Computer Science COlOg‘&%g
Technical Report

University

Visualizing Multisensor Model-Based Object
Recognition *
Mark R. Stevens J. Ross Beveridge

Colorado State University Colorado State University
stevensm@gcs.col ostate.edu ross@cs.col ostate.edu

Michadl E. Goss
Hewlett-Packard Laboratories

goss@hpl.hp.com
March 28, 1997

Technical Report CS-97-106

Computer Science Department
Colorado State University
Fort Collins, CO 80523-1873

Phone: (970) 491-5792  Fax: (970) 491-2466
WWW: http://www.cs.col ostate.edu

This work has been submitted for possible publication.
Copyright may be transferred without notice, after which this
version may no longer be accessible

*This work was sponsored by the Defense Advanced Research Projects Agency (DARPA)
Image Understanding Program under grants DAAHO04-93-G-422 and DAAHO04-95-1-0447,
monitored by theU. S. Army Research Office, and the National Science Foundation under grants
CDA-9422007 and |RI-9503366



Visualizing Multisensor Model-Based Object Recognition

Mark R. Stevens
Colorado State University
stevensm@cs.colostate.edu

Abstract

A difficult problem when designing automatic
object recognition algorithms is the visualiza-
tion of relationships between sensor data and
the internal models used by the recognition al-
gorithms. In our particular case, we need to
coregister color, thermal (infrared), and range
imagery, to 3-D object models in an effort to
determine object positions and orientations in
three-space.

In this paper we describe a system for interac-
tive visualization of the various spatial relation-
ships between the heterogeneous data sources.
This system is designed to be closely linked to
the object recognition software such that it al-
lows detailed monitoring of each step in the
recognition process. We employ several novel
techniques for visualizing the output from an
imaging range device. Our system also incorpo-
rates sensor models which can simulate sensor
data for visible features of stored object models,
and display these features in the proper position
relative to the appropriate sensor.

1 Introduction

When multiple sensors view a common scene, it
is extremely helpful to fuse the information into
a single common interactive display. We have
developed a visualization system which inte-
grates information from multiple sensors along
with 3-D CAD object models for use in model-
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based object recognition. This tool enables us
to readily uncover and understand subtle re-
lationships between our stored object models
and sensor data. Three specific sensors used
are: a color camera, a Forward-Looking In-
frared (FLIR) camera, and a range imaging
laser RADAR (LADAR).

This visualization system has become an invalu-
able tool for data exploration and understand-
ing. In addition, the interface illustrates the
importance of coupling visualization with ob-
ject recognition algorithms. As recognition al-
gorithms improve in capability and scope, the
interpretations they produce include increas-
ingly rich and detailed information about rela-
tionships between stored object models and the
scenes being viewed. The information present
in these interpretations is most compelling when
presented to a person using interactive 3-D visu-
alization. In addition, the system allows a user
to better estimate ground truth for the data.
Since ground truth is often hard to determine
at the time of data collection, some method of
establishing a baseline is imperative.

Each of the three sensors we use provides qual-
itatively different information about the nature
of the world being viewed. Color imagery pro-
vides visual cues in the form to which humans
are accustomed. Infrared provides thermal in-
formation, a useful sense missing from our hu-
man repertoire. Finally, range data directly re-
veals part of the 3-D structure of the scene.
Due to the varying nature of the sensor informa-
tion, the visualization system is responsible for
showing how the different pieces of sensor data
relate to one another. The problem becomes
compounded when different levels of resolution
and detail must be overlaid. While 3-D visual-
ization might be helpful for working with CAD



models even when range data is not available,
the ability to visualize 3-D relationships in the
presence of such data is paramount.

Our efforts began in 1993 when we collected
roughly 400 color, IR and range images[5], avail-
able through our web site '. It was immedi-
ately apparent that viewing these images with
separate, unrelated 2-D displays was woefully
inadequate. A means was needed to visually
fuse the imagery while simultaneously bringing
to life the 3-D character of the range data. This
need led us to build our first visualization tool:
RangeView [11; 10]. RangeView had limited
capacity for embedding and manipulating 3-D
CAD object models in the range sensor’s native
3-D coordinate system. However, the choice of
this coordinate system as the master reference
frame limited RangeView, and subsequently a
newer more flexible system was built. This sys-
tem, called ModelView, allows greater integra-
tion of object models with sensor data. This
paper describes the ModelView system, and the
improvements made over our earlier work.

2 Motivation

The Computer Vision Group at Colorado State
University is developing new object recognition
algorithms to identify military vehicles in mul-
tisensor imagery. The research is part of the
Unmanned Ground Vehicle (UGV) Program, a
joint project of the Advanced Research Project
Agency (ARPA) and the Office of the Secretary
of Defense. For the UGV project, four Semi-
autonomous Surrogate Vehicles (SSVs) have
been designed to survey surrounding terrain and
locate possible targets.

To achieve these target recognition goals, each
vehicle has been designed to carry three sensors
(color, FLIR, LADAR) mounted upon a single
pan-tilt platform. The ModelView visualization
system has been built to assist us in understand-
ing this data and its relationship to stored 3-D
vehicle models. ModelView system also serves
as a prototype for how raw data from an au-
tonomous vehicle might be fused and displayed
to a remote operator.

