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Abstract

The widening gap between the processor clock speed and the memory latency puts an added pressure on
the performance of cache memories. This problem is ampli�ed by the increase in instruction issue per cycle.
This paper reports on the initial evaluation of a split scalar and array data cache. This scheme allows an
e�cient exploitation of both temporal and spatial locality by having a di�erent organization and block size
for each of the data caches. Initial experimental results show very signi�cant improvements in hit rates on
some Spec95fp and NAS benchmarks.

1 Introduction

As the gap between the CPU speed and the memory access latency keeps widening, as argued by Wulf and
McKee [1], the performance of the �rst level cache architecture becomes even more critical to the overall
performance of the processor.

The objective of existing cache memory architectures is to exploit the locality of reference in both the
data and instruction address streams. Modern processors rely on a split cache architecture, at least on the
�rst cache level (L1), with separate instruction and data caches. The locality within the data address stream
is not uniform. Some accesses are more spatially local while others are temporally local. In particular, array
accesses tend to be more spatial in nature and therefore bene�t from larger cache lines (blocks) while scalar
accesses are more temporal and bene�t from smaller cache lines. For a �xed size cache, the locality in array
accesses is best exploited by a small number of large cache lines while that in scalar accesses by a large

number of small cache lines.
The performance of the cache memory is made even more critical by the increase in the instruction issue

rate: the larger the number of instructions issued per cycle the higher the cost of a cache miss in potential
instructions executed. Note that those programs that exhibit a large degree of instruction level locality,
namely scienti�c type codes, are also the ones that operate on large arrays thereby exhibiting a large degree
of spatial locality. The performance of such programs is very likely to be limited by the cache capacity.

This paper describes the evaluation of a split scalar and array cache. The selection between these two
caches would be done statically at compile time by issuing di�erent load and store instruction op-codes for
scalars and arrays. A schematic of a possible implementation is shown in Figure 1.

This paper is organized as follows: Section 2 describes the experimental set-up used in the evaluation
and Section 3 reports on the obtained results. An analytical evaluation of the cost and bene�ts of a split
data cache is presented in Section 4. Related work is brie
y discussed in Section 5.

2 Experimental Set-Up

The benchmarks used in this evaluation include eight of the SPEC95fp and four NAS benchmark codes.

�This work was supported in part by DARPA Contract DABT63-95-0093
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Figure 1: Split scalar and array L1 data caches

Benchmark Total refs. % Scalar % Array

CFP95 (FORTRAN)

APPLU 309818634 63.26 36.74
APSI 438022078 70.42 29.58
FPPPP 672945890 81.39 18.61
HYDRO2D 399672591 60.04 39.06
MGRID 243087010 72.88 27.12
SU2COR 209392603 46.27 53.73
SWIM 243023561 32.46 67.54
TOMCATV 203607050 62.69 37.31

NAS (FORTRAN)

APPSP 347077931 69.09 30.91

BUK 51225081 88.84 11.16

CGM 594734959 48.54 51.46

EMBAR 665704522 96.62 3.37

Table 1: SPEC and NAS benchmarks used in the experimental evaluation
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The executables of these benchmarks were processed by QPT2 [2, 3], a fast program pro�ling and tracing
system. QPT2 instruments a binary executable �le by inserting code to trace its execution, producing a
new executable �le a.out.qpt. When this �le is executed, in the same manner and with the same input
as the original program, a highly compressed trace �le of every instruction and data reference made by the
program is produced. QPT2 also produces a trace regeneration program that reads the compressed trace
�le and produces a full program trace.

In order to di�erentiate, during the cache simulation, a scalar from an array data memory reference, it is
necessary to know the locations that the array data occupies during program execution, and their respective
sizes.

In FORTRAN codes arrays are statically allocated: there is an explicit declaration of a global variable
in the source code. In order to determine the location and size of such an array, a program was developed
which examines the symbol and string tables of an executable which has been compiled with debugging
information. This program scans the symbol table for all globally declared arrays, determines their run-time
location, and by decoding the array data type also determines their size. Thus it is possible to determine
for each data reference whether it is an array data reference or a scalar data reference by checking to see
if it lies within the array memory ranges. The detection program also handles COMMON block arrays in
FORTRAN.

The trace regeneration program source code is then compiled with a driver program (din.c) which reads
the trace �le and writes the address trace in a format suitable for the dineroIII cache simulator [4, 5] For a
split cache it is necessary to distinguish between an array and a scalar reference in the address trace. The
din driver program has been modi�ed to check each data reference against the list of array memory ranges
that it has available. If the data reference is within the memory space of an array, the reference is sent to
the array cache, else it is sent to the scalar cache.

