘fs). Ingeneral ajobonT.\":"), istreated as4*—* jobsof dimension 2 x 2t onthe4*—t subtorii T\ i7s 0 7o)

2t x 2t
0<i,j<25t.

One of the consequence of thisisthat ajob on smaller dimension subtorusis penalize more than ajob on larger dimension
subtorus. Thisisjustifiable since the larger job has more processors active and so can use up larger bandwidth (in proportion

toitsrelative size).

Example: Consider Ty s and let job J; on 714" overlapswith job J, on 73%") for A time duration (see Fig.4). Then, #;
will be dilated by A /4 but ¢, will be dilated by 2A /4 = A/2 sincejob J; on T} is treated as four sub-jobs on 755",
73%7, 755", and T3 5”. Out of these four sub-jobs, the sub-jobson 73 %* and T3 %>’ overlap with J;, for A duration. So,
when computing the dilation for ¢;, A/4 is counted twice. However, when computing the dilation of .J;, A/4 is counted

only once.



Inorder to keep theentriesfor subtorii correspondingto sub-jobsof ajob J; consistent in avail ability matrix, oncethedilation
of J; iscomputed it ispropagated to al the relevant entriesin the availability matrix. In Fig.2, lines 23-30 propagatethe load
updation for each job J; which interfereswith J,. The flag done(l, k) is used to ensure that propagation for job J; is done
only oncefor each Ji,. No such propagation needsto be donefor job .J;, when it is being scheduled, since it cannot interfere

with a smaller dimension job as the jobs are scheduled in non-increasing order of their dimension.

2.4.4 An Example

Consider Tsxs and a]Obg':‘tJ = {Jl,JQ,Jg,J4,J5,J6},WhHe J = (8,2), Jy = (4,2), J3 = (4,4), Jy = (4,4),

Js = (4,1),and Js = (2,4). Notethat the jobs are arranged in non increasing order of required torus size.

Initially, the availability matrix has a single element A[0,0] = (0,0,0) %. Job J; is scheduled to start at time = 0 on the
entire torus. The availability matrix is updated to A[0,0] = (2,8,1). Next .J» is scheduled which requiresa 4 x 4 torus.
Since, so # s; theavailability matrix isexpandedto size2 x 2: Ali, j] = (2,8,1),0 < i,j < 2. After computing minimum
of A.tm and adjusting time to 2, al A[i, j].tm’sbecome 0 indicating that all the4 x 4 subtorii arefreeat time = 2. Hence,
J» is scheduled on T{;* and A[0, 0] is updated to be (2, 4, 2).

In scheduling .J3, set B is determined to be {(0,1), (1,0), (1, 1)} with loads of respective subtorii to be 2, 2, and 0. Since,
71" is minimum loaded J; is assigned to it. The availability matrix is updated to be °:

(242) | (O**
O0**) | 443

For J, = (4,4), set B hastwo elements {(0, 1) and (1, 0)} each with load = maz(2,4)/2 + maxz(4,4)/2 = 3. Assuming
job Jy isassigned to (0, 1), the availability matrix after load updation looks like:

(34,2 | (744
0**) | (64,3

Now, job J5 can only be scheduled on T} ;"). The availability matrix after scheduling J5 becomes:

(354,2) | (7,44
(245) | (654,3)

Since sg # s5 the availability matrix is expanded to:

4Each entry A[i, 7] is represented as a 3-tuple (A[i, 5].tm, A[i, j].sz, A4, §]-id).
5A * denotes adon't care value.
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(3542) | (7.44) | (3542 | (7.44)
(245) | (6543) | (245) | (6543
(3542) | (744) | (3542) | (7.44)
(245) | (6543)| (245 | (654,3)

After computing minimum of A.tm to be 2 and adjusting time to time + 2 = 4 we get:

(1542) | (544) | (1L542) | (544)
©0**) | (4543) | (0**) | (45473
(1542) | (544) | (1L542) | (544)
©0**) | (4543) | (0**) | (45473

Set B is determined to be {(1,0), (1, 2), (2,0),(2,2)} with loads on each subtorii: load = 2 * maz(4,1.5)/4 + 2 =

maz(4,4.5)/4 = 2.75. Assuming J is assigned to 73 ;" we get:

(187542) | (544) | (18754,2) | (54.4)

(6.7526) | (5543) | (0**) | (5543)

(18754,2) | (544) | (1.87542) | (54.4)
©** | (5543 | (©**) | (5543

Since, max(A) = 6.75 and time = 4, the schedule length is 10.75. If the dilation due to contention is ignored, then the

schedule length would have been 10.

