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Abstract

In this paper we investigate the problem of how to schedule n independent jobs on an m�m torus based network. We
develop a model to to quantify the effect of contention for communication links on the dilation of job execution time when
multiple jobs share communication links; we then design an efficient algorithm to schedule a set of n independent jobs with
different torus size requirements on a given torus with an objective to minimize the total schedule length. We also develop
a feasibility algorithm for preemptively scheduling a given set of jobs on a torus of given size with a given deadline. We
provide analysis for both the algorithms.

1 Introduction

The mesh and torus networks have been recognized as versatile interconnection networks for massively parallel comput-

ing. Mesh/torus-like low-dimensional networks have recently received a lot of attention for their better scalability to larger

networks, as opposed to more complex networks such as hypercubes [BP95]. Examples of machines with such topologies

include the MasPar MP-1 [Mas], Intel Paragon, MIT J-Machine [DDF+89], Tera HORIZON [TS88], Cray T3D [Cra93,

Oed93], Polymorphic Torus [LM89], Fujitsu AP-1000, and iWarp [BCC+88].

A torus is a mesh with wrap-around links. Although meshes and torii are generally regarded as close families, there are still

some distinctions: (i) As opposed to a mesh, all nodes of a torus are topologically symmetric, (ii) a torus has a smaller (about

half) diameter compared to that of an equal-size mesh, and (iii) although the ratio of the number of links in a torus to that in

a mesh is close to one, the bisection bandwidth1 of a torus is twice that of a mesh.

Several schemes have been proposed for processor allocation in mesh connected multiprocessor networks [LC91, Zhu92].

Some work has also been done for processor allocation in a partitionable torus connected multiprocessor [QN95]; however,

this scheme allocates submeshes in a torus. In this paper, we propose a scheme for allocating subtorii in a torus network. The

1Bisection bandwidth is the minimum number of links across any hyper-plane that cuts a network in half.
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motivation for doing this is that the algorithms which are designed for torus networks would run faster under this allocation

strategy [dCVGG95].

Our scheme is targeted towards wormhole routed networks. The message propagation time in wormhole routed networks

is insensitive to routing distance in the absence of contention for the links as long as the routing distance does not exceed

a threshold. However, contention for communication links severely degrades the performance. It is thus important that

communication link contention should be avoided or minimized. This has motivated design of many algorithms for worm-

hole routed systems which perform the required communication as sequence of contention free phases. Further in order to

fully utilize the available communication bandwidth the number of communication phases are minimized by scheduling as

many communications in a phase as possible. Such is also the case for algorithms designed for wormhole-routed torus net-

works [TG96, TLGP97]. However, programs based on such algorithms would not be able to get maximum benefit from the

underlying torus network if the jobs are allocated on a submesh rather that a subtorii.

Our purpose in the present paper is to investigate job scheduling in 2D torus connected networks under different models. The

problem of job scheduling on torus connected networks can be formulated as follows. We are given a set of n independent

jobs J = fJi : 1 � i � ng and a torus of dimension m (i.e., Tm�m. Each job Ji = (di; ti); 1 � i � n requires a

torus of dimension di (i.e., a di-subtorus) for ti units of time where 0 � di � m and ti is a rational number, ti > 0. The

problem is to compute a schedule such that the finish time (the time when all jobs are finished) is minimized (we call this an

optimal schedule). A schedule is called preemptive if a job may be preempted before completion and can resume at a later

time, possibly on a different subtorus. We also assume, for the sake of simplicity (without any loss of rigor) that the jobs are

ordered, i.e., 8i; 1 � i � n; di � di+1.

We present job scheduling algorithms under two different models: with and without contention. The scheduling with con-

tention uses a contention model to determine the dilation in job execution time in the presence of contention for commu-

nication links. On the other hand, scheduling without contention must use some link-disjoint decomposition of the torus

to eliminate contention from other jobs in the system. However, link-disjoint decomposition precludes the use of all the

processors in the system.

2 Job Scheduling on Torus with Contention

2.1 Partitioning a Torus

A torus is a mesh with wraparound links. Formally, aN1�N2 torusTN1�N2
= (V;E), where the vertex set V = f(i; j)j0 �

i < N1; 0 � j < N2g and the edge set E = f((i1; j1); (i2; j2))j(i2 = (i1+1)modN1^ j1 = j2)_ (j2 = (j1+1)modN2^

i1 = i2)g. We assume that each edge represents a bidirectional communication link between its end nodes.

Consider the following subtorus ofTN1�N2
: TN1=K1;N2=K2

= (V1; E1), whereV1 = f(i; j)j(i; j) 2 V ^imodK1 = a; 0 �

a < K1; j mod K2 = b; 0 � b < K2g for some constants a and b and the edge set E1 is defined similar to E. To distinguish
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(4,4) T(4,4) T(4,4) T(4,4)

(0,1) (1,1) (1,0)

Figure 1: Partitioning of T8;8 into four 4� 4 Subtorii (Links are not shown for clarity).

this subtorus from other subtorus we would refer it as T (a;b)

N1=K1;N2=K2

. Notice that each edge in E1 spans multiple edges of

E. In particular, an edge ((i1; j1); (i2; j2) spans the edges in the set f((i1; j1); (i1 + 1; j2)); : : : ; ((i2 � 1; j1); (i2; j2))g if

j1 = j2, otherwise it spans the edges in the set f((i1; j1); (i2; j1 + 1)); : : : ; ((i1; j2 � 1); (i2; j2))g. We would refer the set

of edges spanned by an edge e of a subtorus as span(e).