Many of the visualization concepts illustrated in
ModelView are applicable to a wide variety of
application domains. Numerous sensor modal-
ities, including stereo [3; 6; 26], Scanning and
Scannerless LADARs, and IFSAR [40] produce
range imagery. Whenever range data is inte-

"http://www.cs.colostate.edu/~vision

grated with stored 3-D object and terrain mod-
els, 3-D visual feedback is important. In addi-
tion, when separate range and optical sensors
view the same scene, the multisensor visualiza-
tion aspects illustrated by ModelView are es-
sential.

Figure 1 (see color plates) shows a sampling of
views from our system, as well as providing a
visual overview of the data, object models, and
relationships of interest in our work. The vehi-
cle in the image is roughly 50 meters from each
sensor, and is almost centered in the scene. This
particular image is not a representative of the
types of images the ATR algorithm is designed
to deal with, but the large number of on-target
pixels is useful for illustration of the visualiza-
tion. For the Fort Carson data, a more typical
range to vehicle would be between 100 and 150
meters from the sensor. The close ranges are
partially due to limits of the prototype LADAR
sensor. Wide-angle lenses were used on the
other two sensors to approximate the perfor-
mance of a modern vehicle sensor suite oper-
ating at 1km.

Starting in the left column of Figure 1, we see
an example color image followed by an enlarged
portion with the model overlaid. The right col-
umn shows the FLIR image, and its correspond-
ing overlay. The top of the center column shows
a standard view of a range image and the next
lower frame shows the CAD model rendered in
the scene. The bottom two center images con-
tain different views of the scene with the range
data re-projected from a different viewpoint and
optical imagery texture mapped onto the range
data. This form of texture mapping allows the
relationships between the sensor images to be
observed.

The remainder of the paper is broken into sec-
tions describing the sensor model, the CAD
models used in the system, the coordinate sys-
tems used, and the methods used to visualize
the sensor data relationships.

3 The Sources of Information

3.1 Sensor Models

A simple pinhole camera model is used to de-
scribe the 3-D world-to-image plane mapping
for the range, IR and color sensors. Hence the
mapping from a point in the sensor coordinate
system, P4, to an image point, p 4, for a sensor
A may be written in homogeneous coordinates



Table 1: Intrinsic Sensor Parameters for Fort Carson Color, FLIR and LADAR

FOV fu 4 FOV f,.4 | Dimensions Scale Center

Sensor | Rad. | Deg. | Rad. | Deg. | dy 4 | dpA | Su 4 | Sv,4 | tu,A tu,A

Color | 0.705 | 40.4 | 0.496 | 28.4 | 720 | 480 | 978 | 947 | 345.0 | 227.8

FLIR | 0.434 | 24.9 | 0.401 | 23.0 | 256 | 256 | 580 | 630 | 127.5 | 127.5

range | 0.271 | 15.5 | 0.060 3.4 | 120 24 | 440 | 400 | 59.5 | 11.5

as: 3.3 CAD Object Models
Sud 00 tya || X
pa = O0aPy =| 0 sy4 tya||Y | (1) Highly detailed models of the vehicles in our

0 0 1 A

where O 4 is the perspective projection matrix
and A is either a point from a color, C, FLIR, F,
or LADAR, L, sensor (A € {C,F,L}). Convert-
ing p 4 into normalized 2-D homogeneous coor-
dinates effects the perspective transformation:

X
Su, A7 + tu,A
Y
Sv, A7 + tv,A
1

The parameters s, 4 and s, 4 are typically
called the scale factors for the sensor and the
parameters t, 4 and t, 4 define the point of in-
tersection between the optical axis and the im-
age plane. Together, these four values define
the intrinsic parameters of the sensor, A.

(2)

ba =

3.2 Intrinsic Sensor Parameters

The intrinsic parameters, as well as the field of
view and image dimensions, for the three sen-
sors whose imagery is presented in this paper
are indicated in Table 1. For the color sensor,
the intrinsic parameters have been recovered
using a known calibration target. For the IR
sensor, the intrinsic parameters were estimated
based upon the manufacturers specifications for
the sensor and subsequently refined using the
ModelView tool (see Section 5.3 for details).

Finally, the range sensor parameters were recov-
ered from calibrated imagery. The maximum
range measured by the LADAR is 1074 feet, and
hence multiplying a raw pixel value by the ratio
1074/4095 yields a range measurement in feet.
The standard deviation of the range measure-
ment is approximately 1 foot [4]. Additional
details on how the sensors were calibrated, the
relationships between parameters, and the jus-
tification for the use of the perspective projec-
tion mapping for the range sensor can be found
in [14].

Fort Carson dataset exist in the model format
known as BRL/CAD [36]. Algorithms to reduce
the model complexity to a level more closely
related to the sensor granularity have already
been developed [33]. From these simpler mod-
els, features to be used in the matching process
can be predicted.

Visible feature prediction is essential due to the
combinatorially explosive nature of model based
recognition [12]. The naive approach to model
matching would be to determine a match error
between all possible combinations of model and
data features, and then choose the smallest er-
ror set as the optimal object match. However
in a system where only 10 model features are
being compared against 10 data features, there
exist 2'% possible combinations. Being able to
pick a small set of model features for match-
ing, let us say 5, can greatly simplify the the
correspondence space (2°0).

