
Computer Science
Technical Report

Experimental Evaluation of Blocking and
Non-Blocking Multithreaded Code Execution

Murali Annavaram Walid A. Najjar
Dept. of EECS Dept. of Computer Science

University of Michigan Colorado State University
Ann Arbor, MI 48105 Fort Collins, CO 80523

annavara@eecs.umich.edu najjar@cs.colostate.edu
Lucas Roh

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
roh@mcs.anl.gov

Technical Report CS-97-108

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Experimental Evaluation of Blocking and Non-Blocking

Multithreaded Code Execution

Murali Annavaram Walid A. Najjar

Dept. of EECS Dept. of Computer Science

University of Michigan Colorado State University

Ann Arbor, MI 48105 Fort Collins, CO 80523

annavara@eecs.umich.edu najjar@cs.colostate.edu

Lucas Roh

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

roh@mcs.anl.gov

Abstract

The objective of multithreaded execution models is masking the latency of inter processor communications and remote

memory accesses in large-scale multiprocessors. Several such models combine aspects of data
ow-like execution with

the von Neumann model in an attempt to provide both e�cient synchronization (as in the data
ow model) and

e�cient exploitation of program locality (as in the von Neumann model). We refer to these models as data-driven

multithreading models. One of the factors that distinguishes these models is the thread execution strategy: A thread

can be either non-blocking or blocking.

Another factor is the architectural support for dynamic synchronization: The locality present within and among

threads can potentially be exploited by a proper storage hierarchy for synchronization store (operand storage). Two

storage models have been proposed for data-driven multithreaded execution. One is frame based, in which all the

threads belonging to a code-block share one storage segment called frame; the other is framelet based, in which each

thread has its own storage segment, called framelet.

This article experimentally compares two thread execution models and their related storage models. The �rst is a

blocking execution model that relies on a scheduler for the allocation of threads to processors and exploits inter thread

locality within a code-block. It relies on the frame storage model and assumes a certain amount of compile time

data distribution to minimize network accesses. The second is a non blocking execution model in which threads are

dynamically scheduled based on data availability. It relies on the framelet storage model and makes no assumptions

about the static allocation of data to processors. The experimental evaluation takes into account the impact of the

storage hierarchy design on the performance of the two models.

Keywords: Multithreaded execution, compilation, storage models.

Note: A version of this repoprt has been submitted to the Int. Journal of Parallel Processing.

1 Introduction

The increasing gap between processor and memory speeds has become a central problem in the

design of high-performance computer systems. This gap is due to the increase in clock speeds

of CPU chips and the higher demand put on the memory system by superscalar architectures

capable of issuing multiple instructions per cycle. In large-scale multiprocessor systems the

memory latency problem is compounded by the network latency when data is to be fetched

across the network. Solutions to the latency problem attempt either to reduce latency, by

using caching and distributed caching, or to tolerate it, by using decoupled architectures and

multithreaded execution models.

Multithreaded execution has been proposed as a model particularly for parallel program

execution. Multithreading views a program as a collection of concurrently executing threads

that are asynchronously scheduled based on the availability of data. Its main advantages are (1)

masking the latency of remote memory access and �ne-grain synchronization by multiplexing

the execution of multiple threads on the same processor, and (2) providing high processor

utilization by allocating CPU resources to ready threads.

The multithreaded execution model can be viewed as a bridge between the sequential

von Neumann execution model and the data
ow model. In many ways it combines features

of both models: the concurrent and asynchronous execution of data
ow, which can provide

implicit and e�cient synchronization, and the sequential execution of the von Neumann model,

which can e�ciently exploit intrinsic program locality and, hence, e�cient storage hierarchy.

In fact, most multithreaded machines (experimental or production) today can be viewed as

either derived from the von Neumann model or the data
ow model. In designs closer to the

von Neumann model, threads tend to become larger, and data structure locality can be better

exploited. Examples of these designs include HEP [37], Tera MTA [2], J-Machine [10], and

M-Machine [14]. In designs closer to the data
ow model, latencies are better tolerated, and

parallelism is more easily exploited. Examples are Monsoon [32, 33], P-RISC [30], *T [31],

EM-4 [36] and the EARTH project [19]. The Hybrid Architecture (IHA), proposed by Iannucci

[20] extends the von Neumann model with data
ow features to perform synchronizations. The

Threaded Abstract Machine (TAM) [8] is a software implemented multithreaded model that

has been ported to a number of platforms, such as the TMC CM-5 and the Cray T3D.