The schedule computed by algorithmiis:

index 1 2 3 4 5 6

sat | 0 2 2 2 2 4
finish | 2 |5875| 85 | 9 4 | 1075
(i) {00 ] (00 | 11| (1| @O | (10

245 Complexity of the Algorithm

Assuming that » jobs are being scheduled on T}, « ,, the time complexity of the algorithm is O(n.log(n) + n.m?). Since,
O(n.log(n)) timeisrequired to sort the jobsin non-increasing order of their dimension and for scheduling each job at most

m? entries of the availability matrix are referenced/updated.
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3 Job Scheduling on Torus Without Contention

Inthis section we consider contention free scheduling of jobs, i.e., when we decomposeagiven torusinto subtorii we need to
dosoinalink digoint fashion. We consider the problem of preemptive scheduling jobs on a given torus without contention

with an objective to minimize the schedul e length.

Each torus T, x,, contains 2 link-digjoint T;,, /2,5, /2S. This decomposition can be done in the way aready mentioned 2.1.
In this section, we want to consider an alternative link digjoint decomposition of the torus for convenience of description.
Let the rows and columns of a torus 7, x.,, of dimension m, be numbered from 0 to m — 1. The processors are uniquely
numbered from 0 through m? — 1; any processor P(i, 5)i, that belongsto i-th row and j-th column is assigned a uniqueid

(i —1)*xm+ j — 1. In order to specify the subtorii within the given torus T;,,, we need anew definition.

Definition 6 AtorusT'(a,b), (asubtorusof T}, xm,), where0 < a,b < m — 1 and a < b, consists of the processors P(i, j)

suchthat a < i, j < b; notethat thesub torusT'(a, b) hasasizeb — a + 1.

Thus, the given torus is denoted by 7'(0, m — 1) and it can be decomposed into two link disjoint sub torii 7'(0, m/2 — 1)
andT'(m/2,m — 1). Itisto be noted that in this link disoint decomposition of the torus, exactly half of the processorsin
the original torus remain unused and secondly, in the sub torii 7(0, m/2 — 1) or T'(m /2, m — 1), the distance between the
processors is not exactly uniform; but assuming wormhole routing that does not affect routing time; wormhole routing is

distance insensitive.

Definition 7 For any a, b with0 < a,b < m a < b, let [a, b] denote the set of processors belonging to the subtorus T'(a, b)
(see Definition 6). We call [a, b] a processor interval or a p-interval. We say this p-interval [a,b] hasasize (b — a + 1)

(consisting of (b — a + 1)? processors.

Remark 4 For any given ¢, ¢ > 0, an m-torus T}, can be divided into ¢ consecutive p-intervals [a1, b1], - - - [a¢, be] Where

ar=0,bp=m—1land(Vi:1<i</l:a;41 =b;+1).

Remark 5 Notethat all p-intervalsof size 22 (z isa positive integer) are z-subtorus; in this paper we areinterested only in

those p-intervalswhich are valid link digoint sub torii and hence we use the terms p-interval and subtorus interchangeably.

Definition 8 The profile [AZ90, ZA93] of a schedule is defined to be a function F' that maps a processor p € V to atime
f = F(p) such that the processor p has been busy until time f and 7' — f denotesthe time when the processor p isavailable

for more work.

So, if T' denotes the given deadline for the job set, r = T — f denotes the Remaining Processing Time or the RPT of the

processor p. |f we attempt to find the schedule one job at atime, we need to know the finish time of all the processorsfor the
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existing schedule and thisinformation is stored in the profile. We use S(4) to denote the schedule after job J; is scheduled

and use P(1) to denote the corresponding profile.