Definition 1 (Link-disjoint Subtorii) We say that two subtorii T (a1;b1)

N1=K1;N2=K2

= (V1; E1) and T
(a2;b2)

N1=K1;N2=K2

= (V2; E2)

are link-disjoint iff span(e1) \ span(e2) = � for all e1 2 E1 and e2 2 E2.

Remark 1 It is easy to see that any two subtorusT (a1;b1)

N1=K1;N2=K2

andT (a2;b2)

N1=K1;N2=K2

are link-disjoint iff a1 6= a2 and b1 6= b2.

For a given torus, we can obtain K1�K2 distinct subtorii. Out of these K1�K2 distinct subtorii we are interested in a set

of pairwise link-disjoint subtorii. A maximal set of pairwise link-disjoint subtorii has min(K1;K2) subtorii. Further, we

can partition the K1 �K2 subtorii into max(K1;K2) maximally link-disjoint sets.

Example: Consider T8�8 with K1 = K2 = 2. Then the the four subtorii of T8�8, namely, T (0;0)
4�4 , T (0;1)

4�4 , T (1;0)
4�4 , T (1;1)

4�4

are shown in Fig.1. We can see that T (0;0)
4�4 and T

(1;1)
4�4 are link-disjoint and so are T (1;0)

4�4 and T
(0;1)
4�4 . However, T (0;1)

4�4 and

T
(1;1)
4�4 are not link-disjoint. Hence, the set of 4� 4 subtorii can be partitioned into two pair-wise link disjoint subsets with

cardinality of each set to be two.

2.2 Model of Contention

In wormhole routed systems communication contention degrades the performance of the jobs. In this section we present

a model of contention which we will use to dialate the finish time of the jobs that are allocated to subtorii sharing some

communication links and which overlap in time.

Definition 2 (Contention Model) If a job Jk of duration tk is allocated to a subtorus which has a communication link which

is shared by (n � 1) other subtorii for a time duration of � then the duration of job Jk is dilated by an additive factor of
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(n� 1)�=m, where m is the maximum number of subtorii which can share a communication link. Hence, under this model

job Jk will occupy the subtorus to which it is allocated for a duration of tk + (n� 1)�=m.

Definition 3 (Job Load) The time duration by which a job gets dilated is called the load of that job.

Example:Suppose jobs J1 and J2 are allocated to subtorii T (0;0)
4;4 and T

(0;1)
4;4 of torus T8�8 and they overlap in time then

these jobs will compete for the row links. According to the contention model the job duration of these jobs would become

t1 +�=2 and t2 +�=2, respectively, assuming that the duration of overlap is �.

The contention model can be justified as follows. Suppose that a job requires� communication time without any contention.

Hence,

� = V=B;

where V is the data volume communicated and B is the bandwidth of each link. Then, in the presence of contention from

(k � 1) other jobs the communication time can be approximated to be:

�
0

= V=(B=k) = k(V=B) = k�;

assuming that each job gets equal share of the bandwidth. Hence, the job duration would be dilated by

�
0

�� = (k � 1)�:

We dilate the duration of each job involved with this amount2. We further normalize this dilation bym, the maximum number

of jobs which can compete for a communication link.

2.3 Load Update

In the following, we would be using this model to update the time duration of all the competing jobs. The jobs will be

allocated to subtorii one by one. Placement of a job Jk on a free subtorii T increases the load of all the jobs allocated to

subtorii sharing communication links with T . The loads of these jobs needs to be updates. Further, the current load of job

Jk needs to be computed. The load of job Jk and all the competing jobs are updated according to the following theorem.

Theorem 1 Let job Jk overlap with job Ji for duration �i, 1 � i < k when it becomes active. Assuming that all the k jobs

compete for same communication link, the load li of job Ji, 1 � i < k needs to be incremented by �i=m, i.e,

li = li +�i=m:

Further, the current load of job Jk is lk =
Pk�1

i=1 �i=m, and the dilated finish time t0k of Jk is:

t0k = tk + lk:

2We are assuming that all the jobs communicate equal amount volume of data in same time duration. Further note that, for simplicity, we are assuming

that the jobs are communicating the entire duration they occupy a subtorus.
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Proof : ssume that job Ji was competing with n other jobs for a communication link during duration �i before job Jk

was introduced. With the presence of job Jk, job Ji now competes with n+ 1 other jobs. The difference between adjusted

duration of job Ji after job Jk was introduced and before it was introduced is:

(ti + (n+ 1)�i=m)� (ti + n�i=m) = �i=m:

As opposed to uniformly competing with n jobs during the duration �i, it can so happen that job Ji competes with different

number of jobs. For example, suppose job J1 competes with n1 jobs during duration �i;1 and n2 jobs during duration �i;2,

where �i = �i;1 +�i;2: So, the difference between the adjusted duration for job Ji after and before introduction of job Jk

is:

(ti + (n1 + 1)�i;1=m+ (n2 + 1)�i;2=m)� (ti + n1�i;1=m+ n2�i;2=m) = �i;1=m+�i;2=m = �i=m:

This can be easily generalized. Hence, each job Ji’s load has to be incremented by �i=m.

Now consider job Jk. Note that if two jobs contend for a communication link their duration is dilated by equal amount of

time. Hence, it can be easily concluded that tk’s time duration should be dilated by
P

k�1
i=1 �i=m. 2

2.4 Job Scheduling with Contention

In this section, we will look at non-preemptive scheduling. Further we assume that all the requests are for square subtorus

and that the dimension are power of two.

