
Computer Science
Technical Report

A Physically-Realistic Simulation Of Vehicle
Traffic Flow

Thomas L. Thorpe

January 11, 1998

Technical Report CS-97-104

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

A Physically-Realistic Simulation Of Vehicle Tra�c Flow

Thomas L. Thorpe

January 11, 1998

1. INTRODUCTION

The elements of a vehicle tra�c
ow simulator are presented as a basis to model and improve tra�c
light control strategies. Tra�c control simulators have been described (Haight 1963, Paal 1975, and
Reitman 1971) for hardware using assembler and FORTRAN. This simulator is written in C, uses one-
second, discrete time steps for the tra�c light controller agent and the simulation of vehicle movement.
Vehicle movement is simulated with realistic velocity and acceleration limits and is constrained by
minimum following distances. The speed limits on each lane are user speci�ed and vehicles do not
exceed these limits. The tra�c environment occurs in a user de�ned grid of east-west and north-south
streets. The simulator is fairly realistic: vehicles are stopped at red lights, vehicles maintain safe following
distances, and the physics of motion of the traveling vehicles are closely approximated.

Cars are inserted in the network with their starting and destination intersections chosen randomly
before the simulation is started and more vehicles can be added during the simulation. The routes are
chosen using an Iterative Deepening A* algorithm. The route for each vehicle may require more than
one turn because the under estimate used in route selection is based on the travel time through a lane
of tra�c. By using the same random seed for all testing, vehicles follow the same routes. This ensures
the testing results between the reference and experimental implementations are directly comparable.
Di�erent tra�c light control strategies may be implemented and tested.

The simulator internal processing is described next followed by a description of the simulator inputs
and which modules within the program must be changed to implement new tra�c control strategies.

2. SIMULATION FLOW

The simulation occurs in three phases: Environment De�nition; Tra�c Simulation; and Simulation

Summary Report. The Environment De�nition phase initializes the simulation by de�ning the number
of intersections, lanes that connect the intersections, lane speed limits and �xed light timing control at
each intersection if �xed light timing is to be tested. The Tra�c Simulation phase adds vehicles to the
simulation, determines vehicle routing, manages the tra�c light status as dictated by the control strategy
being tested and moves vehicles through the simulation to their destination. The Simulation Summary

Report gives an indication of the overall performance of the simulation including: world simulation time;
vehicle travel time; vehicle wait time at a stop light; and number of vehicle stops.

2.1 ENVIRONMENT DEFINITION

Before the actual simulation can begin, the tra�c environment is de�ned by loading: intersection
data; associated tra�c light control information; and lane to intersection connections. Other simulation
parameters specifying the control strategy, random seed, number of vehicles in the simulation, and
subsequent vehicle injection rate are also loaded from a �le or command line parameter.

After the simulation parameters are loaded, the intersection data is loaded. Each intersection becomes
an element of a linked list to facilitate the simulation. The data initially associated with each intersection
header is shown below.

1. North-south and east-west street names and ordinal reference numbers.

1

2

2. Anticipated heavy tra�c
ow direction.

3. Minimum and maximum tra�c light signal times for left, through and right turn signals.

4. Settings and timings for �xed timing light control.

The setting and timings for �xed light timing control consists of a linked list of light control settings
indicating the color of the left, through and right turn signals for each of the directions of tra�c and
duration until the lights should be switched to the next phase. The pointers to inbound and outbound
tra�c lanes are NULL until lane connections are added.

Lane queues interconnecting intersections are loaded next as linked lists. The lane data consists of:

1. From and to intersection ordinal reference numbers.

2. Lane speed limit.

3. Compass direction of travel.

4. The turn directions allowed from the lane.

5. Lane length in feet.

6. The presence of a vehicle sensor in the lane.

The lane from and to intersections and direction of travel are used to �nd the intersections to interconnect
and determine which inbound and outbound lane pointer to set for the intersections. The lane queue
will contain a linked list of vehicles traveling through the lane.

2.2 TRAFFIC SIMULATION

Once the tra�c environment has been loaded, the simulation begins by alternately adding vehicles
to the simulation and managing the linked list of intersections. A large number of vehicles are added
initially and a smaller number of vehicles are added for a period of time during the simulation. Each
intersection in the linked list is processed before adding more vehicles to the simulation. After the linked
list has been traversed, one second in world time has elapsed. When an intersection is visited, the tra�c
lights are switched, if necessary, and the vehicles within each inbound lane of the intersection are moved
depending on the light color for the lane, the vehicle's route and relationship with other vehicles.

Vehicles are added to the simulation by randomly selecting start and destination intersections. The
route is determined by using an IDA* search. The travel estimates through each lane are based on the
average travel time through the lane. The initial estimate for a lane is the lane length divided by the
lane's speed limit. As the simulation progresses, the estimate will change based on actual travel time
through the lane. When the vehicles route has been chosen, it is placed at the end of the lane queue
between the starting and second intersection.

When an intersection is initially processed, the selected tra�c light control algorithm determines if
the lights should change or remain the same. For �xed light timing the time since the last light change
is compared with the duration speci�ed for the current phase to determine when to switch lights.

Other tra�c light strategies can be implemented to study their e�ectiveness and compared to �xed
light timing. Strategies that could be tested include simple rule based strategies such as giving the
right of way to the lane with the greatest number of vehicles and control using Reinforcement Learning
(Thorpe 1997). A simple base line to judge all other strategies, would be to use �xed light timing with
all light colors set green and not worry about avoiding oncoming tra�c when turning or passing through
an intersection.

The movement of vehicles is based on the physics of motion under constant acceleration (see Figure 1)
constrained by limits of acceleration of an average automobile. When a lane is processed, starting with
the �rst vehicle in the lane, each vehicle is moved based on the following algorithm:

1. Determine leading reference position for current vehicle. The leading reference position is used
to determine the minimum following distance. If the car is following another car in the lane, the
reference position is the rear of the lead car. If the car is leading the lane, the reference position is:

3

Figure 1: Physics of Motion under Constant Acceleration

a(t) = c a is acceleration, c is a constant (1)

v(t) =
R
a(t) dt =

R
c dt = ct+ v0 v is velocity, v0 is initial velocity (2)

x(t) =
R
v(t) dt =

R
(ct+ v0) dt =

1

2
ct2 + v0t+ x0 x is position, x0 is initial position (3)

the current stop light if the light is red or yellow or if the car is turning left and the intersection
is not clear; the rear of tra�c in the next lane if the light is green and the intersection is clear of
tra�c.

2. Determine slow down distance if turning. If the vehicle will be turning at the intersection, the
distance from the intersection that the vehicle must begin to decelerate using the vehicles average
deceleration is calculated as shown in Figure 2. Typical vehicle acceleration and deceleration values
are shown in Table 1.

Figure 2: Distance to Initiate Deceleration to Achieve Ideal Turning Velocity

xd = 1

2
ct2d + v0td deceleration distance (4)

ignore x0 to yield relative distance

where

td = (vf � v0)=c deceleration time (5)

v0 = current vehicle velocity

vf = turning velocity � 15 mph

Table 1: Typical Acceleration Values for Average Vehicles

Start End

Speed Speed Time Accel Accel

Description (Thorpe 1993b) (mph) (mph) (secs) (mph/sec) (ft/sec/sec)

Leisure Accel 0 50 38 1.32 1.91

Normal Accel 0 50 25 2.00 2.9

Fast Accel 0 50 20 2.50 3.63

Leisure Brake 50 0 30 -1.66 -2.42

Normal Brake 50 0 20 -2.50 -3.63

Emergency Brake 50 0 5 -10.00 -14.52

Note: 1 mile/hour = 1.452 feet/sec.

3. Determine acceleration needed for ideal car spacing. The acceleration required to achieve ideal
car spacing is calculated as shown in Figure 3. Equation (10) simpli�es to equation (11) since the
elapsed time, t, is 1 second. The calculated acceleration is constrained by the vehicles maximum
deceleration and average acceleration to produce a realistic simulation.

4

Figure 3: Acceleration Required to Achieve Ideal Vehicle Spacing

xf = xr � df (6)

0 = �xf + xr � df (7)

0 = �(1
2
ct2 + v0t+ x0) + xr � tfvf (8)

0 = �(1
2
ct2 + v0t+ x0) + xr � tf (ct+ v0) (9)

a = (xr � tfv0 � v0t� x0)=(tf t+
1

2
t2) (10)

) a = (xr � tfv0 � v0 � x0)=(tf +
1

2
) using 1 sec intervals (11)

where

a = constant vehicle acceleration

df = vehicle following distance

ds = stopped vehicle spacing 2 feet

ll = lead vehicle length

tf = inter-vehicle following time ranges from 0.5 sec to 2 secs by driver

vf = resulting vehicle velocity

xf = resulting vehicle position

xr = vehicle reference position

= xl � ll � ds if following a vehicle (12)

= intersection location if lead vehicle and (13)

(light is red or vehicle is turning)

= next intersection location if lead vehicle and light is green (14)

and vehicle is not turning

xl = lead vehicle resulting position vehicles front bumper

4. Check resulting speed with speed limit. The acceleration calculated is used to determine the
vehicles new preliminary speed and position. If this speed exceeds the speed limit for the lane,
the acceleration is reduced to bring the vehicle within the speed limit. A new vehicle speed and
position is recalculated if the acceleration was changed. The speed and position calculations are
shown below and simplify because the elapsed time is 1 second.

v0 = a+ v0 (15)

x0 =
1

2
a+ v0 + x0 (16)

5. If the vehicle is turning, should it slow down? If the vehicle is turning and the new vehicle
position is within the distance to the intersection where it needs to slow down, the vehicles new
acceleration is recalculated. If the vehicles speed is greater than the desired turning speed, average
vehicle deceleration is used. Otherwise the acceleration is adjusted to reach the turning speed.
The new speed and position are again recalculated.