Common approaches to model feature gener-
ation have centered around an off-line model
analysis in which visible features are deter-
mined for all viewpoints [27]. The results are
then grouped into regions of constant topol-
ogy [16] and stored in an aspect graph repre-
sentation [15]. The aspect graph is used at run-
time to obtain the list of visible features for a
given pose [31]. For these systems, visualization
is mainly centered around showing which par-
ticular model features are chosen, rather than
relating them to any particular sensor image.

Our current feature prediction algorithms use
graphics hardware to achieve real-time genera-
tion of relevant model features [33]. The fea-
ture prediction is fully integrated into the Mod-
elView system and is central to the visualization
paradigm. When visible model features are de-
termined, they are rendered into each sensor im-
age. This allows the user to assess not only how
accurately the features were predicted, but also
how well they fit the data.



Two sets of model features are generated based
upon an estimate of an object’s position and
orientation. The first set represents the model
silhouette and visible internal edges based on
simple illumination constraints, the second set
represents the 3-D sampled surface information
for matching to the range data. The edges are
defined by a set of 3-D endpoints stored in the
BREP model. The sampled surface points are
generated by ray tracing the model, using the
range sensor geometry, for a given pose.

4 Related Work

Related work falls into three broad and distinct
categories: fusing information provided by mul-
tiple sensors, work related to multisensor and
object model visualization, and computer vi-
sion work on object recognition. The discus-
sion is followed by our previous work on the
RangeView system.

4.1 Sensor Fusion

Sensor fusion is the process of finding com-
monalities in heterogeneous sensors informa-
tion. The goal is to provide a semi-autonomous
agent with an internal representation of the sur-
rounding world [23]. While the goals are very
different from those of visualization, they need
to solve many of the same problems associated
with combining information from different sen-
sor modalities.

Tong has used LADAR masks to segment FLIR
imagery, resulting in simple sensor fusion [34;
35]. Unfortunately, the visualizations are ren-
dered only as single 2-D images. Others have
used neural networks to learn a mapping which
relates two images [37; 38]. If the two im-
ages are analyzed as simple input signals, a
network can be used to find a correlation be-
tween the two signals. In addition to neural
networks, wavelets [17], edges extracted from
the imagery [3], fuzzy logic [30], and image con-
tours [18] have been used to determine the pixel-
to-pixel correlation mapping between various
types of imagery.

4.2 Sensor and Object Visualization

FLIR and color images can be effectively viewed
using conventional image display techniques.
More interesting is the case of imaging range

sensor data which are conventionally displayed
as either 2-D grey scale images, or as a 2-D over-
head ”scatter plots” [39]. For a grey scale rep-
resentation, the grey level of each pixel corre-
sponds to the distance of the sample from the
sensor. Work has also been done in the display
of range images as 3-D surfaces with illumina-
tion and shading, but this requires the prior ex-
traction of surfaces from the raw range data [25;
29].

Previous systems [28; 39] which locate a 3-D tar-
get relative to a LADAR image typically render
an image of the model in the image plane of the
sensor. This 2-D image does not allow a com-
plete understanding of how well the model has
been located. With our verification system the
3-D model and sensor data can be interactively
examined to assess the 3-D fidelity of the match.
We have found the ability to arbitrarily change
viewing parameters invaluable in the develop-
ment of our object recognition algorithms.

Model-based visualization tools generally allow
wire-frame representations to be interactively
manipulated until the desired point of view is
obtained. Ray tracing can then be used to ren-
der highly detailed images of this scene. In ad-
dition, terrain models and sensor imagery can
be used to generate highly realistic scenes [24].

4.3 Model-Based Recognition

A long tradition of work on object recognition
has emphasized finding matches between object
and image features for which there is a single
globally consistent alignment. Using multiple
sensors instead of a single sensor complicates
the alignment task.

There are good examples of successful mixed-
modality fusion [32; 7; 13], but this research
area is still young. Aggarwal notes, and we
agree, that to properly perform mixed-modality
sensor fusion, coordinate transformations be-
tween images need to be adaptively deter-
mined [19]. Our recent work [22] emphasizes
global alignment as a basis for optimal match-
ing to multisensor data using local search.

The ModelView visualization system presented
in this paper displays all the necessary relation-
ships to visualize the sensor fusion process, as
well as to interact with the model and data
while the recognition is taking place. The lo-
cal search process finds a sequence of succes-
sively better match hypotheses until one which



is locally optimal is found. As researchers de-
veloping these algorithms, we find the ability
to visualize each step of the local search pro-
cess invaluable. The visualization not only aids
in testing the matching code, but also provides
the user with an understanding of how well the
algorithm is operating, and whether or not it is
converging upon a good solution.

4.4 RangeView

Our previous efforts at visualizing multisen-
sor data within the model-based vision frame-
work utilized a data-centered paradigm. The
RangeView system [11; 10] contained several of
the sensor-to-sensor relationships discussed in
Section 6. The system was centered around the
LADAR coordinate system, and allowed a user
to interactively view the output of the color and
FLIR images textured onto the range data.

The texture mapping used by RangeView was
not as well developed as that presented here:
RangeView averaged all the color pixels lying
under a corresponding range pixel. The appear-
ance was a smoothed color image on top of the
LADAR. ModelView uses the known 3-D rela-
tionships of sensors to accurately back-project
range data into the scene and then re-project
this data into the color image plane. Conse-
quently, the texture mapping accurately reflects
the true underlying 3-D geometry of the scene.