Problem: We are given a set of n independent jobs J = fJi : 1 � i � ng and a torus of dimension m = 2
p (i.e., Tm�m.

Each job Ji = (di; ti); 1 � i � n requires a torus of dimension di = 2
si for ti units of time where 0 � di � m and ti is a

rational number, ti > 0. The problem is to compute a schedule such that the finish time (the time when all jobs are finished)

is minimized in presence of link contention.

Our algorithm attempts to minimize the overall contention (under the contention-model presented before) experienced by

the jobs. It is based on the following greedy strategy: A job is scheduled on an earliest available subtorus with minimum

load. The algorithm is given in Fig.2.

2.4.1 Availability Matrix

The algorithm uses Availability Matrix A to keep track of the availability of each subtorii. Recall that T2p;2p torus can be

partitioned into 2
p�s � 2p�s of size 2

s � 2
s. We will use the notation �s to denote 2p�s. Hence, if all the job requests are

of same size, say 2
s � 2

s then we need an A of size �s � �s, since entry A[i; j] can track of the availability of subtorus

T
(a;b)
2s;2s , 0 � a; b < �s. In particular, if s = p then we need an A with just one entry and if s = 0 (i.e. each request is

for single processor) then we need an A of size 2
p � 2

p. Since job requests can be for subtorii of different dimensions we
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Algorithm CNP Alloc
Input:
J : job list fJ1; : : : ; Jng, where Ji = (2si ; ti), 1 � i � n.

Output:
S: Job schedule with job Jk start time to be S[k]:start

on subtorus T (S[k]:row;S[k]:col)

dk;dk
.

make span : Schedule length.
begin
1) A[i; j]:tm = 0, A[i; j]:sz = s1, A[i; j]:id = 0, 0 � i; j < m.
2) time = 0, s0 = s1.
3) done(i; j) = false; 1 � i; j � n.
4) FOR k = 1; n /* Schedule job Jk */
5) If (sk 6= sk�1) /* Expand A to next level */
6) FOR i = 0; �sk�1

7) FOR j = 0; �sk�1

8) A[i+ �sk�1
; j] =A[i; j + �sk�1

] = A[i+ �sk�1
; j + �sk�1

] = A[i; j]

9) ENDFOR ENDFOR
10) Endif
11) Determine Free subtorii set B:
12) min = min(A[0 : �sk�1; 0 : �sk�1]).
13) A[0 : �sk�1; 0 : �sk�1] = A[0 : �sk�1; 0 : �sk�1]�min.
14) time+ = min.
15) B = f(i; j)jA[i; j] = 0g.
16) Determine minimum loaded subtorii from B:
17) ((i; j); load) = min loaded(B):

18) Assign Jk to (i; j).
19) (S[k]:start; S[k]:row; S[k]:col) = (time; i; j).
20) Update Availability matrix:
21) A[i; j]:tm = tk + load.
22) A[i; j]:sz = sk, A[i; j]:id = k.
23) FOR r = 0; �sk � 1.
24) s = A[i; r]:sz,i0 = i mod �s, r0 = r mod �s.
25) IF(:done(A[i

0

; r
0

]:id; k))
26) A[i

0

; r
0

]:tm = A[i
0

; r
0

]:tm+min(tk; A[i
0

; r
0

]:tm) � 1=�sk.
27) A[i

0

+ x � �s; r
0

+ y � �s] = A[i; r]:tm; 0 � x; y < 2
s�sk .

28) done(A[i
0

; r
0

]:id; k) = true

29) ENDIF
30) ENDFOR
31) FOR c = 0; �sk � 1.
32) : : :.
33) ENDFOR
34) ENDFOR
35) Compute Schedule Length:
36) make span = time+max(A[0 : �sn � 1; 0 : �sn � 1]):

end

Figure 2: Algorithm for Scheduling Subtorii with Contention.

6



Level 3 2 1 0

Figure 3: Availability Matrix Structure for T8;8.

need an availability matrix of maximum possible size, i.e. �smin
��smin

, where smin = min(s1; : : : ; sn). We will call the

availability matrix for requests for subtorii of size 2
s � 2

s as the availability matrix at level s: Besides, the availability of

subtorii the availability matrix is also used to keep track about the size of the job and the id of the job assigned to a subtorii:

Definition 4 The Availability Matrix A at Level s, 0 � s � p, is a �s � �s matrix. Each entry A[i; j], 0 � i; j < �s of

matrix A has three fields:

� A[i; j]:tm: is the time when the subtorii T (i;j)
2s;2s is available.

� A[i; j]:sz: is the size of the job active on this subtorii.

� A[i; j]:id: is the id of the job active on this subtorii.

Remark 2 Note that A[i; j]:sz � s. If t = A[i; j]:sz > s then job JA[i;j]:id which was assigned to T
(i mod �t;j mod �t)

2t;2t
is

also occupying T (i;j)
2s;2s since T (i;j)

2s;2s is a subtorus of T (i mod �t;j mod �t)

2t;2t .