6. Should the car be moved to a new lane? If the current car is the lead car in the current lane,
the updated position is used to determine if the car should be moved to a new lane. In this
simulation, the intersection is at the origin of a one dimensional axis and vehicles approach the
intersection from left to right. If the cars position is greater than zero, the car must be moved into
a lane controlled by another intersection and its velocity and position is recomputed. If the car

5

is not moving to a new lane, the vehicles speed and position are updated with the most recently
computed values.

7. Determine and report vehicle status. The status of each vehicle can be recorded as it moves
through the simulation. The recording is used to verify the simulator operation and to observe the
e�ects of di�erent control strategies. A sample recording is shown in Figure 4. The car id number is
listed followed by the world time, the intersection the vehicle is approaching, the updated velocity
and position, current direction of travel, direction of travel when passing through the intersection,
current and next intersection tra�c light colors, leading reference position, di�erent accelerations
calculated and vehicle status (coasting, accelerating or decelerating).

2.2.1 Graphical Display of Simulator The simulation can be displayed graphically and used as
a second veri�cation of the simulator operation. Figure 5 shows a close-up of the simulation at a single
intersection. The tra�c light color is shown by a green, yellow or red line just in front of where the
vehicle would stop for a red light. The id number of the vehicle is displayed on the top of the car. The
id number is oriented for viewing from the rear of the car looking forward. The id number is the same
id number used in the Vehicle Trace listing (see Figure 4). The car brake lights are red when the vehicle
is braking, green when accelerating and blank when coasting. The turn the vehicle will make at the
next intersection is shown by an arrow on the hood of the car. If the next intersection is the vehicles
destination, the turn indicator is blank. Once a vehicle starts to enter an intersection by breaking the
light indicator line, the turn direction indicator is updated to re
ect the turn direction at the next
intersection. As a car passes through an intersection, the lane pointer is indicating the turn direction at
the next intersection, not the intersection it is within.
2.2.2 Graphical Display Manipulation Keys When graphics is being displayed, the simulation
can be paused by pressing any of the keys listed below, except, \G". The window can be adjusted to
zoom in or out to view the simulation at an appropriate scale.

\D": Dump the display to a �le, \carpic.tex", in postscript format.

\S": stop or single step the simulation

\G": 'Go': let simulation proceed as fast as possible

\+": zoom in

\-": zoom out

\up cursor": move world window up

\down cursor": move world window down

\left cursor": move world window left

\right cursor": move world window right

The scope of the single step control consists of moving all vehicles in the simulation one discrete
time step. No attempt is made to pace the simulator display so that time is relatively constant during
the simulation. Since the graphics interface is slow, the speed of the simulation slows as more vehicles
are injected into the simulation and speeds as vehicles reach their destination. Despite this, it is easy
to sense the vehicles slowing and accelerating thru the simulation helping to verify the operation of the
simulator.

2.3 SIMULATION REPORTS

The overall performance of the simulator is given by the Simulation Summary Report. A sample
Simulation Summary Report is shown in Figure 6. Times are in hours, minutes and seconds. The
number of stops, travel time, wait time and world simulated time can be used to measure the relative
e�ectiveness of di�erent control strategies. To analyze di�erent control strategies, a more detailed report
of the simulation is required. A sample of the Detailed Simulation Report is shown in Figure 7. These

6

Figure 4: Sample Trace of Vehicle Movement in Simulator

Car:44 07:01:08 to 3rd & Birch:V=25.0, D=-239.99, N to N, R R 1 refpos= -0.1 a1=75.9 a2=0.0 coast

Car:31 07:01:08 to 4th & Birch:V=14.4, D=-10.10, N to N, G G 1 refpos=440.0 a1=171.5 a2=2.9 coast

Car:24 07:01:08 to 5th & Candy:V=24.0, D=5.40, endLan, G G accel

Car:24 07:01:08 reached destination. Time required=00:01:08, Vehicle Stops= 1

Car:44 07:01:09 to 3rd & Birch:V=25.0, D=-214.95, N to N, R R 1 refpos= -0.1 a1=65.9 a2=2.9 accel

Car:31 07:01:09 to 4th & Birch:V=17.3, D=5.70, endLan, G G accel

Car:31 07:01:09 reached destination. Time required=00:01:09, Vehicle Stops= 0

reports were used to compare the e�ectiveness of �xed timed light control strategies with an AI technique
called Reinforcement Learning (Thorpe 1997).

The test suite used in the Reinforcement Learning experiments consisted of 90 runs for each control
strategy. There were two main learning parameters used in the Reinforcement Learning experiments,
the learning rate and the eligibility trace decay rate (Thorpe 1997). Each run had a �xed learning rate,
�, and eligibility trace decay rate, �. The values for � ranged from 0.1 to 0.9 and � ranged from 0.0 to
0.9. There is one Detailed Simulation Report for each run. The number of training trials required per
run is determined by the experimenter. A trial consists of inserting cars into the network and running
the simulation until all cars reach their destination or a maximum time has been exceeded. After a
predetermined number of training trials, a testing trial is performed and the results of each testing trial
is recorded in the detailed report in a separate record.

The Detailed Simulation Report can be used as input into GNUPLOT without modi�cation to pro-
duce some basic graphs. The �rst part of the report (see Figure 7) lists all the inputs that were used
for the simulation. The name of the program on the �rst line of the report is followed by the program
version and date and time it was compiled. The date and time the �rst trial was started is listed next.
The remaining inputs are identi�ed by a label and value pair:

seed: The random seed used for the testing trials. The random seeds used for training trials is
determined by the system clock.

disp: Graphics usage indicator. A value of zero means graphics was not enabled and a value of
1 indicates that graphics were displayed showing the progress of the simulation. A value of 2
indicates graphics was used and the simulator is initially paused.

xtrl: The control method being used (Thorpe 1997): 0=�xed duration light timing 1=SARSA
Learning and 2=SARSA Run.

mode: The controller mode (Thorpe 1997). This is used with SARSA Learning and SARSA Run
options: 0=SARSA based on CAR Counts, 1=SARSA based on partitions, 2=Greatest Volume
strategy (Used with the SARSA Run option only. It was easier to implement this way).

left: Left turn collision avoidance: 0= No avoidance, 1=Avoidance.

dLght: Direct light control: 0=indirect light control. The controller only knows about red and
green lights. Using an intermediate/indirect controller, the lights are forced to cycle through yellow
before a green light turn red. 1=direct light control (lights can go from green to red without an
intermediate yellow or all-red phase).

injPt: How far down the intersection new cars are injected into a lane of tra�c.

cong: Congestion handling indicator: 0=no handling, 1=try to manage congestion. Normally a
left turning vehicle must yield to oncoming tra�c. During congestion, the tra�c may be in grid
lock and it may be possible for a vehicle to make a left turn when oncoming tra�c stops short of
the intersection to avoid blocking an intersection.

7

Figure 5: Example of simulator graphics output which is used to verify the operation of the simulator.

4: Treat all intersections as 4-Way stops: 0-no, 1=yes.

r: The reward method used (Thorpe 1997): A value of zero represents a traditional reward of �1
for each time step and a value of 1 represents a reward that varies from �5 to �1 depending on road
sensor activations as follows. There are four sensors near an intersection, one in each lane, that are
able to detect moving or stopped tra�c. A sensor that is activated in a lane with a green light will
detect moving tra�c and a sensor that is activated in a lane with a red light will detect stopped
tra�c. The reinforcement is initially �3. If one of the lane sensors corresponding to a green light
(travelling tra�c) is activated one or more times during the previous second, the reinforcement is
incremented by 1 to reward the controller for moving tra�c through the intersection. If both green
light sensors are activated, the reinforcement is incremented by 2. If a lane sensor corresponding
to a red light (stopped tra�c) has been activated during the previous second, the reinforcement
is decremented by 1 to punish the controller for stopping tra�c. If both red light sensors are
activated, the reinforcement is decremented by 2. If there is an equal amount of tra�c moving and
waiting at an intersection, a neutral reward of �3 is assigned.

lrnx: The intersection learning will occur at. 0=all intersections. Otherwise the intersection
indicated will be used for learning. Intersections are loaded and counted with the �rst being zero.
It is not possible to train solely on intersection zero.

endIX: End intersection for learning. 0=any intersection otherwise the intersection speci�ed.

sprd: Spread cars out in the intersection during learning: 0=no and implies learning under normal
test scenarios. 1=yes and is used for learning on a single intersection.

trace: Does each intersection have its own eligibility traces (Thorpe 1997): no: common traces are
used for all intersections, 1=yes: each intersection has its own set of eligibility traces.