3 Experimental Evaluation

The percentages of array references in the benchmarks is shown in Table 1. These range from a low of 3.37%
in EMBAR to a high of 67.54% in SWIM. The distribution is somewhat uniform in that the benchmarks are
not biased one way or another.

The following experiments have four objectives. The �rst objective is to determine if miss rates can be
reduced by splitting the cache and increasing the block size of the array. Secondly, if improvements are
found, do they come from the split{cache con�guration, or the increased block size alone? The third goal is
to provide hints as to the optimal ratio of array cache size to scalar cache size. Finally, the optimal block
and cache size con�guration for the split data cache architecture is investigated.

3.1 Variable Array Cache Block Size

Here, the miss ratio of the split cache is compared against that of the uni�ed cache to determine if any gains
can be made. For this experiment, three uni�ed cache size, 32KB{128KB, and �ve block sizes for the array
cache, 64B{512B, were chosen. Both the uni�ed cache and scalar cache have a constant block size of 32K
throughout these experiments. The total e�ective size of the split data cache is equivalent to the size of the
uni�ed cache it is being compared to, with 25% of the size dedicated to the scalar cache and 75% to the
array cache. The plots of the results are given in Figures 2 and 3.

The initial results for the split cache are quite encouraging. For eight out of the twelve benchmarks
tested, improvement is found across all cache and cache block sizes. The exceptions are APSI, SU2COR,
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Figure 2: 25/75 Split Cache Performance. The 25/75 scalar/array split cache is compared against the
uni�ed cache. The uni�ed cache and the scalar cache of the split cache have a block size of 32B for all
cache sizes. The block size of the array cache of the split cache varies from 64B{512B for each cache size.
(Continued, next page.)
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Figure 3: 25/75 Split Cache Performance. The 25/75 scalar/array split cache is compared against the
uni�ed cache. The uni�ed cache and the scalar cache of the split cache have a block size of 32B for all
cache sizes. The block size of the array cache of the split cache varies from 64B{512B for each cache size.
(Continued from previous page.)
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Figure 4: Larger Block Sizes in the Uni�ed Cache. The 25/75 scalar/array split cache is compared to
the uni�ed cache with larger block sizes. The unifed cache miss ratio is plotted for block sizes 322B{512B
for all cache sizes. The split cache miss ratio is plotted for constant scalar block size of 32B and array block
sizes 64B{512B. (Continued, next page.)
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Figure 5: Larger Block Sizes in the Uni�ed Cache. The 25/75 scalar/array split cache is compared to
the uni�ed cache with larger block sizes. The unifed cache miss ratio is plotted for block sizes 322B{512B
for all cache sizes. The split cache miss ratio is plotted for constant scalar block size of 32B and array block
sizes 64B{512B. (Continued from previous page.)
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SWIM, and TOMCATV. APSI shows improvement
for all cache sizes except 128K. For this cache size,
the miss ratio of APSI is quite close to that of the
uni�ed cache. SU2COR improves miss rate at only
the small block sizes and degrades in performance
considerably for block sizes 256B and 512B. SWIM
and TOMCATV, bene�t the most at the larger cache
sizes. Note that the plots given in Figures 2 and 3
are not on the same scale.

The degradation in preformance found in TOM-
CATV, SWIM, and SU2COR can be speculated to be
due to one of two causes. One a�ect of splitting the
cache can be the introduction of capacity misses in
the array cache due to the smaller e�ective size. The
other possible cause for increased miss ratio is in the
nature of the array accesses. If the strides are very
long, loading larger block sizes results in wasted e�ort
and increased misses. The latter cause for degrada-
tion can be solved with a more intelligent algorithm
for choosing which data should reside in the array
cache and which should instead be sent to the scalar
cache.

3.2 Increasing Block Size in the Uni-
�ed Cache

By increasing the block size of the uni�ed cache, the
gains made by the split data cache architecture is
shown to be due to the combination of splitting the
cache and increasing the data cache block size and not
from only the increase in block size. Figures 4 and 5
show the results. The benchmarks that consistently
bene�t more from the split cache are APSI, BUK,
EMBAR, FPPPP, and MGRID. APPLU, APPSP3,
CGM3, and HYDRO2D have lower miss ratios for
the split cache for a most of cache and block size
con�gurations, but not for a cache block size of 64KB
in the larger caches. TOMCATV and SWIM split
caches only improve over the uni�ed with larger block
sizes for a cache size of 128KB. Conversely, SU2COR
improves only at the 32KB and 64KB cache sizes.