If the job requests are ordered in the decreasing order of their dimensions then we need to maintain an availability matrix

at a fixed level as long as the job request dimension remains the same. And whenever the job requests size decreases from

2
s�2

s to 2t�2
t we need to expand the availability matrix from level s to level t. Note that the availability matrix at level t is

2
s�t�2s�t times the availability matrix at level s. If t = s�1 then the availability matrix doubles in each dimension. Further

note that each subtorus T (a;b)
2s;2s , s � 1, of dimension 2

s � 2
s consists of four subtorii T (a;b)

2s�1;2s�1 , T (a+�s;b)

2s�1;2s�1 , T (a;b+�s)

2s�1;2s�1 , and

T
(a+�s;b+�s)

2s�1;2s�1 each of dimension 2s�1�2
s�1. Hence, when expanding the availability matrix from level s to level s�1 each

entry A[a; b] is replicated to A[a+�s; b],A[a; b+�s], and A[a+ �s; b+�s]. That is to say, subtorii T (a;b)

2s�1;2s�1 , T (a+�s;b)

2s�1;2s�1 ,

T
(a;b+�s)

2s�1;2s�1 , and T
(a+�s;b+�s)

2s�1;2s�1 are (not) available only if T (a;b)
2s;2s is (not) available. Figure 3 illustrates the structure of the

availability matrix for T8�8. It also shows the pattern of expansion from each level to next lower level.

Hence, for simplicity, we make the following assumptions:

1. Jobs are sorted in non-increasing order of their dimensions, i.e. s1 � s2 � : : : � sn.
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2. A job request for each s, s1 � s � sn, is present in the job list3. This ensures that we need to expand the availability

matrix by at most one level for each job.

In Fig.2, lines 5-9 expand the matrix A to next lower level whenever the size of the subtorii requested by the current job is

not the same as the size of the subtorii requested by the previous job.

2.4.2 Determining Earliest Available Minimum Loaded Subtorus

When scheduling Jk, it is assigned to a minimum loaded subtorus from among the earliest available subtorii.

Definition 5 (Load on a Subtorus) The load on a subtorus T (with respect to job J) is the load job J would experience if it

were assigned to T .

Once the availability matrix of the right level has been obtained, the next thing the algorithm does is that it determines the set

of free subtoriiB. The variable time is used to keep track of the time when there will be a free subtorii of the desired size. The

updation of time and determination of set B is done by first computing the minimummin of the A[i; j]:tm, 0 � i; j < �sk ,

where sk is the size of subtorii requested by the current job Jk. Then, min is added to time and decremented from all

A[i; j]:tm, 0 � i; j < �sk . The set B is determined to f(i; j)jA[i; j]:tm = 0g.

Remark 3 If (a; b) 2 B then T (a;b)
2sk ;2sk is available at time time.

Job Jk is allocated to the minimum loaded subtorii in set B. The load of each subtorus T (i;j)
2sk ;2sk is computed as follows:

1) load = 0

2) For r = 0; �sk�1

3) load = load+min(tk; A[r; j]:tm)

4) Endfor

5) For c = 0; �sk�1

6) load = load+min(tk; A[i; c]:tm)

7) Endfor

8) load = load=�sk .

Recall that T (i;j)
2sk;sk and T (r;c)

2sk;sk are not link-disjoint iff i = r or j = c. Hence, a job on T (i;j)
2sk;sk competes for row links with

all the jobs assigned to subtorii T (i;c)

2sk;sk , 0 � c < �sk ^ c 6= j. Similarly, a job on T (i;j)

2sk;sk competes for column links with

all the jobs assigned to subtorii T (r;j)

2sk;sk , 0 � r < �sk ^ r 6= i. In the above code, min(tk; A[r; j]:tm) gives the duration of

overlap between job Jk (if it were to be assigned to T
(i;j)
2sk;sk ) and the job assigned to T

(r;j)
2sk;sk . The r-loop (c-loop) does not

check for r = i (c = j) since A[i; j]:tm = 0. Line 8 normalizes the computed load according to our contention model.

3If some s is missing in the original job list then introduce a dummy job (2s; 0) in the job list.
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T
(0,0)

(4,4) T
(0,1)

(2,2) T(2,2)

(1,3)
T

(0,1)

(2,2) T(2,2)

(1,3)

J’s  view

T(2,2) T(2,2) T(2,2) T(2,2)

(0,0) (2,0)(0,2) (2,2)

k

Figure 4: Load computation for interfering jobs on T (0;0)
4;4 and T (0;1)

2;2 .

In Fig.2, the function call min loaded(B) returns the entry (i; j) of B for which the load computed was minimum. Job Jk

is assigned to torus T (i;j)
sk;sk and the schedule is accordingly updated. The algorithm then adjusts the loads of all the jobs which

get affected by Jk and accordingly updates the availability matrix.

2.4.3 Updating Availability Matrix

A job Jk assigned to subtorus T (i;j)
2sk ;2sk competes with all jobs (overlapping in time with Jk) assigned to subtorii T (r;j)

2sk ;2sk ,

r 6= i, for the column links and all jobs (overlapping in time with Jk) assigned to subtorii T (i;c)

2sk ;2sk , c 6= j, for row links. Let

�
(row)
r be the overlap duration between job Jk and the job assigned to T (r;j)

2sk ;2sk and �
(col)
c be the overlap duration between

job Jk and the job assigned to T
(i;c)

2sk ;2sk . Then according to Theorem 1, the time of job Jk should be dilated by load =

P
i6=r �

(row)
r +

P
c6=j �

(col)
c . This is exactly the value of load returned by minloaded(). Hence, the time of Jk is dilated

by load and A[i; j]:tm is assigned tk + load.