8

Figure 6: Sample Simulation Summary Report

Simulation Statistics Report

A) Grand Totals

1. Total Travel Distance (feet) 60500

2. Total number of stops 12

3. Total Travel Time 00:40:18

4. Total Wait Time 00:01:00

5. Total Cars 50

B) Averages

1. Average Travel Distance (feet) ... 1210.0

2. Average number of stops 0.240

3. Average Travel time 00:00:48

4. Average Wait time 00:00:01

C) Simulation Time vs Processor Time

1. World Time simulated 00:01:29

2. Processor Wall Clock Time 00:00:01

3. Vehicle Route Finding Time 00:00:00

4. Wall Clock - Simulation Time 00:00:01

vals: Does each intersection have its own state-action values (Thorpe 1997): 0=no: common state-
action values are used for all intersections, 1=yes: each intersection h:s its own set of state-action
values.

svSt: Should the traces be reset to zero if the simulator goes tarough an intermediate goal state:
0=no, 1=yes.

any: Is any state updated? 0=no, 1=yes.

decr: Should learning occur only if the simulation passes through states that are closer to the goal?
0=no, 1=yes.

minUpVal: The minimum state value required for state-action value updates to occur. Using a
value of 1 prevents goal states from being updated.

yelLrn: Is learning allowed during yellow or all-red light phases? 0=no, 1=yes.

actB4Mn: Can new actions be chosen before the minimum light duration has elapsed? 0=no,
1=yes.

lrnB4Mn: Can learning occur before the minimum light duration has elapsed? 0=no, 1=yes.

lnkLst: Are eligibility traces implemented using a linked list rather than an array? 0=no, 1=yes.

forceMinDur: Is the minimum light duration enforced? 0=no, 1=yes.

forceMaxDur: Is the maximum light duration enforced? 0=no, 1=yes.

minTrc: The minimum eligibility trace value required for updates to occur.

Lane Partitions boundaries: Indicates the number of lane partitions and their locations in feet
from an intersection.

9

Car Count Partition Boundaries: Lists the partition number followed by the maximum number of
cars in a lane that will activate that partition.

Lane Duration Boundaries: Lists the Lane State Duration boundaries in seconds. The Lane State
Duration indicates the number of seconds that the state value for an intersection has not changed.

lightStates: The number of light states used in determining the current state of a state action pair.

LightDuration Boundaries: Lists the boundaries in seconds to set the Light Duration state based
on the number of seconds since the last time the lights changed at an intersection.

Wait Duration Boundaries: Lists the boundaries in seconds to set the Wait Duration state based
on the number of seconds cars have been waiting at a red light.

Light Action Duration Boundaries: Lists the boundaries for choosing minimum light timings in
seconds when changing light colors.

lightActStates: The number of light states used in determining the action part of a state action
pair.

The second part of the Detailed Simulation Report (see Figure 7) lists the testing results for a run.
There is one line for each testing trial in the run. Only a portion of the items reported are shown in the
sample report. The items listed in the report for each testing trial are: testing trial number, learning
rate: alpha, eligibility trace decay rate: lambda, the number of steps to complete the simulation, the
number of cars in the simulation, how many cars were still traveling at the end of the simulation, the
total number of stops made by all cars, the total travel time (including the time tra�c is stopped
waiting to move) in seconds of all cars, the total time of all cars spent waiting for tra�c to move, the
average number of stops made by each car, the average travel time per car in seconds, the average
wait time per car in seconds, the average number of light changes per intersection, the average time in
seconds per sensor that road sensors are depressed in a discrete time step, the average number of hits per
sensor that road sensors experience per discrete time step, the average time per vehicle spent braking
and accelerating in seconds, the minimum, average and maximum green light durations in seconds, the
state-action value �le name, the random seed used during the testing trial, the total number of nonzero
state-action values, and the minimum state-action value.

Figure 7: Sample Detailed Simulation Report

#

Lightc (03.18.05 19970119 113721) Started: Tue Feb 11 11:30:10 1997

seed:103 disp:0 xtrl:2 mode:1 left:1 dLght:0 injPt:100 cong:1 4:0

r:0 lrnX:0 endIX:0 sprd:0 trace:0 vals:0 svSt:0 any:0 decr:0 minUpVal:1

yelLrn:0 actB4Mn:0 lrnB4Mn:1 lnkLst:0 forceMinDur:1 forceMaxDur:0 minTrc:1e-09

The 0 Lane Partition bounds are:

The 8 Car Count bounds(3 Parts): 0:0 1:1 2:10 3:20 4:30 5:35 6:40 7:45

The 0 Lane Duration bounds (0 Parts):

lightStates:2

The 0 Light Duration bounds (0 Parts):

The 0 Wait Duration bounds (0 Parts):

The 8 Light Action Duration bounds (3 Parts): 0:0 1:5 2:10 3:15 4:20 5:25 6:30 7:40

lightActStates:2

#

Description numStates Partitions Offsets Multiplier

----------- --------- ---------- ------- ----------

NS CountCar 8 3 0 256

EW CountCar 8 3 3 32

Light State 2 1 6 16

Duration Ac 8 3 7 2

Light Act 2 1 10 1

Total States 2048

#

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total Still (secs) (secs) (secs) (secs)

TRIAL alpha lambda Steps #cars TRAV #stops TravTime WaitTime AvgStops AvgTrav AvgWait AvgChanges AvgSense AvgHits AvgBrake AvgAccel minGreen avgGreen

1 0.1000 0.4000 666 500 0 1518 90673 43037 3.04 181 86.07 25.38 0.2076 0.2365 39 48 3.81 23.33

10 0.1000 0.4000 933 500 0 1709 119981 67003 3.42 239 134.01 45.19 0.1914 0.2112 45 52 3.81 17.70

20 0.1000 0.4000 606 500 0 1957 101732 42624 3.91 203 85.25 44.19 0.2407 0.2706 55 54 4.00 10.76

30 0.1000 0.4000 706 500 0 1662 94950 39868 3.32 189 79.74 44.38 0.1780 0.2047 50 51 3.00 12.96

40 0.1000 0.4000 665 500 0 2001 103070 40535 4.00 206 81.07 63.88 0.2189 0.2453 59 56 3.00 7.44

50 0.1000 0.4000 568 500 0 1378 87214 36809 2.76 174 73.62 30.56 0.2203 0.2527 43 49 4.94 15.65

10

3. Simulator Controls and Inputs

The MS-DOS batch and OS/2 command �les used to run the simulation during reinforcement learning
(Thorpe 1997) training and testing are shown in Section 3.1 through Section 3.9. The inputs that control
the learning parameters, tra�c strategy being tested, and de�ne the tra�c environment are shown in
Section 3.10.

3.1 Main Batch File \sim.bat"

Training and testing for a single control strategy is initiated and restarted using the \sim.bat" �le.
The \sim.bat" �le executes a program, \bldskl", to examine how much testing and training has already
occurred. It builds a new batch �le so that testing and training resumes where it left o� previously. Since
a run of 4000 or more trials may require several hours to complete and there are 90 runs for each control
strategy being tested (one for each alpha and lambda combination), training and testing will inevitably
be interrupted. Having an automated restart mechanism has proven very helpful. The \sim.bat" �le is
shown below:

bldskl bat

simr

The inputs to the \bldskl" program are:

1. A skeleton of 90 runs that will be tested for each control strategy (see Section 3.2),

2. A skeleton of the trials that are executed for each run (see Section 3.3), and

3. State-action value �les that are produced before each testing trial.

The outputs of the \bldskl" program are:

1. A batch �le, \simr.bat", that will invoke the remaining runs needed to �nish training and testing
the current tra�c control strategy (see Section 3.4), and

2. A batch �le, \trialx.bat", used to �nish the learning and testing trials of the current run if it is
incomplete (see Section 3.5).

If a state-action value �le exists for a testing trial, that testing trial is considered complete. If a
state-action value �le is missing, it marks the start where training and testing must begin. After the
\bldskl" program has completed, the \simr.bat" �le is invoked to �nish up the training and testing of
the current run.

3.2 Main Batch Skeleton File \simr.skl"

A portion of the \simr.skl" �le which is used as input to the \bldskl" program (see Section 3.1) is
shown below. It is used to determine where to restart training and testing when training and testing
has been interrupted.