When we schedul e the jobs on atorus (each job needs a subtorus of some dimension), the profile function maps a p-interval
(al the processorsin theinterval) to atime. Thus, the profile of the complete schedule on the torusis a sequence of ordered

pairs of p-intervals and finish times

P = ([a’17bl]7f1)7 ([a’27b2]7f2)7 ) ([ayvby]afy)

for someinteger y where the y intervals divide the given m-torusin alink-disjoint fashion. Again, welogically extend the
concept of RPT totheintervals, RPT of aninterval isthe RPT of its processors, more specificaly, for a give deadline of
thejobs, r; = T — f; will denotethe RPT of the p-interval [a;, b;].

Remark 6 If ap-interval haszero RPT inaschedule, it cannot be used for scheduling further jobsand will be deleted from
the profile.

Definition 9 A profile P iscalled stair-like [ZA93] if Vi : fi11 < fi.

Preemptive Schedule — Feasibility Algorithm

Givenaset of jobs J = {J1, Jo, - -+, JJ, }, Wwhere J; = (d;, t;) as explained earlier and an m-torus, the feasibility algorithm
computesif the given jobs can be scheduled on the m-torus, to meet a given deadlineT'. Obvioudly, if the given deadline T’

isfeasible, wemusthaveVi : 1 <i<n:T >t;andT > m% i, tid?. We can safely assume that the given T' satisfies

both of these requirements or we can declare the deadline to be infeasible.

We assume that the job set J is sorted in descending order of dimensions of the subtorii needed, as explained earlier. We
attempt to schedule the jobsin this order one at atime. Let S(i) and P(i) denote respectively the schedule and the profile
after thejob J; is scheduled. S(0) istheinitial schedule (null) and P(0) istheinitial profile (before any job is scheduled).
So, P(0) = ([0,m — 1],0). We use k to denote the number of p-intervals with nonzero RPT in the profile P(i — 1). If
k = 0, job .J; cannot be scheduled; otherwise P(i — 1) will look like

P(i — 1) = ([a1,b1], f1), ([az2, b2], f2),-- -, ([ak, br], fr)
[Note: if this profileis stair-like, the p-intervalsin P(i — 1) are ordered in increasing order of their RPT's]

The Algorithm to schedule J; = (d;, t;)

Step 1. If ¢; > rg, thenreturn “infeasible” (Job J; cannot be scheduled).
Step 2:  If ¢; < 71, thenschedulejob .J; entirely on the sub-torus(p-interval) [ay, a; +d; — 1] fromtime f; totime f1 +¢;.
Step 3:  If there exists an integer j such that ¢; = r;, then schedule the job J; entirely on the sub-torus [a;, a; + d; — 1]

touseupdl its RPT.
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Step 4:  Computean integer j suchthat ¢; > r; At; < rj4q1; schedulethejob J; onthe sub-torus(a;, a; + d; — 1] to use
up al its RPT r; and schedule the remaining time¢; — r; of job .J; on the sub-torus (a1, aj+1 + d; — 1] from

time f11 totime f1 + (t; — 7).

Remark 7 For any job J; if Sep 1 does not apply, our algorithmis able to schedule the job by either one of the 3 steps 2,

3or4.

Remark 8 Notethat application of the steps of the algorithm involves appropriate update of the profile; scheduling of a job
J; may split a particular p-interval into two or may necessitate deletion of a p-interval (dueto its RPT' being completely
used up). This updating of the profile P will depend on the data structure used and is not relevant to the correctness of the

scheduling algorithm.

Time —
2 4
3
'%‘ ~—J1 - j3 —»
Py
o
=
w
7
J2
11
- J4 ——= | j5 =
15

Figure 5: Schedule for the Example Job Set

Example: Consider al16-torusor Ty (i.e., m = 16) and adeadlineof T' = 4, andajob set J = {J;, Jo, Js, J4, J5 }, where
(2,2.5). Note that the jobs are arranged in non increasing order

J1=(8,2), J2 = (4,4), Js = (4,3), Jy = (2,2), J5 =
of required torus size. Theinitial profileis ([0, 15],0) and Figure 5 shows the final schedule obtained by the algorithm. We

show below the profiles generated after scheduling each job in the set:

J1 scheduled Jo scheduled
Sep 2 ([0,71,2),([8,15],0) Sev3) =2 ([([0,71,2), ([12,15],0)

(0,15],0)
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J3 scheduled (112,15],1) J4 scheduled (112,13],3), ([14,15], 1) J5 scheduled

Step4,; =1 Step 2 Step4,j =2

([14,15],1.5)

Lemmal Theprofiles P(i),0 < i < n arestair-like.