RangeView also did not utilize sensor geometry
when determining the correspondence between
range and optical imagery. Instead, separate
affine transformations were used to warp the
optical pixels to the range data coordinates [9)].
The 2-D affine mappings were determined by
solving for the affine parameters which mini-
mize the squared Euclidean distance between
hand selected control points. The true map-
ping between sensors is often not affine and this
affine mapping was only a coarse approxima-
tion of the true mapping. In previous work [14]
we explore in considerable detail the conditions
under which the mapping is affine and to what
extent our mappings are valid.

RangeView was further limited by the lack of
model-to-sensor relationships. The only tech-
nique for visualizing the object recognition re-
sults was to render the BRL/CAD models into
the LADAR window. Then the texture mapped
optical-to-range representation is used to deter-
mine how well the model fit the optical data.
It was soon discovered that the model-to-color

and model-to-FLIR relationships were essential
for rating the matching system performance.

Finally, RangeView did not have any mecha-
nisms for visualizing which model features were
being used during the matching process. In fact,
the feature prediction was completely decoupled
from the visualization system. This made it
difficult to develop the object recognition sys-
tem because it was not easy to determine which
model features were being matched to which
data features. ModelView fully integrates the
visualization of predicted features and their re-
lation to the sensor data as the recognition sys-
tem is converging to a solution.

5 Reference Frames

ModelView may be thought of as a tool for vi-
sualizing 3-D relationships between sensors and
their relationships to the object models. While
the sensors themselves are not iconically rep-
resented, changes in 3-D relationships between
them are expressed through visual overlays of
one type of sensor output on another. The fol-
lowing two sections address how to obtain the
3-D mappings between the sensors, and then
how to visualize the results.

5.1 Sensor Placement

The positioning of the sensors used in the Fort
Carson data collection mimics the setup which
would be present on the UGV vehicle: recall
Figure 1 (see color plates) and accompanying
text introduced this dataset. The sensors were
placed as physically close to each other as was
practical and care was taken to make sure each
sensor was level. This setup approximates bore-
sight alignment of the sensors for objects viewed
at a distance beyond approximately 45 meters.

From the given sensor placement, a series of
constraints may be inferred for the relative 3-
D mapping between sensors. These constraints
are described in the following section and the
underlying rationale and associated approxima-
tions are further justified in Section 5.4.

5.2 Relating Sensors and Objects

Consider transformations between three dis-
tinct 3-D coordinate reference frames: a world
reference W and the three sensor reference
frames C (color), F (FLIR), and £ (LADAR).



The world reference frame origin and axes co-
incide with the model coordinate system. The
model is centered at the origin, and the positive
y axis points upward. The 3-D transformation
of a point Py in the world coordinates W to a
point P4 in the reference frame of a sensor A
may be defined as:

Py = My 4Py (3)

where MW,.A = TW,.ATWRW and A € {C, F, E}
All coordinate systems are measured in meters,
so no scaling is needed to transform between
coordinate systems.

The rotation Ryy rotates points about the ori-
gin of the world (model) coordinate system in
order to alter the relative orientation of the ob-
ject model and the sensors. Note that the same
rotation matrix is used for all sensor coordinate
systems. This is consistent with an assumption
that the sensors are mounted upon a common
platform.

The transformations, 1)y and Tyy 4, translate
the points in the world relative to the sen-
sors. The ModelView system distinguishes be-
tween translation in depth relative to the sen-
sors and translation in a common XY image
plane shared by all three sensors. The XY plane
translations Ty 4 are independent for each sen-
sor. The depth, or Z axis translation 7)y, is the
same for all three sensors.

Given these constraints, the world (W) to sen-
sor (A) transformation may now be expanded
from (Tyy, 4 Tw Rw), and My 4 =

1 0 0 T.A,w 1 0 0 0 Tex Tay Tez 0
0 1 0 Thuy 0O 1 0 0 Tyz Tyy Tyz O (4)
0 0 1 0 o o0 1 T: Tzz Tzy Tzz O
0 0 O 1 o 0 o 1 0 0 0 1

Using the constraints specified by Equation 4,
the mapping between each sensor frame has two
degrees of freedom; the mapping between any
two sensors A and B may be written as:

Myp = Tap (5)

This translation between two sensors may be ex-
pressed in terms of the translation of each sensor
relative to the world.

1 0 0 Tas-—Tsa
_ _ o 1 0 Tu,-Ts,
Tas=Twa-Tws=|, o 1 0 (6)
0 0 0 1

The three sensor-to-world transformations are
not independent: knowing any two determines

the third.

Myy,c = MgeMyy,r My = Mg cMy, r

Myy 7 = Mc, 7 My c (7)

Myy 7 = Mg g My ¢

Mw,c = Mc,cMw,c Mw,c = My My, F

LADAR Sensor

2D-Image Plane
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System
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System

FLIR Sensor Color Sensor
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Figure 2: Coordinate Systems of Model and
Data Sets

Figure 2 graphically shows how the various ref-
erence frames relate via the given transforma-
tions. Each of the boxes represents a unique
reference frame. At the center is the canoni-
cal representation: the model (world) coordi-
nate system. Each arc in the graph represents
a mapping from one system to the next. All of
the M transformations are mappings between
3-D reference frames and are invertible.

The O mappings in Figure 2 indicate projection
onto the associated sensor image plane. These
transformations are of the form described in
equation 1 and use the intrinsic parameters pre-
sented in Table 1. These projection transforma-
tions are of course not typically invertible. The
exception is the LADAR mapping O, which
may be inverted due to the 3-D nature of the
depth information.