;inputs to this bat file - none

;

;inputs to next batch file:

;rem

;%1 = alpha=learning rate

;%2 = lam=eligibility trace decay rate

;%3 = root file name that will be used for report and state/action value files

; if the root file name is 010020 (alpha=.1 and lambda=.2)

; the detailed reports will have file names of:

; R0010020.RP1 for testing with 100 cars

; R0010020.RP2 for testing with 500 cars

; R0010020.RP3 for testing with 1000 cars

; V010020.000 for the state/action value file after the first testing trial which occurs

; after the first 20 training trials

; V010020.001 for the state action value file after the second testing trial

; V010020.239 for the state/action value file after the last testing trial

11

; (assuming there are 4000 learning trials per run

;

; alp lam root

call trials 0.1 0.0 010000

call trials 0.1 0.1 010010

call trials 0.1 0.2 010020

call trials 0.1 0.3 010030

call trials 0.1 0.4 010040

call trials 0.1 0.5 010050

call trials 0.1 0.6 010060

call trials 0.1 0.7 010070

call trials 0.1 0.8 010080

call trials 0.1 0.9 010090

;

call trials 0.2 0.0 020000

call trials 0.2 0.1 020010

call trials 0.2 0.2 020020

...

call trials 0.8 0.7 080070

call trials 0.8 0.8 080080

call trials 0.8 0.9 080090

;

call trials 0.9 0.0 090000

call trials 0.9 0.1 090010

call trials 0.9 0.2 090020

call trials 0.9 0.3 090030

call trials 0.9 0.4 090040

call trials 0.9 0.5 090050

call trials 0.9 0.6 090060

call trials 0.9 0.7 090070

call trials 0.9 0.8 090080

call trials 0.9 0.9 090090

3.3 Trials Skeleton Batch File \trials.skl"

A portion of the \trials.skl" �le which is used as input to the \bldskl" program (see Section 3.1) is
shown below. It is used to determine where to restart training and testing when training and testing
within a run has been interrupted. If no training has occurred for a run, the simulation starts at the
beginning by calling the \triali.bat" �le. The \triali.bat" is called at the beginning of each run. It
lists the input parameters used, the start time of the �rst testing trial and performs a testing trial
using random actions by using state-action values of all zeros. The �rst training trial begins with all
state-action values initialized to zero. Subsequent training and testing values are initialized with the
state-action values from the most recent training trial.

The \trial.bat" and \trialt.bat" �les are used to perform the remaining training and testing trials for
a run. The \trialt.bat" �le lists the input parameters at the end of a run along with the time the �nal
testing trial was started. The input parameters to the \triali.bat", \trial.bat" and \trialt.bat" �les are
described in the listing below.

The \chkerase" programs after the \trialt.bat" call are used to search the reports for the testing
trials that produced the best results for minimizing the number of time steps for all vehicles to exit the
summary. The state-action values for those testing trials are saved and the remaining state-action value
�les are erased.

;rem inputs to this bat file

;rem

;rem %1 = alpha

;rem %2 = lam

;rem %3 = root file name used for detailed reports and state/action value files

;

;

;rem inputs to triali and trial.bat :

;rem run a single trial of training and testing

;rem

;rem %1 = alpha= learning rate

12

;rem %2 = lam= eligibility trace decay rate

;rem %3 = ns cars (used only for training on a single intersection)

;rem %4 = ew cars (used only for training on a single intersection)

;rem %5 = report and state/action value file root names

;rem %6 = state/action value file 3 byte extension

;rem %7 = number of training trials to run

; (only used for training on a single intersection)

;rem %8 = the testing trial number

;

erase d%3.*

erase dump

;

;rem alp lam ns ew root.ext --runs--

call triali %1 %2 0 1 %3 000 20 20

call trial %1 %2 10 1 %3 001 20 40

call trial %1 %2 1 20 %3 002 20 60

call trial %1 %2 20 1 %3 003 20 80

call trial %1 %2 1 30 %3 004 20 100

call trial %1 %2 30 1 %3 005 20 120

call trial %1 %2 1 40 %3 006 20 140

call trial %1 %2 40 1 %3 007 20 160

call trial %1 %2 1 50 %3 008 20 180

call trial %1 %2 50 1 %3 009 20 200

;

call trial %1 %2 10 1 %3 010 20 220

call trial %1 %2 10 10 %3 011 20 240

...

call trial %1 %2 40 50 %3 228 10 3890

call trial %1 %2 50 40 %3 229 10 3900

;

call trial %1 %2 50 1 %3 230 10 3910

call trial %1 %2 10 50 %3 231 10 3920

call trial %1 %2 50 20 %3 232 10 3930

call trial %1 %2 20 50 %3 233 10 3940

call trial %1 %2 50 30 %3 234 10 3950

call trial %1 %2 30 50 %3 235 10 3960

call trial %1 %2 50 40 %3 236 10 3970

call trial %1 %2 40 50 %3 237 10 3980

call trial %1 %2 50 50 %3 238 10 3990

call trialt %1 %2 1 50 %3 239 10 4000

;

chkerase R0%3.RP1 x

chkerase R0%3.RP2 x

chkerase R0%3.RP2 x

;

erase V%3.*

3.4 Resulting Batch File \simr.bat"

A sample \simr.bat" �le which is produced by the \bldskl" program (see Section 3.1) is shown
below. It is used to restart training and testing at the correct point when training and testing has been
interrupted.

call trialx 0.8 0.3 080030

call trials 0.8 0.4 080040

call trials 0.8 0.5 080050

call trials 0.8 0.6 080060

call trials 0.8 0.7 080070

call trials 0.8 0.8 080080

call trials 0.8 0.9 080090

call trials 0.9 0.0 090000

call trials 0.9 0.1 090010

call trials 0.9 0.2 090020

call trials 0.9 0.3 090030

call trials 0.9 0.4 090040

call trials 0.9 0.5 090050

call trials 0.9 0.6 090060

13

call trials 0.9 0.7 090070

call trials 0.9 0.8 090080

call trials 0.9 0.9 090090

3.5 Finishing an Incomplete Run, Trials Batch File \trialx.bat"

A sample \trialx.bat" �le which is produced by the \bldskl" program (see Section 3.1) is shown
below. It is used to restart training and testing within the last run when a run has been interrupted.

call trial %1 %2 40 40 %3 227 10 3880

call trial %1 %2 40 50 %3 228 10 3890

call trial %1 %2 50 40 %3 229 10 3900

call trial %1 %2 50 1 %3 230 10 3910

call trial %1 %2 10 50 %3 231 10 3920

call trial %1 %2 50 20 %3 232 10 3930

call trial %1 %2 20 50 %3 233 10 3940

call trial %1 %2 50 30 %3 234 10 3950

call trial %1 %2 30 50 %3 235 10 3960

call trial %1 %2 50 40 %3 236 10 3970

call trial %1 %2 40 50 %3 237 10 3980

call trial %1 %2 50 50 %3 238 10 3990

call trialt %1 %2 1 50 %3 239 10 4000

chkerase R0%3.RP1 x

chkerase R0%3.RP2 x

chkerase R0%3.RP2 x

rem

erase V%3.*

3.6 Trials Batch File \trials.bat"

A portion of a \trials.bat" �le is shown below. This �le is invoked to execute the trials for an entire
run. The �rst batch �le invoked, \triali.bat", is an initialization batch �le. The last batch �le invoked,
\trialt.bat", is a termination batch �le. The remaining batch �les invoked, \trial.bat" are used for the
intermediate training and testing.

rem inputs to this bat file

rem

rem %1 = alpha

rem %2 = lam

rem %3 = root file name used for detailed reports and state/action value files

rem

rem inputs to triali and trial.bat :

rem run a single trial of training and testing

rem

rem %1 = alpha= learning rate

rem %2 = lam= eligibility trace decay rate

rem %3 = ns cars (used only for training on a single intersection)

rem %4 = ew cars (used only for training on a single intersection)

rem %5 = report and state/action value file root names

rem %6 = state/action value file 3 byte extension

rem %7 = number of training trials to run

rem (only used for training on a single intersection)

rem %8 = the testing trial number

rem %9 = epsilon exploration value

rem

rem alp lam ns ew root.ext runs

call triali.bat %1 %2 5 1 %3 000 20 20 .1

call trial.bat %1 %2 10 0 %3 001 20 40 .1

call trial.bat %1 %2 5 20 %3 002 20 60 .1

call trial.bat %1 %2 20 0 %3 003 20 80 .1

call trial.bat %1 %2 5 30 %3 004 20 100 .1

call trial.bat %1 %2 30 0 %3 005 20 120 .1

call trial.bat %1 %2 5 40 %3 006 20 140 .1

call trial.bat %1 %2 40 0 %3 007 20 160 .1

call trial.bat %1 %2 5 50 %3 008 20 180 .1

14

call trial.bat %1 %2 50 0 %3 009 20 200 .1

call trial.bat %1 %2 10 1 %3 010 20 220 .1

call trial.bat %1 %2 10 10 %3 011 20 240 .1

call trial.bat %1 %2 10 20 %3 012 20 260 .1

call trial.bat %1 %2 20 10 %3 013 20 280 .1

call trial.bat %1 %2 10 30 %3 014 20 300 .1

call trial.bat %1 %2 30 10 %3 015 20 320 .1

call trial.bat %1 %2 10 40 %3 016 20 340 .1

call trial.bat %1 %2 40 10 %3 017 20 360 .1

call trial.bat %1 %2 10 50 %3 018 20 380 .1

call trial.bat %1 %2 50 10 %3 019 20 400 .1

...

call trial.bat %1 %2 50 1 %3 230 10 3910 .0

call trial.bat %1 %2 10 50 %3 231 10 3920 .0

call trial.bat %1 %2 50 20 %3 232 10 3930 .0

call trial.bat %1 %2 20 50 %3 233 10 3940 .0

call trial.bat %1 %2 50 30 %3 234 10 3950 .0

call trial.bat %1 %2 30 50 %3 235 10 3960 .0

call trial.bat %1 %2 50 40 %3 236 10 3970 .0

call trial.bat %1 %2 40 50 %3 237 10 3980 .0

call trial.bat %1 %2 50 50 %3 238 10 3990 .0

call trialt.bat %1 %2 1 50 %3 239 10 4000 .0

3.7 Initialization Trial Batch File \triali.bat"

The initialization trial batch �le, \triali.bat", is shown below. Testing and training is performed with
100, 500 and 1000 cars corresponding to light, medium and heavy tra�c loads. The �rst testing trial
uses state-action values of all zeros. This results in a random action control strategy since all state-action
values are equal. The �rst training trial also uses state-action values that are initialized to zero. At the
end of each training trial, the updated state-action values are written to the \vals" �le. The \vals" �le
is used to initialize the state-action values for future training and testing trials. After ten training trials
at di�erent tra�c loads, three training trials are executed for 100, 500 and 1000 car loads.