At any given time jobs on different dimension subtorii can be active simultaneously. In our algorithm a job on subtorus

T
(a;b)
2s�2s is treated as 4 jobs (with same finish time) of dimension2s�1�2

s�1 on subtoriiT (a;b)

2s�1�2s�1 , T (a+�s;b)

2s�1�2s�1 , T (a;b+�s)

2s�1�2s�1 ,

andT (a+�s;b+�s)

2s�1�2s�1 . In general a job onT (a;b)
2s�2s is treated as 4s�t jobs of dimension2t�2t on the 4s�t subtoriiT (a+i��s;b+j��s)

2t�2t
,

0 � i; j < 2
s�t.

One of the consequence of this is that a job on smaller dimension subtorus is penalize more than a job on larger dimension

subtorus. This is justifiable since the larger job has more processors active and so can use up larger bandwidth (in proportion

to its relative size).

Example: Consider T8�8 and let job Jl on T (0;0)
4;4 overlaps with job Jk on T (0;1)

2;2 for � time duration (see Fig.4). Then, tl

will be dilated by �=4 but tk will be dilated by 2�=4 = �=2 since job Jl on T
(0;0)
4;4 is treated as four sub-jobs on T

(0;0)
2;2 ,

T
(0;2)
2;2 , T (2;0)

2;2 , and T (2;2)
2;2 . Out of these four sub-jobs, the sub-jobs on T (0;0)

2;2 and T (0;2)
2;2 overlap with Jk for � duration. So,

when computing the dilation for tk, �=4 is counted twice. However, when computing the dilation of Jl, �=4 is counted

only once.
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In order to keep the entries for subtorii corresponding to sub-jobs of a job Jl consistent in availability matrix, once the dilation

of Jl is computed it is propagated to all the relevant entries in the availability matrix. In Fig.2, lines 23-30 propagate the load

updation for each job Jl which interferes with Jk. The flag done(l; k) is used to ensure that propagation for job Jl is done

only once for each Jk. No such propagation needs to be done for job Jk when it is being scheduled, since it cannot interfere

with a smaller dimension job as the jobs are scheduled in non-increasing order of their dimension.

2.4.4 An Example

Consider T8�8 and a job set J = fJ1; J2; J3; J4; J5; J6g, where J1 = (8; 2), J2 = (4; 2), J3 = (4; 4), J4 = (4; 4),

J5 = (4; 1), and J6 = (2; 4). Note that the jobs are arranged in non increasing order of required torus size.

Initially, the availability matrix has a single element A[0; 0] = (0; 0; 0) 4. Job J1 is scheduled to start at time = 0 on the

entire torus. The availability matrix is updated to A[0; 0] = (2; 8; 1). Next J2 is scheduled which requires a 4 � 4 torus.

Since, s2 6= s1 the availability matrix is expanded to size 2�2: A[i; j] = (2; 8; 1); 0 � i; j < 2. After computing minimum

of A:tm and adjusting time to 2, all A[i; j]:tm’s become 0 indicating that all the 4�4 subtorii are free at time = 2. Hence,

J2 is scheduled on T (0;0)
4;4 and A[0; 0] is updated to be (2; 4; 2).

In scheduling J3, set B is determined to be f(0; 1); (1; 0); (1; 1)g with loads of respective subtorii to be 2, 2, and 0. Since,

T
(1;1)
4;4 is minimum loaded J3 is assigned to it. The availability matrix is updated to be 5:

(2,4,2) (0,*,*)

(0,*,*) (4,4,3)

For J4 = (4; 4), set B has two elements f(0; 1) and (1; 0)g each with load = max(2; 4)=2+max(4; 4)=2 = 3. Assuming

job J4 is assigned to (0; 1), the availability matrix after load updation looks like:

(3,4,2) (7,4,4)

(0,*,*) (6,4,3)

Now, job J5 can only be scheduled on T (1;0)
4;4 . The availability matrix after scheduling J5 becomes:

(3.5,4,2) (7,4,4)

(2,4,5) (6.5,4,3)

Since s6 6= s5 the availability matrix is expanded to:

4Each entry A[i; j] is represented as a 3-tuple (A[i; j]:tm;A[i; j]:sz;A[i; j]:id).
5A * denotes a don’t care value.
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(3.5,4,2) (7,4,4) (3.5,4,2) (7,4,4)

(2,4,5) (6.5,4,3) (2,4,5) (6.5,4,3)

(3.5,4,2) (7,4,4) (3.5,4,2) (7,4,4)

(2,4,5) (6.5,4,3) (2,4,5) (6.5,4,3)

After computing minimum of A:tm to be 2 and adjusting time to time+ 2 = 4 we get:

(1.5,4,2) (5,4,4) (1.5,4,2) (5,4,4)

(0,*,*) (4.5,4,3) (0,*,*) (4.5,4,3)

(1.5,4,2) (5,4,4) (1.5,4,2) (5,4,4)

(0,*,*) (4.5,4,3) (0,*,*) (4.5,4,3)

Set B is determined to be f(1; 0); (1; 2); (2; 0); (2; 2)g with loads on each subtorii: load = 2 � max(4; 1:5)=4 + 2 �

max(4; 4:5)=4 = 2:75. Assuming J6 is assigned to T (1;0)
2;2 we get:

(1.875,4,2) (5,4,4) (1.875,4,2) (5,4,4)

(6.75,2,6) (5.5,4,3) (0,*,*) (5.5,4,3)

(1.875,4,2) (5,4,4) (1.875,4,2) (5,4,4)

(0,*,*) (5.5,4,3) (0,*,*) (5.5,4,3)

Since, max(A) = 6:75 and time = 4, the schedule length is 10.75. If the dilation due to contention is ignored, then the

schedule length would have been 10.