The performance of multithreaded model is determined by the complex interaction of a

number of inter related architectural and compilation issues, such as code generation, thread

�ring rules, synchronization schemes, and thread scheduling. The relation between these

issues and the tradeo�s between various alternatives for each of these issues requires extensive

experimental evaluation.

A major design issue in multithreading is whether thread execution can be blocked. This

issue a�ects the design of the storage hierarchy (storage model), thread synchronization and

�ring, and the code generation strategies. In a blocking strategy, when a thread initiates a long-

latency operation such as a remote memory read, the thread is blocked and the execution is

switched a ready thread. This strategy is used, for example, in Iannucci's Hybrid Architecture,

the Tera MTA and the EARTH machine. In a non blocking strategy, threads are generated

so that they cannot block through the use of split-phase operations. This means that a

long-latency operation terminates a thread, and the result of a long latency operation, such

as remote memory access, is sent to another thread. A context switch does occur when a

thread is terminated, but the speci�c thread state need not be saved and later resumed. This

strategy is used, for example, in Monsoon, *T, and the EM-4. In this article, we present a

quantitative evaluation of the two design alternatives on the performance and storage design

decisions, thereby providing insight into the design of multithreaded systems. The issues

analyzed include code generation strategies, implications for data distribution and access, and

storage hierarchy performance.

Our results indicate that the non blocking model is very e�cient in overlapping execution

and communication. The blocking model has smaller numbers of threads of larger granularity.

Moreover, the total number of instructions and synchronizations is less in the blocking model

2

Sisal

IF2

MIDC-2 MIDC-3

(Blocking)(Non-Blocking)

Figure 1: Code Generation Phases

than in the non blocking model. It does, however, exhibit less locality of access to its storage

hierarchy and can potentially su�er from a poor distribution of data.

The article is organized as follows: Section 2 presents the two models, their code generation

and the architectural models. Section 3 describes the experimental evaluation including the

framework used and the results obtained with a perfect cache. Section 4 presents performance

results obtained by using a non ideal memory hierarchy, and Section 5 analyzes the impact of

the non-ideal memory hierarchy. Section 6 presents related work in this area. Section 7 gives

concluding remarks.

2 Execution Models: Architecture and Code Generation

The two multithreaded execution models considered in this article are based on data-driven

dynamic execution of threads that are generated at compile time. This section describes the

code generation strategy and the execution models.

2.1 Code Generation

The source language used for the multithreaded code generation is Sisal [26], a pure, �rst

order, functional programming language. The functional nature of the language allows the

compiler to easily extract parallelism at any granularity and generate code that takes the

advantage of multiple threads of execution.

The compilation process converts the Sisal programs into two intermediate forms: MIDC-2

for the non blocking model and MIDC-3 for the blocking one. Both are derived from the

Machine Independent Data
ow Code (MIDC) [34]. MIDC is a graph structured intermediate

format: The nodes of the graph correspond to the von Neumann sequence of instructions and

the edges represent the transfer of data between the nodes. It has been used to generate the

executable code for other multithreaded machines (e.g., Monsoon and EM-4). Both MIDC-

2 and MIDC-3 are highly optimized versions of MIDC, with optimization done both at the

inter and intra thread level. Traditional optimizations such as dead code elimination and copy

propagation are performed.

The compiler generating the code is guided by the following objectives: (1) minimize syn-

chronization overhead, (2) maximize intra thread locality, (3) insure deadlock-free threads and,

(4) preserve functional and loop parallelism in programs. The compilation phases of MIDC-2

and MIDC-3 code from the Sisal source code are shown in Figure 1.

1. Phase 1: The �rst phase of the code generation is the same for both the blocking and the

non blocking models. This phase involves compiling the Sisal programs to an intermediate

format, called IF2, using the OSC [5] compiler. IF2 is a block structured, acyclic data

3

dependence graph that allows operations that explicitly allocate and manipulate memory

in a machine independent way. IF2 also makes certain assumptions about the allocation

of data structures. For example, it requires that the elements of a one dimensional array

reside in consecutively addressable memory locations.

2. Phase 2: Phase 2 di�ers for the two models principally in the handling of structure store

accesses and the data storage models (called frames or framelets). The structure store

access has a long latency if the required data is not in the cache. Long latency operations

involving the structure store consist of remote memory reads, memory allocations, func-

tion calls, and remote synchronizations. The remote memory references can be handled

either as split-phase access or single-phase access. In the split-phase access, the request

is sent by one thread and the result is forwarded to another thread. In the single-phase

access, the result is returned to the same requesting thread.