The \-title" parameter causes the simulator inputs to be listed in the Detailed Simulation Report (see
Figure 7). The \-init vals" parameter initializes the state-action values from the \vals" �le for testing
and training. The \-trials" parmameter indicates the next parameter speci�es how many trials will
be executed for one program invocation. The \-cars" parameter indicates the next parameter speci�es
how many vehicles are injected into the simulation during training or testing. The \-seed" parameter
indicates the next parameter speci�es the random seed to use for training and testing. A value of zero
means the random seed is taken from the system clock time. If the \-seed" parameter is missing, the
random seed will be taken from the Tra�c Environment De�nition File (see Section 3.10). The \-tr"
parameter indicates a testing trial is being executed and the next parameter speci�es the testing trial
number which is listed in the Detailed Simulation Report (see Figure 7). The \-mxstep" parameter
indicates the next parameter overrides the maximum number of discrete time steps to be executed as
set in the Tra�c Environment De�nition File (see Section 3.10).

rem run a series of training trials followed by a testing trial for each traffic load

rem

rem %1 = alpha

rem %2 = lam

rem %3 = ns cars

rem %4 = ew cars

rem %5 = value savefile 8 digit name

rem %6 = value savefile 3 digit name

rem %7 = trials

rem %8 = testing trial number

rem

erase v%5.*

rem

rem run testing trials with q(s,a) all equal zero => random action test

rem The -title option reports the input parameters and date and time the run was begun

rem

lightc traffic2.d01 -cars 100 -title -tr 1 -root %5 -ext RP1 -alp %1 -lam %2

15

lightc traffic2.d01 -cars 500 -title -tr 1 -root %5 -ext RP2 -alp %1 -lam %2

lightc traffic2.d01 -cars 1000 -title -tr 1 -root %5 -ext RP3 -alp %1 -lam %2 -mxstp 2399

rem

rem perform a series of training trials with different traffic loads

rem NOTE: The first training trial does not specify an init value file => q(s,a) are initially zero

rem

lightc traffic.d01 -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

rem

copy vals v%5.%6

copy dump d%5.%6

erase dump

rem

rem perform a testing trial for each traffic load with the current state/action values

rem

lightc traffic2.d01 -init v%5.%6 -cars 100 -tr %8 -root %5 -ext RP1 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 500 -tr %8 -root %5 -ext RP2 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 1000 -tr %8 -root %5 -ext RP3 -alp %1 -lam %2 -mxstp 2399

3.8 Intermediate Trials Batch File \trial.bat"

The intermediate trial batch �le, \trial.bat", is shown below. It performs a series of training trials
starting with the latest state-action values followed by testing trials.

rem perform a series of training trials with different traffic loads

rem

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

copy vals v%5.%6

copy dump d%5.%6

erase dump

rem

rem perform a testing trial for each traffic load with the current state/action values

rem

lightc traffic2.d01 -init v%5.%6 -cars 100 -root %5 -ext RP1 -tr %8 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 500 -root %5 -ext RP2 -tr %8 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 1000 -root %5 -ext RP3 -tr %8 -alp %1 -lam %2 -mxstp 2399

3.9 Termination Trial Batch File \trialt.bat"

The termination trial batch �le, \trialt.bat", is shown below. It is the same as the \trial.bat" �le
except the simulator inputs are listed in the Detailed Simulation Report (see Figure 7).

rem perform a series of training trials with different traffic loads

rem

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 2 -cars 100 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 500 -seed 0

lightc traffic.d01 -init vals -alp %1 -lam %2 -ns %3 -ew %4 -trials 1 -cars 1000 -mxstp 2399 -seed 0

copy vals v%5.%6

16

copy dump d%5.%6

erase dump

rem

rem perform a testing trial for each traffic load with the current state/action values

rem The -title option reports the input parameters and date and time the final run was executed

rem

lightc traffic2.d01 -init v%5.%6 -cars 100 -title -tr %8 -root %5 -ext RP1 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 500 -title -tr %8 -root %5 -ext RP2 -alp %1 -lam %2

lightc traffic2.d01 -init v%5.%6 -cars 1000 -title -tr %8 -root %5 -ext RP3 -alp %1 -lam %2 -mxstp 2399

3.10 Tra�c Environment De�nition File \tra�c.d01"

A sample Tra�c Environment De�nition File is listed next. It is used to set some simulation
parameters and to de�ne the tra�c environment. The �rst character in each record de�nes the type of
data being loaded. A semicolon in column one is a comment record. Comments follow and document a
record the �rst time a new type of data record is encountered. Simulation parameter records occur �rst
followed by intersection de�nition records and lane records which connect intersections. Intersections
must be de�ned before they can be connected by lanes.

;

; traffic.d01 - traffic light simulation control and environment data file.

;

; The format of the input data is described as it is first encountered.

;

; (semicolon in first position is a comment)

;

; simulation control record is first

; ---

S 07:00 103 0 2 1 1 0 100 1200 1 0 2 2

; start seed dsp Xtrl xMode avoid Direct inject max congested all #curAct #nxtAct

; Control Point steps left turn 4way values values

; ---

; col 1 = S (simulation control record)

; nxt field = start time of simulation (hh:mm)

; nxt field = random number generator seed (if non zero, it overrides

; the random seed using the system time or command line parm.)

; nxt field = 0=no graphics, 1=display graphical status, 2=pause

; nxt field = Xtrl=controller type: 0=fixed duration light timing,

; 1=SARSA Learning,

; 2=SARSA Run,

; 3=Neural Net eval and action network (not implemented).

; nxt field = Controller Mode. This is used with SARSA Learning and

; SARSA Run options: 0=SARSA based on CAR Counts,

; 1=SARSA based on partitions,

; 2=Greatest Volume strategy (Use with the

; SARSA Run option only).

; nxt field = collision avoidance method

; 0= no avoidance

; 1= avoid oncoming traffic

; nxt field = Direct Light Control

; 1 = direct

; 0 = indirect

; nxt field = point at which to inject vehicles into simulation in feet

; nxt field = max steps per trial

; nxt field = allow congested left turn (0=no, 1=yes)

; nxt field = treat all intersections as 4 way stops?

; nxt field = number of current light action states (not partitions)

; nxt field = number of next light action states (not partitions)

;!!! NOTE !!!!!! need to re implement using lane information

;

;

; Reward and Learning Parameters

; ---

R 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 .000000001 1

;rew Lrn End Sprd own own sv yel Act Lrn lnk frc for upd decr min min

;typ Int Int cars trc val st lrn B4Mn B4Mn Lst min max any only trace upd

17

; Trc val

; ---

; col 1 = R (Reward and Learning Parameters)

; nxt field = reward scheme

; 0 = -1 for each time step

; 1 = -5 to -1 depending on sensors

; nxt field = intersection Learning occurs (0=all else indicated)

; intersections are loaded and counted with the first being zero

; nxt field = End intersection for learning

; 0=any else the intersection specified

; nxt field = spread cars during learning

; 0=no and implies learning under test scenario

; (cars injected at start and inserted when safe)

; 1=yes and implies special set up/learning on one intersection

; nxt field = does each intersection have its own eligibility traces

; 0=no=common, 1=yes

; nxt field = does each intersection have its own state-action values

; 0=no=>common vals, 1=own values

; nxt field = reset eligibility traces to zero if we go through an intermediate goal state

; 0=no, 1=yes

; nxt field = learn during yellow or all red phases? (except 4way stop)

; nxt field = new actions allowed while cur duration < minDuration

; nxt field = learning allowed while curDuration < minDuration

; nxt field = update old state if curDuration < minDuration (non-Markov)

; nxt field = use linked list for eligibility trace updates

; 0=use an array, 1=use linked list

; nxt field = force min duration during duration learning: 0=no, 1=yes

; nxt field = force max duration during duration learning: 0=no, 1=yes

; nxt field = update any state: 0=no, 1=yes

; nxt field = update decreasing states only: 0=no, 1=yes

; nxt field = minimum eligibility trace values for updates

; nxt field = minimum state update value. If the state value is less than the

; indicated value, no state update occurs. This prevents goal states

; from being updated when using a value of 1.