Proof : The profile P(0) istrividly stair-like. Assumethat P(i — 1) is stair-like; we need to show that P(7) is stair-like
after the job J; is scheduled by the agorithm.

e Assume Step 2 is executed to schedule J;. Therearetwo cases: If by — a; + 1 = d;, the profile P(4) is obtained by
replacing thefirst entry ([a1, b1], f1) in P(i—1) by anentry ([a1, b1], f1 +¢;); elseif by —a; +1 > d;, thenthe profile
P(7) isobtained by replacing thefirst entry ([a, 1], f1) in P(i — 1) by two elements ([a;, a1 + d; — 1], f1 + ¢;) and
([a1 + d;, b1], f1). In either case, the resulting profile P(7) maintains the stair-like property.

e Assume Step 3 isexecuted to schedule .J;. Profile P(¢) is obtained by replacing the entry ([a;, b;], f;) by anew entry
([a; +ds, bj], f;); the stair-like property is maintained. Notethat if b; = a; +d; — 1, thenthe original entry issimply
deleted.

o Assume Step 4 is executed to schedule J;. Profile P(¢) is obtained by deleting the entry ([a;, b;], f;) and replacing
theentry ([a;4+1,bj11], fj+1) by twoentries ([a;41, aj11 + di — 1], fi1 + (ti —75)) and ([aj41 + di, bja], fiv).

Since fj+1 + (t; — rj) < f;, the stair-like property is maintained in the profile P(3).

Lemma 2 The algorithm generates a feasible schedule iff one exists.

Proof :  We only need to prove that the algorithm generates a scheduleif afeasible schedule exists. We use contradiction.
Let S’ beafeasible schedule of thejob set J and the deadline T'. Assume that thejobs Jy, Jy, - -+, J;_1 arescheduledin S’
inthe sameway asin S(i — 1) and job J; is scheduled differently in S’ than it would bein S (7). We show that S’ can be
modified so that J; isscheduled in S’ asin S(i). Thus, the schedule S’ can be transformed to S(n), the schedule generated
by the proposed algorithm. Let P(i — 1) = ([a1, b1], f1),- - -, ([ak, bk], fr.). Sincethejob J; isscheduledin S’ — S(i — 1),
fr + t; < T and hence our algorithm is able to schedule J; and can generate S(i). Assume our algorithm schedules J; in
S(i) onsubtorus A = [a;,a; + d; — 1] fromtime f; totime f; + ¢; (= 7, say) (Step 2 or 3 of our algorithm); or on subtorus
A fromtime f; to T and on subtorus B = [ajt+1, a;+1 + d; — 1] fromtime f;1; totime f; 1 + (¢; — 7;) (= 7', say) (Step
4 of our agorithm). If thejob J; isscheduledin S’ in the same way, we are done; if not, we rearrangejobs J;, Jir1, -+, Jn
inS" — S(i — 1) using the following procedure such that J; is scheduledin S’ just likein S(i).

¢ Dividetheentiretimeinterval [0, 7] into equal lengthintervalsof size § (call thoseintervalsé-intervals) such that each

jobin.S” ispreempted or finished at the end of some §-interval; thiscan alwaysbe doneby choosing é sufficiently small.

15



For an arbitrary é-interval «, let JS(a) denote the set of jobs (from among J;, Ji11, - - -, J,,) that are scheduled in S’
inthe é-interval «, i.e,, JS(a) = {J}, : i < k < n, and J;, isscheduled in S’ over a}.

e Dividethem-torusintom /d; many d;-subtorii acrosstheentireinterval [0, T']; lineupjobsin .7 S(«) over eachinterval

a such that no job is scheduled on two d;-sub-torii —thisis possible because V.Jj, € JS(«) : dj, < d;.

e LetT' = T —t;. Dividethe schedule S’ into two parts: left and right of 7". Let I; = {« : a isad-interval on left
of T"and J; ¢ JS(a)} andlet I, = {a' : o/ isaé-interval onright of 7' and J; € JS(a')}. Obvioudy, number of
intervalsin I; and I, areequal. Now we can think of aone-to-onefunction from I; to I,. Consider aninterval o in I;
and the corresponding o’ in I». Sincethe profile P(i — 1) is stair-like, number of d;-subtorii over «in S’ — S(i — 1)
isat least asmany asover o/. Thus, since J; isover o' and not over «, thereis at least a d;-subtorus over o whichis

either an empty interval or occupied by ajobin JS(a) — JS(a') —thus we can interchange.

e Now thejob J; isintheinterval [T", T]; we now moveit to the desired subtorus and timeintervalsasisdonein S(i).