ModelView supports a C++ object class of
transformations which implements a network of




coupled transformations. This network is con-
structed such that if any transformation is al-
tered, any others effected are updated appro-
priately. For instance if the transformation
Myy ¢ is modified, then the Myy z and My ¢
are adjusted so the constraints between refer-
ence frames are not violated.

Within the boundary representation
(BREP) [20] used for the CAD object models
are structures used to encode the object in each
of the major coordinate reference frames. The
essential properties of the model representation
capture the typical relationships needed by the
model matching system (i.e., which (V)ertices
bound an (E)dge, which edges bound a (F)ace,
and which faces belong to a (S)urface). The
vertex structure contains the 3-D model point
in each of the various coordinate systems. Mod-
ifying an arc in Figure 2 causes a subsequent
update to each vertex point to reflect changes
in model position relative to each sensor.

5.3 Calibration Refinement

Once the model features have been predicted,
they can be directly related to the data imagery
using the camera calibration parameters. Often
the camera calibration parameters may contain
slight errors. Therefore it is useful to allow the
user to interactively refine the initial sensor pa-
rameters in an effort to correct for slight inaccu-
racies. The left side of Figure 3 shows the initial
color calibration parameters used to render the
model features into the scene; these parameters
cause the vehicle to be slightly too small. The
right portion of the figure shows the result of in-
teractive user modification of those parameters
to reflect the actual imagery. The modifications
are typically very small since the calibration pa-
rameters tend to be highly accurate.

Figure 3: Before and after interactively adjust-
ing the calibration parameters

5.4 Sensor-to-Sensor Constraints

In the Fort Carson data, what each sensor sees
relative to another sensor depends upon mi-
nor differences in sensor placement, small differ-
ences in sensor pointing angles, different fields of
view and different levels of resolution. In princi-
ple, this suggests the transformations My 4 de-
veloped earlier ought to permit all possible rel-
ative motions between sensors. However, it not
necessary nor desirable in our application to al-
low 6 degrees of freedom between sensors. This
is because the sensors are approximately bore-
sight aligned, and hence their relative placement
is constrained.

It is worthwhile to consider briefly the implica-
tions of near bore-sight alignment. Perfect bore-
sight alignment means that the transformations
Myy 4 and Myy g are identical for two sensors A
and B. For simplicity, also assume each has the
same intrinsic parameters so that image space
coordinates should be identical for common 3-
D points. Now, consider the following possible
deviations from this initial configuration:

Rotation About the Optical Axis: Sensor
B is rotated about Z, the optical axis, by
an amount ¢ relative to sensor A. If both
sensors have equal horizontal and vertical
scale factors, then the image plane for B is
simply rotated by ¢ relative to the image
plane for \A. However, given unequal hor-
izontal and vertical scale factors, warping
occurs and a full 6 degree of freedom 2-D
affine transform is needed to represent the
mapping between the two image planes.

Translation Along the Z axis: Sensor B
translates ahead or behind sensor A along
the common optical axis. Under the highly
restricted case of viewing points all lying in
a plane of constant Z, the scaling is con-
stant for all points and the mapping re-
duces to a simple 2-D scale change. How-
ever, in general no single 2-D affine trans-
formation can capture the mapping for all
3-D points.

Translation in a Common Image Plane:
Sensor B translates in the common XY
image plane. Under the restricted case
of viewing points all at a common depth,
this case reduces to simple 2-D translation
of one image plane relative to the other.
However, more generally the amount a
3-D point translates in one image plane
relative to another is inversely proportional
to distance from the sensors.



Rotation About the Horizontal and Ver-
tical Axes: Rotate sensor B about the X
and Y axes relative to sensor A. Equiv-
alently, this may be thought of as intro-
ducing uncertainty in the relative pan and
tilt angles of one sensor relative to the
other. In general, this case introduces a
significant degree of non-linearity in the
mapping between the two sensor image
planes. However, under some conditions
discussed below, this case may be approx-
imated as translation in the common XY
image plane.

Rotation about the optical axis does not appear
to be a factor in the Fort Carson data. Move-
ment of one sensor ahead or behind the other
also does not appear to be a practical concern
and is unlikely to be a factor in any data where
the sensors are placed close to each other and
are used to view distant objects. For small pan
and tilt angles, common image plane transla-
tion is an adequate approximation to rotation
about the X and Y axes. Consequently, the
transformations in ModelView enforce a com-
mon rotation for all three sensors.

One way to quantitatively evaluate the ade-
quacy of this simplifying assumption is to ask
what happens if two sensor models are setup to
track a common central 3-D point at a depth
D = 100 meters. One sensor tracks the point
by panning and the other by translating in the
XY plane. Using the parameters for the color
sensor, it is possible to determine the maximum
deviation between pixel coordinates for identical
3-D points under some different assumptions.
For example, consider first a sensor rotated by
1/5 of a degree and points lying within 1 me-
ter of the tracking depth and near the tracking
point on the image. In this case, the translating
sensor approximates the mapping of the rotat-
ing sensor to within 0.06 pixels. Clearly this is
more than adequate for 3-D points on a moder-
ately sized object at 100 meters.