;

;

; Debug Control Parameters

; --

B 0 0 0 0 0 0 0 0 0

; bug tag ibg fTrace fOpen Integ nonNull abPause DispMem

; Col 1 = B = debug indicator

; nxt field = debug level

; nxt field = count of vehicles to initially tag (display progress)

; nxt field = idas debug level

; nxt field = file trace switch

; nxt field = file trace open/close switch

; nxt field = Link List integrity check switch

; nxt field = non Null pointer check switch

; nxt field = pause at abend indicator (0=no, 1=yes)

; nxt field = display memory report or not 0=1, 1=yes

;

;

; Network specification defaults (NOT IMPLEMENTED)

; --

N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

; xArch p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

; ----------------------------------

; col 1 = N (Network defaults

; nxt field = architecture scheme: (used with Neural Net only)

; 0= current intersection sensors only

; 1= 0 and use sensors 1 block away

; 2= 1 and also sensors 2 blocks away

; nxt fields= control parm 1: # first hidden layer nodes

; 2: # second hidden layer nodes

; 3: number of delays

; 4: number of seconds each delay holds

; 5: output node type 0=sigmoid, 1=linear

; 6-10: reserved (alpha, beta, momentum)

18

;

; vehicle injection rate

; ----------------------

V 0 0 2 2 07:00 10 07:05 30 07:10 30 07:15 0

; XDist Lanes time/rate time/rate time/rate time/rate

; ----------------------------------

; col 1 = V (vehicle injection rate record)

; nxt 2 fields = initial XDist for initial inject and subsequent

; -1=lane length

; 0-999 = specified length

; nxt 2 fields = inBound or outbound lanes for initial and subsequent

; 0=outbound lanes

; 1=in inbound lanes

; 2=safe entry into outBound Lanes

; nxt 4 field pairs = time, car injection rate (cars / minute)

;

;

; Colors to use for graphics display

; ----------------------------------

C 1 12 10 14 7 2 3 13 15 0 0 2200

; BkGrnd Red Grn Yel Block car1 car2 car3 car4 Tx Ty Scale

; col 1 = C (graphics color scheme control record)

; colors represented are:

; display background color

; red, green and yellow lights on traffic lights and cars

; Block outline color

; 4 car body outline colors to use

; Next fields are x any Translate values and scale adjust initial settings

; for graphics window display

;

;

; default min max light timing is loaded next

; ---

D M 2 20 10 45 2 20 25 10

; min max min max min max INC% DEC%

; ------- ------- -------

; LEFT RIGHT THRU

; ---

; col 1 = D (default type record)

; col 3 = M (min max light control indicator)

; nxt 6 fields=min max green times for left, right and thru in seconds

; nxt 2 fields=adj percent for increase and decrease time

;

;

; F traffic2.d02 x

; End this file and go to the next file

;

;

P 0 50 110 220

; Lane partition sizes are loaded next. Lane partitions are optional

; and only used with SARSA based on partitions, otherwise they

; are ignored. Up to four partitions can be specified.

; There are 4 partitions in the example below. The first partition

; is from 0 to 50 feet, the second from 50 feet to 110, the third

; is from 110 to 220 feet and the fourth is anything over 220 feet.

; The state value is determined by the presence or absence of

; cars within the partitions. The first partition has a value of one

; and each subsequent partition has a value that is double the previous

; partition. The total state value is calculated by adding up partition

; values for the partitions that have cars within them.

; P 0 50 110 220

;

;

;Z 0 1 10 20 30 35 40 45

; Car Count Partition boundaries are optionally Loaded next. They are

; only used with SARSA based on partitions, otherwise they are ignored.

; Up to 16 boundaries can be specified. There are 4 boundaries in the

; example below. If there are no cars in the lane, the first state

19

; boundary is active. If there are 1 to 9 cars in the lane, the second

; boundary is active. The third boundary is active if there are 10 to

; 19 cars in the lane and the fourth boundary is active if there are

; 20 or more cars in the lane. The state value is set to the boundary

; that is active and subtracting 1.

; Z 0 1 10 20

;

;

;A 0 50 10 20 30 40 50

; Lane State Duration boundaries are optionally Loaded next. They are

; only used with SARSA based on partitions, otherwise they are ignored.

; Up to 16 boundaries can be specified. The Lane State Duration is based

; on the amount of time in seconds that the state of the lanes leading

; into an intersection have not changed. If car counting is used and the

; car count state value does not change from one discrete step to

; another, the Lane State Duration Counter is incremented,

; otherwise the Lane State Duration Counter is reset to 1. The Lane

; State Duration value is calculated based on the boundary that the Lane

; State Duration Counter falls in. There are 4 boundaries in the example

; below. If the Lane State has not changed for 0 to 4 seconds, the Lane

; State Duration value is 0. If the Lane State has not changed for 5 to 9

; seconds, the Lane State Duration value is 1. If the Lane State has not

; changed for 10 to 19 seconds, the Lane State Duration value is 2. If

; the Lane State has not changed for 20 seconds or more, the Lane State

; Duration value is 3.

; A 0 5 10 20

;

;

;T 0 5 10 15 20 30 45 60

; Time Since Light Change boundaries are optionally Loaded next. They are

; only used with SARSA based on partitions, otherwise they are ignored.

; Up to 16 boundaries can be specified. The Time Since Light Change state

; is based on the amount of time in seconds since the last light change.

; For each discrete time step that the light remains the same, the Light

; Duration Counter is incremented, otherwise the Light Duration Counter

; is reset to 1. The Time Since Light Change state is

; set based on the boundary the Light Duration Counter falls in. There

; are 4 boundaries in the example below. If the Light Duration Counter

; ranges from 0 to 7 seconds, the Time Since Light Change state value is

; 0. If the Time Since Light Change Counter ranges from 8 to 15 seconds,

; the Time Since Light Change state value is 1. If the Time Since Light

; Change Counter ranges from 16 to 31 seconds, the Time Since Light Change

; state value is 2. If the Time Since Light Change Counter is 32 or

; greater, the Time Since Light Change state value is 3.

;T 0 8 16 32

;

;

;W 0 50 10 20 30 40 50

; Car Wait Time at red light boundaries are optionally Loaded next. They

; are only used with SARSA based on partitions, otherwise they are ignored.

; Up to 16 boundaries can be specified. The Car Wait Time state value

; is based on the amount of time in seconds since cars have been waiting

; at a red light. There are 4 boundaries in the example below. If cars

; have been waiting at a red light for 0 to 4 seconds, the Car Wait Time

; state value is 0. If cars have been waiting at a red light from 5 to 9

; seconds the Car Wait Time state value is 1. If cars have been waiting

; at a red light for 10 to 19 seconds, the Car Wait Time state value is

; 2. The Car Wait Time state value is 3 if cars have been waiting at a

; red light for 20 or more seconds.

; W 0 5 10 20

;

;

X 0 5 10 15 20 25 30 40

; Light Duration action boundaries are optionally Loaded next. They are

; only used with SARSA based on partitions, otherwise they are ignored.

; Up to 16 boundaries can be specified. The Light Duration action specifies

; a range of time that lights are set to a given color when choosing

; light control actions. There are 4

20

; boundaries in the example below. If the first boundary is chosen, the

; time that lights are set to a given color will range from 0 to 9 seconds.

; If the second boundary is chosen, the time that lights are set to a given

; color will range from 10 to 19 seconds. If the third boundary is chosen,

; the time that lights are set to a given color will range from 20 to 29

; seconds. If the fourth boundary is chosen, the time that lights are set

; to a given color will be at least 30 seconds.

; X 0 10 20 30

;

;

; intersection name, light control, min max data is loaded next

;--

I N 2nd Birch 2 : 2 E 460 1780

; NS Name EW Name NS Num EW Num HEAVY DIR X Y

I M 2 20 10 45 2 20 25 10

; LEFT RIGHT THRU INC DEC

I X 1 N R N N R N N R N N R N X 1 1 All=Red

I X 25 N G N N G N N R N N R N G 3 180 N/S=Green

I X 2 N Y N N Y N N R N N R N X 2 2 N/S=Yellow

I X 1 N R N N R N N R N N R N X 1 1 All=Red

I X 25 N R N N R N N G N N G N R 3 180 E/W=Green

I X 2 N R N N R N N Y N N Y N X 2 2 E/W=Yellow

; secs NORTH SOUTH EAST WEST NSVal min max

; R T L R T L R T L R T L secs secs

;---

; col 1 = I (intersection record)

; col 3 = N (intersection name record) (one per intersection)

; nxt fld = North South street name

; nxt fld = East West street name

; nxt fld = North South street reference number

; nxt fld = East West street reference number

; NXT FLD = assigned heavy traffic direction

; nxt flds= x,y coords of center of intersection

;

; col 1 = I (intersection record)

; col 3 = M (absolute min max light controls) (zero or one per intersection)

; (same format as default min max above)

;

; col 1 = I (intersection record)

; col 3 = X (intersection light controls) (zero or more per intersection)

; nxt fld = initial duration of light setting in seconds

; nxt 3 flds = North right, thru and left colors

; nxt 3 flds = South right, thru and left colors

; nxt 3 flds = East right, thru and left colors

; nxt 3 flds = West right, thru and left colors

; nxt fld = north/south light color from a light controller perspective

; nxt fld = minimum duration of specified light phase

; nxt fld = maximum duration of specified light phase

;

....

more intersections

....