We use the following rules:

(1) If Step 2 isused to schedule .J; on S(i — 1) to produce S(i), J; is scheduled on subtorus A = [a1,a1 + d; — 1]
from fy to fi +¢; = 7. Inthiscase, T’ > fy and 7 > f;. Foreacha in[T",T] in S’, we interchange J; inits
d;-subtorus with jobsin A; we then swap J; in A over [T", T] with that in A over [f;, X]. Because A extends
from f; to T in S’ — S(i — 1), the swapping can always be done.

(2) If Step 3isused to schedule J; on S(i — 1) to produce S(i), J; is scheduled entirely on subtorus A = [a;, a; +
d; — 1] fromtime f; totime f; + t; = 7. Inthiscase, T’ = f; andT = 1. Foreacha in [T",T] in S, we just
interchange J; in its d;-subtorus with jobsin A.

(3) If Step 4 is used to schedule J; on S(i — 1) to produce S(i), J; is scheduled on subtorus A from time f; to
T and on subtorus B = [aj+1,aj+1 + d; — 1] fromtime f; 1 totime f;41 + (¢; —r;) = 7'. Inthiscase,
fi>T" > fipnand f; > 1" > fiyq. Foreachain [f;, T]in S', weinterchange J; in its d;-subtorus with jobs
in A; we interchange J; in subtorus B over [1”, f;] with that in B over [f;;1,7']. Because B extendsfrom f;;1

toTinS" — S(i — 1), the swapping can always be done.

Theorem 2 The number of preemptionsin a feasible schedule produced by the algorithmis upper bounded by n — 1.

Proof : Thefirstjob .J; isscheduled without any preemption and for each subsequent job we need at most one preemption;

thus the result follows. O

Theorem 3 Thefeasibility algorithm has a run time complexity of O(n logn).
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Proof : Thefeasibility algorithminvolvesupdating the profile by scheduling onejob at atimefromthejob set starting from
aprofile of a single entry and assuming that the job set is ordered in non increasing order of dimension requirement. The
jobscan beorderedin O(n log n) time using a sorting algorithm like heapsort. The profile can be maintained by using some
kind of a balanced tree structure like AVL trees. The initial tree contains only one node. Update of the tree for scheduling
onejob involves, inthe worst case, one deletion and one insertion (i.e., one entry of the profile may need be deleted and one
additional entry may need be inserted). Insertion and/or deletion in an AVL tree can be donein O(logn) time wheren is
the number of elementsin thetree. Thus, the entire operation of the profile updating can be donein O(n logn) time. Lastly,
to schedule each job, we need to decide on the particular step of the algorithm. There are only 4 steps in the algorithm; to
decideif aparticular step is applicable, we need to do a search on the tree which can take at most O(log n) time and hence

the decision processfor all then jobswill take O(n logn) time. O

4 Conclusion

We have proposed a scheme to mathematically model the contention in the communication links when multiple jobs are
scheduled on subtorii sharing communication links and then devel oped an efficient algorithm to schedule a given set of jobs
(with different execution times and different subtorii requirements) with an objective to minimize the schedule length. We
have a so developed afeasibility algorithm to preemptively schedule a set of job with time and dimension requirementson a
given toruswith agiven deadline. We have shown that the algorithm runsin O(n log n) time wheren is the number of jobs.
Once we have thefeasihility algorithm, minimum finish time for agiven job set and a given m-torus can be easily computed

n d?*ti

by using binary search over atimeinterval [t,q, ) ;. oo~ | Wheret,,., = max{t,,ts,---,t,}. It'd beinteresting to

design strategiesto compute the minimal finish time of ajob set for agiven torus connected network without using the binary

search.
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