3.3 Changing the Scalar/Array Cache
Size Ratio

By changing the ratio of scalar cache size and ar-
ray cache size in the split cache, attempt is made to
provide a hint as to the best con�guration. In this
experiment, a 25/75 scalar/array cache split is com-
pared against a 50/50 split. The results show that
the 25/75 split outperforms the 50/50 split in nearly
all cases. The weighted average plot summarizing the
results is in Figure 6. Although these results fail to
pinpoint the exact optimal scalar/array cache size ra-
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Figure 6: 25/75 Split versus 50/50 Split. A
50/50 split of total cache size is compared the a 25/75
scalar/array split. For each cache size, the miss ratio
of the 32B block uni�ed cache is plotted. Both split
cache con�gurations have a 32B scalar block size and
an array cache block size varied between 64B and
512B.

tio, they show that allocating a larger percentage of
space to the array cache is better.

3.4 Optimal Block and Cache Size

To hint at the optimal con�guration of the split data
cache architecture, the weighted average of all the re-
sults of the benchmarks in this study is plotted. Fig-
ure 7 plots the average miss ratio of the uni�ed cache
for block sizes 32B{512B and split cache for array
cache block sizes of 64K{512K. All tests were per-
formed on total e�ective cache sizes 32KB{128KB.
The split cache is a 25/75 split.

For all cache sizes, the optimal block size is 128B.
The cache size that gives the best performance im-
provement is the 128KB cache. The 32KB, 64KB,
and 128KB split caches improve the miss rate by
1.16, 2.47, and 4.12 times, respectively. Note that,
on average, the split cache improves on the uni�ed,
32B block size for all con�gurations except the 32KB
cache with array block size of 512B. Furthermore, the
average shows the split cache clearly performs better
than the uni�ed cache with larger block sizes.
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Figure 7: Weighted Average of 25/75 Split

Cache Performance.The 25/75 scalar/array split
cache is compared against the uni�ed cache. The
uni�ed cache and the scalar cache of the split cache
have a block size of 32B for all cache sizes. The block
size of the array cache of the split cache varies from
64B{512B for each cache size.

4 Analytic Evaluation of Cost

& Bene�ts

The implementation of separate array and scalar caches
has implications on the whole processor architecture.
Among these a possible increase in the clock cycle
time which could defeat the reduction in overall miss
rates. The purpose of this section is to analyze the
cost trade-o�s of a split data cache architecture based
on the experimental data presented so far.

The expression for the CPU time including the
cache performance [6] is:

CPUtime = IC � Clock Cycle time� [CPI +

(
Mem access

Instruction
�

Miss rate�Miss penalty)]

(where IC is the instruction count and CPI is the
cycles per instruction). Since the clock cycle time
and the miss rate are the two parameters of relevance
here, expression can be summarized as:

CPUtime = C � [CPI + P �m]

where C = Clock Cycle time�IC and P = Mem access

Instruction
�

Miss penalty.

Let Cu, Cs, mu and ms denote the parameters for
the uni�ed and split cache architectures. Let k denote
the expected degradation in clock cycle time of the
split caches (Cs = (1 + k)Cu) and � the reduction
in miss rates in the split architecture (mu = ms�).
Therefore the speed-up of the split caches over the
uni�ed one can be expressed as:

Speed� Up =
Cu

Cs

CPI + Pmu

CPI + Pms

=
1

1 + k

CPI + Pms�

CPI + Pms

This expression assumes that the CPI for both the
split and uni�ed architectures are the same. Depend-
ing on how the split architecture is actually imple-
mented the CPI for the split cache design can ac-
tually be smaller since it would be expected that the
CPU can potentially issue multiple simultaneous load
instructions to the two caches. In this analysis no
change in the CPI is assumed. In modern super-
scalar processors the CPI is often expressed as IPC
(instructions per cycle) where IPC = 1=CPI . Using
IPC instead of CPI the speed-up expression can be
rewritten as:

Speed� Up =
1

1 + k

1 + IPC � Pms�

1 + IPC � Pms

The relation between k and � can be derived from
the condition Speed� Up � 1 as:

� � 1 + k(1 +
1

IPC � P � ms

)

Considering that the fraction of memory reference in-
structions is roughly one third, the expression can be
rewritten as:

� � 1 + k(1 +
3

IPC � (Miss penalty) � ms

)

In evaluating a numerical range of values for a break-

even � the following ranges of parameters is consid-
ered:

� A 5% to 15% increase in clock cycle time be-
cause of the split cache architecture (0:05 �
k � 0:15).