The schedule computed by algorithm is:

index 1 2 3 4 5 6

start 0 2 2 2 2 4

finish 2 5.875 8.5 9 4 10.75

(i,j) (0,0) (0,0) (1,1) (0,1) (1,0) (1,0)

2.4.5 Complexity of the Algorithm

Assuming that n jobs are being scheduled on Tm�m, the time complexity of the algorithm is O(n:log(n) + n:m2
). Since,

O(n:log(n)) time is required to sort the jobs in non-increasing order of their dimension and for scheduling each job at most

m2 entries of the availability matrix are referenced/updated.
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3 Job Scheduling on Torus Without Contention

In this section we consider contention free scheduling of jobs, i.e., when we decompose a given torus into subtorii we need to

do so in a link disjoint fashion. We consider the problem of preemptive scheduling jobs on a given torus without contention

with an objective to minimize the schedule length.

Each torus Tm�m contains 2 link-disjoint Tm=2�m=2s. This decomposition can be done in the way already mentioned 2.1.

In this section, we want to consider an alternative link disjoint decomposition of the torus for convenience of description.

Let the rows and columns of a torus Tm�m of dimension m, be numbered from 0 to m � 1. The processors are uniquely

numbered from 0 through m2 � 1; any processor P (i; j)i, that belongs to i-th row and j-th column is assigned a unique id

(i� 1) �m+ j � 1. In order to specify the subtorii within the given torus Tm, we need a new definition.

Definition 6 A torus T (a; b), (a sub torus of Tm�m), where 0 � a; b � m� 1 and a � b, consists of the processors P (i; j)

such that a � i; j � b; note that the sub torus T (a; b) has a size b� a+ 1.

Thus, the given torus is denoted by T (0;m � 1) and it can be decomposed into two link disjoint sub torii T (0;m=2� 1)

and T (m=2;m� 1). It is to be noted that in this link disjoint decomposition of the torus, exactly half of the processors in

the original torus remain unused and secondly, in the sub torii T (0;m=2� 1) or T (m=2;m� 1), the distance between the

processors is not exactly uniform; but assuming wormhole routing that does not affect routing time; wormhole routing is

distance insensitive.

Definition 7 For any a; b with 0 � a; b � m a < b, let [a; b] denote the set of processors belonging to the subtorus T (a; b)

(see Definition 6). We call [a; b] a processor interval or a p-interval. We say this p-interval [a; b] has a size (b � a + 1)

(consisting of (b� a+ 1)
2 processors.

Remark 4 For any given `; ` > 0, an m-torus Tm can be divided into ` consecutive p-intervals [a1; b1]; � � � [a`; b`] where

a1 = 0, b` = m� 1 and (8i : 1 � i < ` : ai+1 = bi + 1).

Remark 5 Note that all p-intervals of size x2 (x is a positive integer) are x-subtorus; in this paper we are interested only in

those p-intervals which are valid link disjoint sub torii and hence we use the terms p-interval and subtorus interchangeably.

Definition 8 The profile [AZ90, ZA93] of a schedule is defined to be a function F that maps a processor p 2 V to a time

f = F (p) such that the processor p has been busy until time f and T �f denotes the time when the processor p is available

for more work.

So, if T denotes the given deadline for the job set, r = T � f denotes the Remaining Processing Time or the RPT of the

processor p. If we attempt to find the schedule one job at a time, we need to know the finish time of all the processors for the
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existing schedule and this information is stored in the profile. We use S(i) to denote the schedule after job Ji is scheduled

and use P (i) to denote the corresponding profile.

When we schedule the jobs on a torus (each job needs a subtorus of some dimension), the profile function maps a p-interval

(all the processors in the interval) to a time. Thus, the profile of the complete schedule on the torus is a sequence of ordered

pairs of p-intervals and finish times

P = ([a1; b1]; f1); ([a2; b2]; f2); � � � ; ([ay; by]; fy)

for some integer y where the y intervals divide the given m-torus in a link-disjoint fashion. Again, we logically extend the

concept of RPT to the intervals; RPT of an interval is the RPT of its processors; more specifically, for a give deadline of

the jobs, rj = T � fj will denote the RPT of the p-interval [aj ; bj ].

Remark 6 If a p-interval has zeroRPT in a schedule, it cannot be used for scheduling further jobs and will be deleted from

the profile.

Definition 9 A profile P is called stair-like [ZA93] if 8i : fi+1 < fi.

Preemptive Schedule – Feasibility Algorithm

Given a set of jobs J = fJ1; J2; � � � ; Jng, where Ji = (di; ti) as explained earlier and an m-torus, the feasibility algorithm

computes if the given jobs can be scheduled on the m-torus, to meet a given deadline T . Obviously, if the given deadline T

is feasible, we must have 8i : 1 � i � n : T � ti and T � 1
m2

Pn

i=1 tid
2
i
. We can safely assume that the given T satisfies

both of these requirements or we can declare the deadline to be infeasible.

We assume that the job set J is sorted in descending order of dimensions of the subtorii needed, as explained earlier. We

attempt to schedule the jobs in this order one at a time. Let S(i) and P (i) denote respectively the schedule and the profile

after the job Ji is scheduled. S(0) is the initial schedule (null) and P (0) is the initial profile (before any job is scheduled).