;

;

; lane data is loaded next

;--

L C 0 0 2 2 20 S A 440 Y L

; FromNS,EW ToNS,EW Speed Dir Turn Length Sensor Control

; (y,x) (y,x)

;--

; col 1 = L (lane record)

; col 3 = C (lane connector)

; nxt fld = NS from street reference number

; nxt fld = EW from street reference number

; nxt fld = NS to street reference number

; nxt fld = EW to street reference number

; nxt fld = lane speed limit in miles per hour

; nxt fld = travel direction (N S E W)

21

; nxt fld = turn direction allowed from lane (left, right, thru, any)

; nxt fld = lane length

; nxt fld = sensor indicator

; nxt fld = control type (L=light, S=Stop sign, R=right of way)

;

L C 0 0 3 2 20 S A 440 Y L

L C 0 0 4 2 30 S A 440 Y L

L C 0 0 5 2 40 S A 440 Y L

;

L C 2 2 2 3 20 S A 440 Y L

L C 3 2 3 3 20 S A 440 Y L

L C 4 2 4 3 30 S A 440 Y L

L C 5 2 5 3 40 S A 440 Y L

;

L C 2 3 2 2 20 N A 440 Y L

L C 3 3 3 2 20 N A 440 Y L

L C 4 3 4 2 30 N A 440 Y L

L C 5 3 5 2 40 N A 440 Y L

;

;

;

;

L C 0 0 2 2 20 E A 440 Y L

L C 0 0 2 3 20 E A 440 Y L

L C 0 0 2 4 30 E A 440 Y L

L C 0 0 2 5 40 E A 440 Y L

;

L C 2 2 3 2 20 E A 440 Y L

L C 2 3 3 3 20 E A 440 Y L

L C 2 4 3 4 30 E A 440 Y L

L C 2 5 3 5 40 E A 440 Y L

;

L C 3 2 2 2 20 W A 440 Y L

L C 3 3 2 3 20 W A 440 Y L

L C 3 4 2 4 30 W A 440 Y L

L C 3 5 2 5 40 W A 440 Y L

;

22

4. Simulator Module Hierarchy and Strategy Modi�cations

The module hierachy of the tra�c simulator is shown in the following sections. To create new tra�c
control strategies see Section 4.3.

4.1 Main Module Hierarchy - LIGHTC.c

The main() function of the simulator is in �le LIGHTC.c. It starts by initializing control parameters
to default values, and overriding some control parameters based on the command line options. Then
the tra�c environment including the tra�c network topology and other control parameters are loaded
by the loadenv() function. After the tra�c network has been loaded, the simulation is controlled by the
tra�c() function. The tra�c() function injects vehicles into the simulation, selects the tra�c control
strategy being tested, moves the cars through the lanes and intersections into new lanes and manipulates
the tra�c control lights. The tra�c() function selects routes using the IDA* algorithm within the
routeSearch() function. When the simulation has terminated, either because all vehicles have reached
their destinations or the maximum number of time steps has elapsed, the �nal tra�c environment is
saved by the saveenv() function. The output of the �nal tra�c environment was to be used to resume
testing where the simulation ended. So far there has been no need to resume testing where the simulation
ended and this function could be removed (it is not up to date). Finally the results of the simulation
are optionally written to report �les for later analysis. The simulation results are usually produced for
debugging and testing trials.

LIGHTC.c Main program

init() (in LIGHTINI.c) Set parameters specified on command line

loadenv() (in LIGHTLOD.c) Load traffic topology

traffic() (in LIGHTSIM.c) Simultates Traffic Environment (Move car and change lights)

routeSearch() (in IDAS.c) IDA Star Route Search routines

utils (in LIGHTUTL.c) Utility functions

saveenv() (in LIGHTSAV.c) Save final traffic environment

report() (in LIGHTRPT.c) Report Simulation results

4.2 Tra�c Simulator Load Environment Module Structure - LIGHTLOD.c

The tra�c environment including the tra�c network topology and other control parameters are
loaded by the loadenv() function by reading the Tra�c Environment De�nition File (see Section 3.10).
Each of the major subroutines below are invoked by the loadenv() function based on the data type record
as determined by the �rst character of the data record being loaded. The data type indication character
is listed before the subroutine that is invoked using a case statement like syntax. A

loadenv() Load Traffic Environment

initial() Initialize vars, get current clock time

S: ldSimParms() Load simulation parms (mode, start time, random # seed)

D: ldDefault() Load simulation defaults (min max times for light timings)

M: ldMinMaxLght() Load light traffic default switch timings

newMnMxLight() Create new min max control element

I: ldXSection() Load Intersections

X: ldXLght() Load Light Controls

NewLXtrl() Create new light control structure

N: ldXName() Load Intersection Name and NULL the pointers

M: ldXMinMaxLght() Load Intersection Light Min Max Times

newMnMxLight() Create new min max control element

L: ldLane() Load traffic lanes

NewLaneQ() Create New Lane Q

FindXHead() Find Intersection to link lane to

B: ldDebug() Load deBug control parms

23

N: ldNetParms() Load network default parms (not implemented)

V: ldVIR() Load vehicle injection rates

C: ldColors() Load graphics display colors

R: ldReward() Load reward and learning parms

P: ldParts() Load lane state partition sizes

Z: ldCarCnt() Load car count state partition vals

A: ldLaneDur() Load lane Duration state partition vals

T: ldLightDur() Load light state duration partitions

W: ldWaitDur() Load wait state duration partitions

X: ldActDur() Load action light duration partitions vals

F: ldFileName() Continue loading environment with a new file name

checkEnv() Check environment load time

getCurTime() (in LIGHTUTL.c)

timeDif() (in LIGHTUTL.c)

EqTime() (in LIGHTUTL.c)

printElapsed() (in LIGHTUTL.c)

memRpt() (in LIGHTUTL.c)

Utility Functions in LightLod.c

FindXHead() find a specific intersection element

fps2mph() convert feet per second to miles per hour

getnexttoken() get next token in string

loadTime() convert string to wall clock time

mph2fps() convert miles per hour to feet per second

NewLaneData() create lane data element

NewLaneQ() create new lane queue element

NewLXtrl() create new light control element

NewMnMxLight() create new light min max element

NewTimeHist() create new time history tracking element

NewTimeStamp() create new time stamp element

NewVeh() create new vehicle element

NewXHead() create new intersection element

string2int() convert string to integer

wait() wait for 9999 loop iterations

4.3 Tra�c Light Simulator Simulation Module Structure - tra�c() LIGHTSIM.c

The tra�c() function determines which control strategy will be used. To implement a new control
strategy, add a new function to the xControl switch statement and model the new function after one of
the functions in Section 4.4 through Section 4.6.

The tra�c() function calls routines to inject vehicles into the simulation, selects the tra�c control
strategy being tested, moves the cars through the lanes and intersections into new lanes and manipulates
the tra�c control lights. The tra�c() functions selects routes using the IDA* algorithm within the
routeSearch() function.

traffic() Initialize graphics (if needed) and select control strategy.

Xez Initialize() Initialize graphics when enabled.

Xez SetBkColor() Set Background color.

switch (xControl)

case 0: TimedLights(); break;

case 1: SARSA Learn(); break;

case 2: SARSA Run(); break;

Xez Close() Close graphics windows

24

4.4 Tra�c Light Simulator Simulation Module Structure - Timed Lights LIGHTSIM.c

The Timed Lights tra�c control strategy illustrates the basic
ow of the simulator. Initially vehicles
are injected into the simulation by selecting a starting location and destination, determining the route
from the start to the destination and then placing the car in the correct starting lane. At the beginning
of each discrete time step, the simulation optionally injects more vehicles into the simulation and checks
for graphics control commands. The linked list of intersections is then traversed. At each intersection
the lights are changed if needed based on predetermined timings. Each lane queue leading into the
intersection is then processed, one at a time. Each car in the lane is moved through the lane as discussed
in Section 2.2 and moved to a new lane if needed. If graphics is enabled, the cars old position is erased
and the car is drawn in the new position.

TimedLights() Run timed lights simulation

InjectVehicle() Load a vehicle into the simulator randomly

NewVeh() Create a new car.

getRandXHead() Select a start or destination intersection at random

RouteSearch() (in IDAS.c) Find route for vehicle to destination

printRoute() Print the route the vehicle will take.