For points beyond the tracking depth, the pixel
deviation is bounded. For example, given 1/5
of a degree of rotation, the maximum deviation
between the rotated and translated sensor for
points out to 1,000 meters is less than 4 pixels.
For the LADAR, which has a lower pixel reso-
lution and smaller field of view, the comparable
pixel deviation is about 1 pixel. A much more
detailed development of near bore-sight aligned
sensors and the use of image plane translation to
approximate pan and tilt may be found in [14].

6 Visualizing the Model-to-Sensor
Relationships

ModelView may be used to visualize different
3-D relationships between an object model and
multisensor data. ModelView visualizes the ef-
fects rather than the relationships themselves
because the system never actually presents icons
of the sensors or their relative 3-D scene posi-
tion. Instead, ModelView creates a synthetic
visualization environment in which changes to
these 3-D relationships manifest themselves as
changes in a combined display of model and sen-
sor data. For the color and FLIR sensors, this
is done with two different displays. One maps
3-D object model features into the sensor im-
age space and the other maps the image data
onto the 3-D object model. For the range sen-
sor, both range and object model features are
displayed in a common 3-D interactive viewer.

6.1 Relating Model to Optical

From the standpoint of visualizing the relation-
ship between a sensor and the model, the needs
and methods for the FLIR and color sensors are
essentially equivalent. For simplicity, most of
the development will be cast in terms of the
color sensor, and mention of the FLIR will only
be made when specific differences arise.

Of the two ways to visualize the relationship be-
tween the sensor image and the object model,
projecting object features into the image space
is perhaps more commonly seen in the context
of object recognition, while texture mapping im-
agery onto a 3-D model is more common in com-
puter graphics. For the former case, the features
predicted to be visible for the object model are
projected into the image using the 3-D trans-
formation Myy ¢ and the projection O¢ for the
color sensor. Similarly, Myy 7 and O are used
for the FLIR image.

When mapping imagery onto the models, the
same transformations are used to determine a
relationship between points on the object model
surfaces and points in the color image. Once it
is known which color pixel belongs to each 3-D
point in the model’s native VW environment, it is
possible to texture map the color imagery onto
the 3-D model. Figure 4 displays the various
model to optical relationships just discussed.



6.1.1 Model Over Image Display

Section 3.3 briefly described the process used to
predict a set of features expected to be visible
for a given object model. For the color sensor,
the factors considered when making this predic-
tion are the object model orientation and the
direction of the light source. The center im-
age in the bottom row of Figure 4 (see color
plates) shows an example of the features pro-
jected into the color image. The lines shown
in red were determined to lie on the object sil-
houette. Those shown in green represent signif-
icant internal lines predicted based on the light-
ing model. To the right of the color image the
predicted features, all in black, are shown pro-
jected into the FLIR image.

The complete mapping from object reference
frame W to the color image plane, based upon
equations 1 and 4, may be written as:

pc = O¢ My ¢ Py (8)

where the intrinsic camera parameters for the
color sensor are given above in Table 1. A simi-
lar equation using the FLIR transformation and
intrinsic parameters defines the mapping for the
FLIR visualization. In both cases, the line dis-
played over the image is produced by mapping
the 3-D endpoints of the model line features to
the image plane.

6.1.2 Image Over Model Display

For visualizing the color or FLIR as it maps
back into the 3-D object model reference frame,
the original BREP model is used in conjunc-
tion with the current transformations. The im-
agery is mapped onto visible faces using what
are essentially standard texture mapping tech-
niques [1]. For each face, three vertices are se-
lected to define a face specific 2-D coordinate
reference frame which is used to map between
image and face reference frames.

The top row of Figure 4 (see color plates) illus-
trates the results of the color texture mapping
process with the model rendered from several
different viewpoints. The middle row of Fig-
ure 4 shows the same model rendered with the
FLIR texture map. To formally define the im-
age mapping process for a 3-D planar face, let P,
be a 3-D face vertex selected to serve as the ori-
gin of the face coordinate reference frame. Pick
two additional vertices PP, and P; so as to define

the basis vectors of the face specific 2-D refer-
ence frame:

Uy = PL—PF, Vu = P,—P, (9)
Basis vectors Uaq and V are not usually or-
thogonal, which is not a problem so long as they
are not co-linear (or nearly so).

To map between the color (or FLIR) image
plane and the face, comparable basis vectors
may be defined on the image plane using the
projection of the 3-D vertices into the image:

Ue = (OcMycPr) — (Oc My cP,)
Ve = (OcMycPy) — (OcMycP,)  (10)

The basis vectors (Unq, Vaq) and (U, Ve) al-
low us to define a simple invertible mapping
between the image space and the object model
face. To go back and forth between 3-D points
P on the face and 2-D points p on the image:

(Um-P)Uc + (Vp - P) Ve (11)
(Uc-p)Um + (Ve-p) Vi (12)

To map the pixel grid onto the 3-D object face,
first the £ vertices of the convex face polygon are
mapped to the image plane using equation 11.
Next, a standard active edge list polygon fill
algorithm [8] is used to enumerate the pixels
falling within the face polygon. Finally, the pix-
els, or more specifically the coordinates of the
vertices at the four corners of each pixel rectan-
gle, are mapped back onto the 3-D object face
using equation 12.

p:
P =

6.2 3-D Model and LADAR Display

We have developed a new method for displaying
data from a range imaging device (LADAR) and
relating this data to a 3-D object model. This
technique provides a three-dimensional view of
the data which allows the viewer to interactively
explore 3-D relationships from any distance and
viewpoint. The range data is displayed as a
partial 3-D model of the scene in a coordinate
system relative to the sensor. Each range data
sample is displayed as a rectangle at the mea-
sured depth, occupying the angular space cov-
ered by the LADAR pixel.