So, P (0) = ([0;m � 1]; 0): We use k to denote the number of p-intervals with nonzero RPT in the profile P (i � 1). If

k = 0, job Ji cannot be scheduled; otherwise P (i� 1) will look like

P (i� 1) = ([a1; b1]; f1); ([a2; b2]; f2); � � � ; ([ak; bk]; fk)

[Note: if this profile is stair-like, the p-intervals in P (i� 1) are ordered in increasing order of their RPT s.]

The Algorithm to schedule Ji = (di; ti)

Step 1: If ti > rk, then return “infeasible” (Job Ji cannot be scheduled).

Step 2: If ti < r1, then schedule job Ji entirely on the sub-torus (p-interval) [a1; a1+di�1] from time f1 to time f1+ ti.

Step 3: If there exists an integer j such that ti = rj , then schedule the job Ji entirely on the sub-torus [aj ; aj + di � 1]

to use up all its RPT .
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Step 4: Compute an integer j such that ti > rj ^ ti � rj+1; schedule the job Ji on the sub-torus [aj ; aj + di � 1] to use

up all its RPT rj and schedule the remaining time ti � rj of job Ji on the sub-torus [aj+1; aj+1 + di � 1] from

time fj+1 to time fj+1 + (ti � rj).

Remark 7 For any job Ji if Step 1 does not apply, our algorithm is able to schedule the job by either one of the 3 steps 2,

3 or 4.

Remark 8 Note that application of the steps of the algorithm involves appropriate update of the profile; scheduling of a job

Ji may split a particular p-interval into two or may necessitate deletion of a p-interval (due to its RPT being completely

used up). This updating of the profile P will depend on the data structure used and is not relevant to the correctness of the

scheduling algorithm.

J1

J2

J3

J3

J4 J5

J5

Time

Torus R
ow

s

2 4

7

11

15

Figure 5: Schedule for the Example Job Set

Example: Consider a 16-torus or T16 (i.e., m = 16) and a deadline of T = 4, and a job set J = fJ1; J2; J3; J4; J5g, where

J1 = (8; 2), J2 = (4; 4), J3 = (4; 3), J4 = (2; 2), J5 = (2; 2:5). Note that the jobs are arranged in non increasing order

of required torus size. The initial profile is ([0; 15]; 0) and Figure 5 shows the final schedule obtained by the algorithm. We

show below the profiles generated after scheduling each job in the set:

([0; 15]; 0)
J1 scheduled

������������!
Step 2

([0; 7]; 2); ([8; 15]; 0)
J2 scheduled

������������!
Step 3,j = 2

([([0; 7]; 2); ([12; 15]; 0)
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J3 scheduled
������������!

Step 4,j = 1

([12; 15]; 1)
J4 scheduled

������������!
Step 2

([12; 13]; 3); ([14; 15]; 1)
J5 scheduled

������������!
Step 4, j = 2

([14; 15]; 1:5)

Lemma 1 The profiles P (i); 0 � i � n are stair-like.

Proof : The profile P (0) is trivially stair-like. Assume that P (i � 1) is stair-like; we need to show that P (i) is stair-like

after the job Ji is scheduled by the algorithm.

� Assume Step 2 is executed to schedule Ji. There are two cases: If b1 � a1 + 1 = di, the profile P (i) is obtained by

replacing the first entry ([a1; b1]; f1) in P (i�1) by an entry ([a1; b1]; f1+ti); else if b1�a1+1 > di, then the profile

P (i) is obtained by replacing the first entry ([a1; b1]; f1) in P (i� 1) by two elements ([a1; a1 + di � 1]; f1 + ti) and

([a1 + di; b1]; f1). In either case, the resulting profile P (i) maintains the stair-like property.

� Assume Step 3 is executed to schedule Ji. Profile P (i) is obtained by replacing the entry ([aj ; bj ]; fj) by a new entry

([aj + di; bj ]; fj); the stair-like property is maintained. Note that if bj = aj + di� 1, then the original entry is simply

deleted.

� Assume Step 4 is executed to schedule Ji. Profile P (i) is obtained by deleting the entry ([aj ; bj ]; fj) and replacing

the entry ([aj+1; bj+1]; fj+1) by two entries ([aj+1; aj+1 + di � 1]; fj+1 + (ti � rj)) and ([aj+1 + di; bj+1]; fj+1).

Since fj+1 + (ti � rj) � fj , the stair-like property is maintained in the profile P (i).

2

Lemma 2 The algorithm generates a feasible schedule iff one exists.

Proof : We only need to prove that the algorithm generates a schedule if a feasible schedule exists. We use contradiction.

Let S0 be a feasible schedule of the job set J and the deadline T . Assume that the jobs J0; J1; � � � ; Ji�1 are scheduled in S0

in the same way as in S(i � 1) and job Ji is scheduled differently in S0 than it would be in S(i). We show that S0 can be

modified so that Ji is scheduled in S0 as in S(i). Thus, the schedule S0 can be transformed to S(n), the schedule generated

by the proposed algorithm. Let P (i� 1) = ([a1; b1]; f1); � � � ; ([ak; bk]; fk). Since the job Ji is scheduled in S0 � S(i� 1),

fk + ti � T and hence our algorithm is able to schedule Ji and can generate S(i). Assume our algorithm schedules Ji in

S(i) on subtorusA = [aj ; aj + di� 1] from time fj to time fj + ti (= � , say) (Step 2 or 3 of our algorithm); or on subtorus

A from time fj to T and on subtorus B = [aj+1; aj+1 + di � 1] from time fj+1 to time fj+1 + (ti � rj) (= � 0, say) (Step

4 of our algorithm). If the job Ji is scheduled in S0 in the same way, we are done; if not, we rearrange jobs Ji; Ji+1; � � � ; Jn

in S0 � S(i� 1) using the following procedure such that Ji is scheduled in S0 just like in S(i).