� In the non blocking model the IF2 form is converted into the MIDC-2 form. In this

format all the structure store accesses are turned into split phase accesses. A split

phase access terminates a thread: the request is sent by a thread, but the result is

returned to another thread always. In this model a thread never has to block on a

remote memory access. This model makes no assumptions regarding data structure

distribution.

� In the blocking model (MIDC-3) the IF2 graph is statically analyzed at compile time

to di�erentiate between local and remote structure store accesses. A local access

does not terminate a thread whereas a remote one does. If the result of a structure

store access is used within the same code-block where the access request is generated,

the access is considered local. In this case, the thread will block until the request is

satis�ed. This model relies on a static data distribution to enhance the locality of

access. Note that a data structure is often generated in one code block and used in

several others, in which case only one of the consumer code-blocks has local access

while the other consumers must have a remote memory access to this data structure.

Example The examples in Figure 2 demonstrate the di�erence between MIDC-2 and MIDC-

3. In MIDC-2, Thread 255 performs a structure memory read operation. The read is performed

as a split-phase access whereby the result is sent to Thread 256. Thread 255 does not block

but continues execution until termination. Results of the split-phase read are forwarded to

Thread 256, which starts execution when all its input data is available. There is no restriction

on which processor Thread 255 and Thread 256 are executed.
The MIDC-3 code is generated from the same IF2 graph as the MIDC-2. The IF2 graph

is statically analyzed. Since Threads 255 and 256 belong to the same code-block1, the read

structure memory operation is a local, single-phase operation, and hence the two threads

become a single thread. The thread blocks when the read operation is encountered and waits

for the read request to be satis�ed.

2.2 Execution Models

Figure 3 shows an abstract model of the processor organization used in our study. The

Execution Unit executes ready threads, which generate new data values that are forwarded by

the Synchronization Unit to the destination threads. The Instruction Memory stores thread

instructions. Depending on the synchronization model used, either the Framelet Store or

the Frame Store stores the data values that are inputs to pending (not ready) threads. The

Ready Queue contains continuations representing those threads that are ready to execute.

A continuation consists of a pointer to the starting address of the thread code and another

to the context containing the data values associated with that thread. A number of these

processing nodes may be connected by an interconnection network to form a multiprocessor.

1
A code-block is a semantically distinguishable unit of code such as a loop or function body.

4

Output List

Splitphase Read

Out instruction that

sends token to

R5 = ADD R4,R3

O1 = OUT R3 R1

N255 <(256,1)>

CodeBlock

Th
rea

d#
25

5

RSS R5,"2","256:2",R1

thread# 256,port#2.

R5 = ADD R4,R3

CodeBlock

Th
rea

d#
25

5

N255 < >

R6=RSL R5,"2",R1

R2 = ADD R6,"1"

R3 = MUL R3,R2

Thread Blocked for result

Result of uniphase access
is available in R6.

Input#1 in the MIDC2
form is not needed here.

Uniphase access and

Instead use local register R3

Mutliply R2 with Input#1

which came from OUT of

thread#255.

Add 1 to Input# 2 that

came from splitphase readR2 = ADD I2,"1"

R3 = MUL I1,R2

N256 < >

Th
rea

d#
 25

6

MIDC-2 FORMAT

MIDC-3 FORMAT

Figure 2: MIDC-2 and MIDC-3 Code Examples

5

Instruction Mem.

Instr. Buffer

Frame or

Execution Unit

Ready Queue

Token Queue

Synch. Unit
Framelet Store

Data cache

Memory
Structure

and cache

Figure 3: Abstract Model of a Processing Node

The Structure Memory represents the memory of the processing node and stores the program

data structures. It is a distributed shared memory. The results after accessing the Structure

Memory are returned as tokens to the Synchronization Unit. The tokens carry data values

and information about the destinations to which these data values should be sent. From this

base model, we introduce two variants of thread execution strategies.

Blocking Thread Model: In this model a thread may be suspended by a long latency operation

such as a remote memory access or a synchronization. It assumes an architecture support for

context switching: the saving of thread state and the selection of a new thread. The context

switching overhead depends on the nature and extent of the available architectural support. If

the machine has separate sets of hardware registers to support multiple threads, the switching

overhead is simply the cost of hardware queuing of the thread (as in the Tera MTA). If there

are no multiple register sets, the switching overhead involves the cost of saving and restoring

the registers. The storage mechanism relies on the frame model. A frame represents a storage

segment associated with each invocation of a code-block. All the threads within the code-block

instance refer to its associated frame to store and load data values. Frames are of variable

size and contiguously allocated in the virtual address space. The size of a frame is determined

based on the maximum number of data values associated with the code-block. The frame

model is used in several multithreaded machines (e.g., TAM [8], StarT-NG [3], and the EM-4

and EM-X [24]).