� A two to four issue superscalar architecture (2 �
IPC � 4). Note that such rates are common
today, future CPUs would most likely have much
higher instruction issue rates.

� A miss penalty between 15 and 45 cycles. These
values are relatively low by today's standards,
as the clock cycle time of CPU shrinks in re-
lation to the memory latency these values are
expected to be even larger in the future.
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� A uni�ed cache miss rate ranging between 4%
and 10%.

These parameters result in break-even values for �

ranging from 1.06 to 1.525 which are within the ranges
observed in the experimental results for those bench-
mark where the split cache architecture did improve
performance. Note that in Figure 7 the miss rate for
the 25=75 split cache with a 128 byte block in the
array cache is 1.16, 2.47, and 4.12 times better miss
ratio than the uni�ed cache for the 32KB, 64KB, and
128KB cache sizes, respectively.

Note that this model assumes a wrapped memory
fetch where the accessed word of the block, in a cache
miss, is delivered to the processor �rst and the rest of
the block is fetched to the cache in successive memory
cycles.

5 Related Work

The problem of a split data cache along temporal
and spatial components has been independently ad-
dressed in two prior works.

The concept of a dual data cache was �rst intro-
duced by Gonz�ales et al. in [7]. The dual data cache
consists of a spatial cache designed to exploit mostly
spatial locality and some temporal locality and a tem-
poral cache designed exclusively for temporal local-
ity. In this scheme the type of access is determined
dynamically using a locality prediction table which is
similar in nature to the schemes proposed in [8, 9, 10].
Furthermore, the temporal and spatial caches are not
exclusive in that a data element could be present in
both. The main di�erence between this work and
the one reported here is the dynamic categorization
of data accesses as temporal or spatial and the non-
exclusivity of the two caches. The results reported
in [7], however, are very similar to the ones reported
here.

A split temporal/spatial cache architecture rely-
ing on a compile time tagging of the data is described
and analyzed in [11, 12, 13]. This scheme includes a
second level temporal cache as well as a mechanism
for moving data between the temporal and spatial
caches at run time. The performance of four vari-
ants of the split cache architecture are reported for
the ATUM traces. The authors claim to achieve 40%
better performance for the same complexity as a con-
ventional cache. This approach is very similar to the
one described in the present paper. It di�ers in the
use of a temporal L2 cache and the dynamic moving
of data between the two caches.
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Figure 8: Performance of the 25/75 Split Cache

for all Benchmarks This plot summerizes the miss
ratio improvements for the 64KB cache using 32B
blocks in the scalar cache and 128B blocks in the
array cache. The uni�ed cache uses 32B blocks.

6 Conclusion

This paper reports on the initial evaluation of a split
scalar and array data cache. The tagging of data for
allocation in one or the other data caches would be
done statically by the compiler.

The initial performance evaluation is done using
eight Spec CFP95 and four NAS programs. The split
cache con�guration evaluated is a 25=75 split of the
data cache between scalar and array caches. The re-
sults indicate a signi�cant improvement in the miss
rates of eight of the twelve benchmark codes for all
of the cache con�gurations evaluated. Of the oth-

ers, one shows improvement for all cache sizes except
128KB, one only shows improvement using relatively
small cache block sizes in the array cache, and two im-
prove at the larger cache sizes. Figure 8 is a summary
plot of the miss ratio improvements of the 25/75 split
cache over the unifed cache for all the benchmarks
using a cache size of 64KB and an array cache block
size of 128KB. The block size for the uni�ed and the
scalar caches is 32B.

Comparing the split cache to the uni�ed with larger
block sizes shows that, on average, the split cache
bene�ts the miss ratio more than merely increasing
the block size of the uni�ed cache.

In an attempt to determine the optimal con�g-
uration of the split cache, the di�erent split ratios
between the scalar and array caches were examined
and a variety of cache and array cache block sizes
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were tested. From the results, the 25/75 scalar/array
split performed better than the 50/50 split, indicating
that a larger array cache is better. For all the cache
sizes, a 128B block size in the array cache was opti-
mal. The cache size that saw the best performance
improvement was the largest, 128K.

Finally,the cost bene�t tradeo�s of the split cache
organization is evaluated analytically. It is based on
the assumption of an increase in the clock cycle time
because of the selection between two �rst level data
caches. The results show that the reduction in miss
rates could easily o�set any potential increase in clock
cycle time. The split cache organization can therefore
provide a signi�cant reduction in overall execution
time mostly for large scienti�c programs.

This paper reports on the preliminary results of
the evaluation of the split data cache. Several other
aspects of this cache architecture are currently being
evaluated.
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