� Divide the entire time interval [0; T ] into equal length intervals of size � (call those intervals �-intervals) such that each

job inS0 is preempted or finished at the end of some �-interval; this can always be done by choosing � sufficiently small.
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For an arbitrary �-interval �, let JS(�) denote the set of jobs (from among Ji; Ji+1; � � � ; Jn) that are scheduled in S0

in the �-interval �, i.e., JS(�) = fJk : i � k � n; and Jk is scheduled in S0 over �g.

� Divide them-torus intom=di many di-subtorii across the entire interval [0; T ]; line up jobs in JS(�) over each interval

� such that no job is scheduled on two di-sub-torii – this is possible because 8Jk 2 JS(�) : dk � di.

� Let T 0
= T � ti. Divide the schedule S0 into two parts: left and right of T 0. Let I1 = f� : � is a �-interval on left

of T 0 and Ji 62 JS(�)g and let I2 = f�0 : �0 is a �-interval on right of T 0 and Ji 2 JS(�0)g. Obviously, number of

intervals in I1 and I2 are equal. Now we can think of a one-to-one function from I1 to I2. Consider an interval� in I1

and the corresponding�0 in I2. Since the profile P (i� 1) is stair-like, number of di-subtorii over � in S0 � S(i� 1)

is at least as many as over �0. Thus, since Ji is over �0 and not over �, there is at least a di-subtorus over � which is

either an empty interval or occupied by a job in JS(�)� JS(�0) – thus we can interchange.

� Now the job Ji is in the interval [T 0; T ]; we now move it to the desired subtorus and time intervals as is done in S(i).

We use the following rules:

(1) If Step 2 is used to schedule Ji on S(i� 1) to produce S(i), Ji is scheduled on subtorus A = [a1; a1 + di � 1]

from f1 to f1 + ti = � . In this case, T 0 > f1 and � > f1. For each � in [T 0; T ] in S0, we interchange Ji in its

di-subtorus with jobs in A; we then swap Ji in A over [T 0; T ] with that in A over [f1; X ]. Because A extends

from f1 to T in S0 � S(i� 1), the swapping can always be done.

(2) If Step 3 is used to schedule Ji on S(i� 1) to produce S(i), Ji is scheduled entirely on subtorus A = [aj ; aj +

di � 1] from time fj to time fj + ti = � . In this case, T 0
= fj and T = � . For each � in [T 0; T ] in S0, we just

interchange Ji in its di-subtorus with jobs in A.

(3) If Step 4 is used to schedule Ji on S(i � 1) to produce S(i), Ji is scheduled on subtorus A from time fj to

T and on subtorus B = [aj+1; aj+1 + di � 1] from time fj+1 to time fj+1 + (ti � rj) = � 0. In this case,

fj > T 0 > fj+1 and fj > � 0 > fj+1. For each � in [fj ; T ] in S0, we interchange Ji in its di-subtorus with jobs

in A; we interchange Ji in subtorus B over [T 0; fj ] with that in B over [fj+1; �
0
]. Because B extends from fj+1

to T in S0 � S(i� 1), the swapping can always be done.

2

Theorem 2 The number of preemptions in a feasible schedule produced by the algorithm is upper bounded by n� 1.

Proof : The first job J1 is scheduled without any preemption and for each subsequent job we need at most one preemption;

thus the result follows. 2

Theorem 3 The feasibility algorithm has a run time complexity of O(n logn).
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Proof : The feasibility algorithm involves updating the profile by scheduling one job at a time from the job set starting from

a profile of a single entry and assuming that the job set is ordered in non increasing order of dimension requirement. The

jobs can be ordered inO(n logn) time using a sorting algorithm like heapsort. The profile can be maintained by using some

kind of a balanced tree structure like AVL trees. The initial tree contains only one node. Update of the tree for scheduling

one job involves, in the worst case, one deletion and one insertion (i.e., one entry of the profile may need be deleted and one

additional entry may need be inserted). Insertion and/or deletion in an AVL tree can be done in O(logn) time where n is

the number of elements in the tree. Thus, the entire operation of the profile updating can be done inO(n logn) time. Lastly,

to schedule each job, we need to decide on the particular step of the algorithm. There are only 4 steps in the algorithm; to

decide if a particular step is applicable, we need to do a search on the tree which can take at most O(logn) time and hence

the decision process for all the n jobs will take O(n logn) time. 2

4 Conclusion

We have proposed a scheme to mathematically model the contention in the communication links when multiple jobs are

scheduled on subtorii sharing communication links and then developed an efficient algorithm to schedule a given set of jobs

(with different execution times and different subtorii requirements) with an objective to minimize the schedule length. We

have also developed a feasibility algorithm to preemptively schedule a set of job with time and dimension requirements on a

given torus with a given deadline. We have shown that the algorithm runs inO(n logn) time where n is the number of jobs.

Once we have the feasibility algorithm, minimum finish time for a given job set and a givenm-torus can be easily computed

by using binary search over a time interval [tmax;
P

n

i=1

d
2

i
�ti

m2 ] where tmax = maxft1; t2; � � � ; tng. It’d be interesting to

design strategies to compute the minimal finish time of a job set for a given torus connected network without using the binary

search.
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