The 3-D coordinates (X, Yz, Z;) for a pixel
(u, v) with range value D must satisfy the fol-
lowing constraints:

Xc
u = Su’['Z_[’ + tu7£



Y,
v = S"’ﬂZ_i + tmg (13)

D = /X3 + Y} + 72

Using these constraints, an inverse mapping D
may be written as:

Xr ary
Y By
— = D U, 'U, D 14
A =7|=p@un a9
1 1
where:
U — by, L
o = —=,
Su,L
—t
g="—"E (15)
Su,L
D

VB

Using D, the 3-D corners of a LADAR pixel are
defined by:

D(u+1/2, v+1/2, D) (16)

Figure 5 (see color plates) illustrates different
aspects of the model and LADAR display. The
top left image of Figure 5 shows the BREP ob-
ject model in the range sensor reference frame as
determined by the transformation My . The
next image in the same row shows the sampled
surface of the model generated by the feature
prediction algorithm discussed in Section 3.3.
Each range point is rendered in the color of the
face which caused the sampled point.

Both the range data itself and the sampled
model features may be shown simultaneously
in the model and LADAR display. The third
image from the left in the top row of Figure 5
shows the predicted model features in red and
the LADAR range features in blue. The rect-
angles in this display are drawn in outline so
one can actually see through a sample point to
those which are behind. While the effect on a
printed page is only moderately informative, in-
teractively moving the viewpoint effectively dis-
plays the spatial relationships. The next image
in the row uses the color coding to show the
feature set. Again, red and blue are used to
distinguish between model and data features,
and now two new colors (yellow and cyan) have
been introduced to represent which pixels are
being used during the matching process. The

cyan pixels are the data features used, and yel-
low are the corresponding model features being
used.

The bottom row of Figure 5 show the model
drawn with the range data in a common frame
of reference. By allowing different viewpoints,
the user can easily determine how well the range
data fits the model features. The second image
on the bottom row shows a view looking down
on the model and data. From this perspective,
the outline of the data points forms an L-shape
corresponding to the general shape of the vehi-
cle. The next image shows a different perspec-
tive which is more difficult to interpret. The
final image shows a side view of the model and
range data. Again, this figure is difficult to in-
terpret, but if one looks closely, a general trend
in the data can be seen which represents the
front portion of the vehicle.

Display of the range data in three-dimensional
space gives the user a more complete representa-
tion of the spatial layout of the data. Interactive
control of viewing parameters allows the user
to examine the range data from many different
viewpoints at any magnification level. The user
may select a point of interest in the data using
the cursor in the viewer window, or by specify-
ing a 3-D location directly using sliders in the
control panel. The control panel also provides
sliders for the user to change the view azimuth,
elevation, and distance relative to the point of
interest. User controlled de-cluttering of the im-
age is accomplished by specifying the range of
depth values displayed relative to the viewer,
the sensor, or both, using sliders on the con-
trol panel. Grey scale or pseudo-color values are
rescaled to represent the selected depth range.
Several built-in color palettes are provided, as
well as the ability to load a color palette from a
user-specified file. A workstation with hardware
graphics acceleration is used to perform display
update at interactive rates. Current implemen-
tations are for Sun Sparc10/24ZX systems using
the PEX and OpenGL graphics libraries.

7 Sensor to Sensor Relationships

As a visualization interface for object recogni-
tion algorithms, the model-to-sensor visualiza-
tions just presented are invaluable. However,
another very important feature of ModelView
is the ability to to visualize changes in pixel-
to-pixel alignment between sensors. Sensor-to-
sensor visualization is important for two rea-
sons. First, one product of recognition [2;
21] is an adjustment to the sensor-to-sensor



transformations and it helpful to see this adjust-
ment. Perhaps more importantly, fusing the dis-
play of multisensor data provides the user with
the opportunity to see relationships not evident
when each sensor is viewed separately.

7.1 Displaying Color and FLIR

The transformation network specified in Fig-
ure 2 suggests that perhaps enough is known to
compute a mapping between the color and FLIR
sensors. Figure 6 (see color plates) illustrates
such a combined visualization using the simpli-
fying assumption that all points in the scene lie
at the depth of the object model.

7.1.1 Approximating Pixel Mappings

Since the color and FLIR sensors are con-
strained to translate in a common image plane,
there exists a fairly simple expression for the
mapping of points from one image plane to the

other. Begin with the equation for all points
which project to a single color pixel:
uc—ty
Z( Csu,C ’C)
P = | glue—tve) (17)
Sv,C
Z

As Z varies, P traces out points lying on the
ray passing through the sensor focal point and
image point uc¢ and ve. Since the FLIR refer-
ence frame differs by only an XY translation,
the same set of points in the FLIR reference
frame may be written as:

7 (uc—tu,c) + T,

Su,C
Z(ch;,tg,c) + T, (18)

VA

Pr =

The projection of this point into the FLIR im-
age plane may be written as:

uc —t T,
UF = SuF (M) +tuF + Su,]:—w

Su,C VA
(19)
ve — tyc T,
VF = SuF (%) +toFr + Su,ffy
U’

As expected, equation 19 shows how a point
maps between color and FLIR depends upon

the Z coordinate of the 3-D point being viewed.
In the absence of knowledge of Z for each pixel
in the color image, some assumptions must be
made. The simplest assumption, and the one
used here, is to assume all points are at a con-
stant depth Z = D. Since there is typically an
object model of interest at a known depth D,
the choice is not entirely arbitrary. Clearly it
is far better to use pixel specific Z values when
possible, for example when these estimates are
available from a range sensor.