When an instance of a particular code-block is invoked, a frame is �rst allocated in a given

processor's frame store. All the tokens generated for that code-block instance are stored in

that frame. The virtual address carried by a token is of the form

<frame pointer, frame o�set>

A synchronization slot in the frame is associated with each thread. The synchronization slot

is initialized with the count of the number of the inputs to the thread and is decremented with

the arrival of each input. The thread is ready when the count reaches zero: A continuation

corresponding to that thread is placed on the Ready Queue by the Synchronization Unit. A

data value that is shared (i.e., read) by several threads in the same frame occupies only one

6

location. The content of the frame is accessed by the Execution Unit via a read-only cache.

Data values generated by the executing threads are sent to the Synchronization Unit, which

writes them in the frame. The frame is deallocated when all the threads in the code-block have

terminated. The cache organization is that of a conventional write-through cache. Because of

their variable size, frames are not aligned with cache blocks.

Non Blocking Thread Model: In the non blocking model, once a thread starts its execution it

runs until termination. Hence, the thread is activated only when all its inputs are available. All

memory accesses are performed as split-phase accesses: the request is issued by the requesting

thread, but the result is returned to the destination thread. A thread never has to block waiting

for a remote memory access.

The storage mechanism for the non blocking threads is the framelet model. A framelet

is a �xed-sized unit of storage that is associated with each thread instance; it includes a

synchronization slot for that thread instance. This model has been described in detail in [35].

Simulation results have shown that over 99% of all thread instances can be accommodated

with a framelet size of 128 bytes. A chain of framelets, with indirect references, is set up for

those threads that have a larger input set.

In the framelet model a data value that is shared among several threads within a same

code-block is replicated in the framelet of each thread instance. The framelet is deallocated

when the thread instance completes its execution. Because their size is �xed, framelets are

aligned with cache blocks. The virtual address of a data value in the framelet model is of the

form

<context #, thread #, framelet o�set>

The structure of memory organization of these two models is very similar to that of seg-

mentation and paging: One relies on �xed size storage with easy addressing and allocation,

while the other uses variable size storage with easier sharing of data.

Example: A code-block consisting of three threads is shown in Figure 4. The corresponding

frame memory model is shown in Figure 5. The input z, which is used by both threads A and

B, is stored at only one place in the frame memory. Each of the values in the frame memory

is accessed by the frame base address and then o�set into the frame. The �rst three slots

are the counters for the three threads. Thus, when the value y is stored, only counter A is

decremented. When z is stored, both counter A and counter B are decremented, but only one

copy of z is stored in the frame.

The framelet memory model corresponding to the same code block is shown in Figure 6.

There is a separate framelet for each of the three threads(A, B, C). Each framelet contains the

counter for the corresponding thread. In addition, each framelet contains a memory location

for all the inputs to the corresponding thread. Hence, framelet A corresponds to one particular

activation of thread A. The z is stored in the framelets of both threads A and B, and both

counters are decremented. This process is accomplished as two separate store operations.

Discussion of the Models: The main di�erences between the blocking and non-blocking mod-

els lie in their synchronization and thread switching strategies. The blocking model requires a

complex architectural support to switch e�ciently between ready threads. The frame space is

deallocated only when all the thread instances associated with its code block have terminated

execution, a state determined by extensive static program analysis. The model also relies on

static analysis to distribute the shared data structures and therefore reduce the overhead of

split-phase accesses by making some data structure accesses local. The non-blocking model re-

lies on a simple scheduling mechanism: data-driven data availability. Once a thread executes,

its framelet is deallocated, and the space is reclaimed.

The main di�erence between the frame model and framelet model of synchronization is the

data duplication. In the frame model, variables that are shared by several threads within a

code block are allocated only once in the frame; in the framelet model, on the other hand,

7

Thread A Thread B

Thread C

Code Block

y z wx

a b c

t u

Figure 4: Code Block with Three Threads

Frame Base Addres

Counter A
Counter B

Counter C
x
y

z

w

c

a

b

Figure 5: Frame Memory Representation

(Framelet A)

(Framelet B)

(Framelet C)

Counter A
 y
 z

Counter B
 z
 w

Counter C
 x
 a

b
c

Figure 6: Framelet Memory Representation

8

these variables must be replicated to all the threads. The advantage of framelet model is

that one can design special storage schemes that take advantage of the inter thread and intra

thread locality and achieve a cache miss rate close to 1% [35].