Veh2Lane() Inject vehicle into the correct lane.

prtVehInfo() Print critical vehicle information.

while cars in simulation and maximum steps not exceeded:

ProcessFirstX() Process first intersection and inject more cars.

scrnAdj() Adjust graphics window or single step simulation

setNewInjRate() Set New vehicle injection rate

InjectVehicle() Inject a car into the simulation if directed.

CheckLights() Check Lights at each intersection - change if needed.

CkLightLevel1() - Fixed Light Timings

CkLightLevel2() - look at local sensors only to change lights

CkLightLevel3() - look at local sensors and sensors 1 block away

CkLightLevel4() - Total knowledge of car positions.

ProcessLanes() Move cars through lanes at each intersection.

drawBlk() Draw outline of block when graphics is enabled.

ProcessLn() Move cars in a specific lane.

findRefPos() Find safe distance following reference point

MoveCar() Move car through lane, adjust acceleration for stop/turning

drawCar() Erase old car location when graphics is enabled

getAcc() (in LIGHTUTL.c) Calc acceleration needed to reach reference point

MoveCarThruX() Move car through intersection

Veh2Lane() Move car to new lane

drawCar() Draw car in new position when graphics is enabled

4.5 Tra�c Light Simulator Simulation Structure - SARSA Learn LIGHTSIM.c

The SARSA Learn control strategy uses Reinforcement Learning (Thorpe 1997) to train a controller
to minimize the number of time steps to move vehicles through the tra�c environment. The SARSA

Learn strategy is similar to the Fixed Timing control strategy except the lights are changed based on
state-action values set during previous and current SARSA Learn control strategy training trials. See
(Thorpe 1997) for a description of the training algorithm used for the SARSA style of Reinforcement
Learning.

SARSA Learn()

init

set eligibility traces to zero

while trials to run:

25

determine I Cars (for i=0 to 40)

determine J Cars (for j=0 to 40)

determine NS and EW Light Color

inject I Cars in NS and J cars in EW, set NS lights Red, Learn

inject I Cars in NS and J cars in EW, set NS lights Grn, Learn

inject J Cars in NS and I cars in EW, set NS lights Red, Learn

inject J Cars in NS and I cars in EW, set NS lights Grn, Learn

save state values()

inject car

calc average spacing left in lane

inject car randomly from 2 feet to average feet in lane

determine safe following speed

set speed randomly from 0 to safe speed

Learn

set light color based on previously selected or initial action

determine state

set eligibility trace to one for initial state

move cars thru lanes = ProcessLanes() (take action a)

observe reward r = -1 and new state s'

choose next action a'

improve value

calc Temporal Difference Error (TDerr), e

set current eligiblity trace (accum or replace)

for all s,a:

increment state-action value

update eligiblity trace:

if s' non-terminal = gam*lam*elig(s,a)

if s' terminal = 0

ProcessLanes() Move cars through lanes at each intersection.

ProcessLn() Move cars in a specific lane.

findRefPos() Find safe distance following reference point

MoveCar() Move car through lane, adjust acceleration for stop/turning

drawCar() Erase old car location when graphics is enabled

getAcc() (in LIGHTUTL.c) Calc acceleration needed to reach reference point

MoveCarThruX() Move car through intersection

Veh2Lane() Move car to new lane

drawCar() Draw car in new position when graphics is enabled

4.6 Tra�c Light Simulator Simulation Structure - SARSA Run LIGHTSIM.c

The SARSA Run strategy is similar to the Fixed Timing control strategy except the lights are
changed based on state-action values set during the SARSA Learn control strategy training trials.

SARSA Run()

init state values()

InjectVehicle() Load a vehicle into the simulator randomly

NewVeh() Create a new car.

getRandXHead() Select a start or destination intersection at random

RouteSearch() IDAS.c Find route for vehicle to destination

printRoute() Print the route the vehicle will take.

Veh2Lane() Inject vehicle into the correct lane.

prtVehInfo() Print critical vehicle information.

26

while cars in simulation and maximum steps not exceeded:

ProcessFirstX() Process first intersection and inject more cars.

scrnAdj() Adjust graphics window or single step simulation

setNewInjRate() Set New vehicle injection rate

InjectVehicle() Inject a car into the simulation if directed.

CheckLights() Check Lights at each intersection - change if needed.

determine state

Choose Epsilon Greedy action for current state

ProcessLanes() Move cars through lanes at each intersection.

ProcessLn() Move cars in a specific lane.

findRefPos() Find safe distance following reference point

MoveCar() Move car through lane, adjust acceleration for stop/turning

drawCar() Erase old car location when graphics is enabled

getAcc() (in LIGHTUTL.c) Calc acceleration needed to reach reference point

MoveCarThruX() Move car through intersection

Veh2Lane() Move car to new lane

drawCar() Draw car in new position when graphics is enabled

4.7 Tra�c Light Simulator Environment Save LIGHTSAV.c

When the simulation has terminated, either because all vehicles have reached their destinations or
the maximum number of time steps has elapsed, the �nal tra�c environment is saved by the saveenv()

function. The output of the �nal tra�c environment was to be used to resume testing where the
simulation ended. So far there has been no need to resume testing where the simulation ended and this
function could be removed (it is not up to date).

saveenv() Save Traffic Environment

SimParmsOut() Output Simulation Parms used

DefaultOut() Output Defaults used

XHeadOut() Output Intersections used

LMnMxOut() Output Lane min max times

LXtrlOut() Output Lane controller list

LaneOut() Output Lanes Used

VehicleOut() Output Vehicle Information (not implemented)

TimeHistOut() Output History Information for Analysis (not implemented)

4.8 Tra�c Light Simulator Report Module Structure LIGHTRPT.c

The results of the simulation are optionally written to report �les for later analysis. The simulation
results are usually produced for debugging and testing trials. the outputs of the simulator reports are
shown in Figure 6 and Figure 7.

report() Report Simulation Times

memRpt() List memory usage

SetTime() Output Simulation Parms used

incTime() Increment Time

prtTime() Format and print time

compareTimes() get relative time difference

Utility Functions in Lightrpt.c

prtfVehInfo() print vehicle information

prtTime() format time and print it

prtElapsed() print elapsed time

compareTimes() get relative time difference

printElapsed() print elapsed time for simulation

27

4.9 Tra�c Light Simulator Utility Routines LIGHTUTL.c

The \lightutl.c" �le contains utility routines for debugging: invoke() and devoke(), determining
vehicle actions: decelDist() and getAccel() and time manipulation functions.

Utility Functions in Lightutl.c

compareTimes() Determine relative difference between two times.

decelDist() Determine distance to begin deceleration to begin safe turn

devoke() Trace Program Execution

EqTime() Equate one time to another

getAcc() Determine acceleration needed to achieve safe vehicle spacing

getCurTime() Get current wall clock time.

incTime() Increment Time a specified amount

invoke() Trace Program Execution

SetTime() Set time variable

timeDif() Calc Difference between two times

4.10 Tra�c Light Simulator IDA Star Routines

Route selection is performed using the Iterative Deepening A Star (IDA*) method.

IDAS.c

RouteSearch() Find a route for a vehicle

calcNumBlocks() calc number of blocks from beginning to end

IDAS() The routine that does the finding

GetNewRouteNode()

MoveRouteNode()

printRoute()

GetSuccessors()

GetNewRouteNode()

MoveRouteNode()

printRoute()

ChkSuccessors()

getLane()

calcNumBlocks()

MoveRouteNode()

printRoute()

printRoute() Print route found if desired

cleanUpRoutes()

MoveRouteNode()

printRoute() Print route found if desired

ConcatList()

Utility Functions in IDAS.c

calcNumBlocks() calculate birds eye distance between blocks (an under estimation of distance required

by IDA*)

freeUnusedRouteNodes() move freed route nodes on free list

getLane() get lane information

28

5. SUMMARY

The basic physics and data structures for a physically-realistic vehicle tra�c
ow simulator using �xed
light cycle timing have been presented. Using one-second time intervals for the tra�c light controller
agent and the simulation of vehicle movement simpli�es the simulation while providing realistic vehicle
movement. The simulator has been used to model and compare tra�c control strategies based on
reinforcement learning (Thorpe 1997), simple heuristics, and �xed light timing.

REFERENCES

Haight, F. A., (1963), Mathematical Theories of Tra�c Flow, Academic Press

Paal, F. F., (1975), \Third Order Simulation of Coherent Tra�c Flow", Annual Simulation Symposium,

1975 Simulation Conference, Gordon and Breach Science Publishers, pp. 135-140.

Reitman, J., (1971), Computer Simulation Applications, Discrete-Event Simulation for Syntesis and

Analysis of Complex Systems, Wiley Interscience Division of John Wiley & Sons, pp. 297-331.

Thorpe, Thomas L., (1993a), Personal observations of tra�c lights at 104th and Wadsworth and 100th
and Wadsworth in Westminster, CO.

Thorpe, Thomas L., (1993b), Timings of acceleration and deceleration of personally owned Honda Civic
and Toyota 4Runner.

Thorpe, Thomas L., (1997), \Tra�c Light Control Using SARSA with 4 State Representations", Masters
Degree Project Report, Colorado State University, Fort Collins, CO 80523