7.1.2 Combining Imagery With HSV

Once the mapping between the two image
planes is obtained, the sensor information can
be combined. It is useful to represent the com-
binations in HSV space. For example, by modu-
lating different channels in HSV it is possible to
make pixels either colorful or grey-scale based
upon the response of another sensor. Two dif-
ferent combination schemes have been found to
be useful.

To define these combinations, let Oy, Os, O, be
the HSV components of the output for a pixel
which is displayed to the user. Let Iy, Ig, I,
be the input values for the corresponding pixel
in the color and let F' be the value for the cor-
responding pixel in the FLIR image. Since the
correspondence is not exact, the nearest pixel is
selected based upon the geometric mapping dis-
cussed in the previous section. For the FLIR, it
is also helpful to define normalized FLIR Fjg 255]

compressed to the ranges [0,255] (as well as
Flo,17 in the range [0,1]).

The two combinations used by ModelView and
shown in Figure 6 (see color plates). The first
uses FLIR intensities combined with the value
component of the color pixel in HSV space:

O, I
0, | = 1, (20)
Oy YF0,255) + (1.0 = y) I,

and the FLIR intensity mapped onto the satu-
ration component of the color HSV pixel:

Oy, I,
Os | = | 7Foy + (1.0 =) (21)
O, I,

where v is weighting term used to control the
FLIR intensities influence over the resulting
pixel values. For Figure 6 v was set to 0.4.



Figure 6 shows the FLIR mapped on the value
component of the color pixel (equation 20). In
the first part of the figure, the mapping or align-
ment is perfect, and in the next, the images are
slightly mis-aligned. Notice the faint impression
of the false vehicle present, and the noticeable
discrepancy along the horizon. The next two
parts of the figures show the FLIR mapped on
to the saturation component of the color pixel
(equation 21). The result is an image which has
vivid, highly saturated colors in areas of inter-
est due to high thermal intensity (such as the
vehicle) and has dull, unsaturated (grey) colors
in areas of low thermal intensity (for example
the trees on the skyline). In the mis-aligned
image, observe how clearly the natural terrain
fades from color to grey-scale as you look up to-
ward the horizon. The FLIR is offset downward
relative to the color, and the black sky in the
FLIR is causes the terrain to loose its color.

8 Visualizing Recognition

Not all relationships for which visualization dis-
plays have been developed are equally impor-
tant from the standpoint of understanding how
an object recognition algorithm is performing.
While monitoring the progress of the recogni-
tion process, only a few relationships are crit-
ical. Those displays tend to be left up on the
screen so the researcher can simultaneously view
the progress of the recognition using these few
selected visualization techniques. Figure 7 (see
color plates) shows an example of how such a
screen might appear.

Typically, three relationships are shown with
four different windows. The first shows only
the model. This window is helpful to determine
how well the recognition system has determined
the proper model orientation across all sensors.
The next four windows visualize the model rel-
ative to each sensor. The predicted silhouette
and internal edges are rendered into the opti-
cal sensors, and the predicted range features are
shown against the range data. Finally, once the
recognition algorithm has converged to a solu-
tion, the other relationships can be examined
to determine how well the recognition system
corrected the pixel-to-pixel alignment between
Sensors.

9 Conclusion

Visualization of multisensor model-based
object-recognition algorithms is an essential
component for determining how well the system

performs. Since ground-truth is not always
available, visualization becomes the key com-
ponent of verification. Once multiple sensors
are integrated into the matching system, the
visualization system must be able to show
complex sensor-to-sensor relationships as well
as model-to-sensor relationships. ModelView is
a system which has been shown to meet many
of the needs of our current matching system.
Its model-centered visualization paradigm is a
step above the data-centered approach utilized
in our previous work. Furthermore, ModelView
shows promise as a general framework for
visualizing relationships between heterogeneous
sensor data.
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Figure 1: Sample screen images of the ModelView system. The top left column contains a color
image with the model projected into the scene on bottom. The top right column shows a FLIR
image with the model projection beneath. The center column shows four views of a LADAR image.

A%
1

Figure 5: Model To LADAR Relationships. The top left image shows the CAD model. Next is the
sampled surface points generated from the model. The next two images show the sampled surface
points in relation to the actual data. The bottom row contains images of the model rendered within
the 3-D range scene.

Figure 6: Color To FLIR Relationship. The left-most image shows the FLIR mapped to the
intensity component of the color image for the correct transformation. Next, the same mapping
is used, but the transformation is incorrect. The final two images show the FLIR mapped to the
color saturation component for both the correct and incorrect transformations.



Figure 4: Model To Optical Relationships. The top row contains the model with the color image
texture map. The middle row has the model with the FLIR texture map. The last row shows the
model, the model lines projected into the color image, and the model lines projected into the FLIR.

Figure 7: A Sample Screen Layout of ModelView