3 Experimental Evaluation and Analysis

This section presents the results of executing multithreaded code in the blocking and non

blocking models. In this section we assume an ideal storage hierarchy in which the requested

data is always available in the cache. The e�ect of non ideal storage hierarchy under the two

models is evaluated separately in Section 4.

3.1 Experimental Framework

Benchmarks: A set of seven Sisal benchmarks are used in these experiments: (1) SGA uses

a genetic algorithm to �nd a local minima of a function; (2) FFT is a 1-D FFT routine; (3)

PSA is a parallel scheduler code; (4) SDD solves an elliptic partial di�erential equation; (5)

SIMPLE is a Lagrangian 2-D hydrodynamics code; (6) AMR is an unsplit integrator taken

from an adaptive mesh re�nement code; and (7) WEATHER is a one level barotropic weather

prediction code.

Architectural Parameters: The Execution Unit is a four-way issue super scalar CPU. The

network interface of each processor has a bandwidth of two words per cycle. The network

latency varies from 0 to 200 CPU cycles. The number of processors varies from one to ten.

The blocking execution model relies on a static data distribution to achieve local access

on some data structures. The e�ects of this static data distribution are modeled using a

probability of success that determines, for each data structure access, whether it is local or

remote.

3.2 Dynamic Execution Statistics

The number of threads, instructions, and synchronizations executed by each benchmark in

each model is architecture independent. The information is used to compare the e�ciency

of the two models. Table 1 shows the percentage change in these three parameters from the

non blocking to the blocking model. The reduction in these parameters varies widely for the

seven benchmarks. FFT shows a very minimal change. The reason for this behavior is that,

although FFT has a large number of structure memory accesses, over 90% of these send their

result to a thread outside the code-block boundary. Hence, only a very small fraction of the

structure data accesses can be made local, and therefore the code generated for the blocking

method is very similar to one for the non blocking model. On the other end of the spectrum,

SDD shows the largest amount of change. SDD also has a large number of structure store

accesses, almost half of which send the result to a thread within the same code-block.

Since blocking compilation potentially increases the thread size, the results of the average

thread size for the blocking and non blocking strategies are shown in the Table 2. The thread

size increase is near zero for FFT and as high as 60% for SDD. This behavior is again attributed

to the number of memory accesses within a code-block boundary. Since the FFT has fewer

accesses within the code-block boundary, the blocking strategy does not create larger threads.

Hence, the thread size remains the same. SDD, on the other hand, has a large number of

memory accesses within the code-block boundary. Hence, the code generation strategy leads

to a larger thread sizes that block on a potential local access.

One of the primary di�erence between the two models lies in the duplication of data values

that are shared among several threads within the same code-block in the non blocking model.

This duplication results in increased synchronization. Table 2 shows the dynamic number

9

Table 1: Change (%) in number of threads, synchronizations and instructions from the non blocking to the
blocking model

Benchmarks Threads Synch. Inst.

AMR �4:78% �1:53% �0:20%

FFT �0:02 �0:11 0:0

PSA �30:67 �27:39 �4:43

SDD �41:70 �37:65 �6:38

SGA �3:15 �5:38 �0:24

SIMPLE �16:38 �16:27 �2:66

WEATHER �21:19 �21:00 �5:53

Table 2: Comparison of thread size and synchronization per instruction (SPI) for blocking and non blocking
models

Benchmarks Thread Size SPI

B N-B % B N-B %

AMR 32.28 30.79 4.81 0.49 0.50 1.32

FFT 44.66 44.65 0.0 0.42 0.42 0.00

PSA 13.31 9.65 37.84 0.33 0.44 24.02

SDD 18.65 11.61 60.59 0.35 0.53 33.40

SGA 11.80 11.45 3.00 0.51 0.54 5.15

SIMPLE 14.46 12.42 16.41 0.48 0.56 13.98

WEATHER 19.60 16.35 19.87 0.47 0.56 16.38

Wtd Avg 18.20 15.02 26.08 0.43 0.52 17.31

of synchronizations per instruction. On average, the synchronizations per instructions are

reduced by 17%.

3.3 Execution Time

The execution parameters described above have a direct e�ect on the execution time. The

graphs in Figures 7 and 8 show the execution time versus the average network latency with

�ve and ten processors, respectively.

The execution time in these plots is the weighted average of the seven benchmarks used.

An ideal memory hierarchy for the structure store is used. Hence, local data is always available

in the cache. The network latency varies from 0 to 200 cycles. Each graph, has four plots

corresponding to the blocking model and one plot corresponding to the non blocking model.

The four plots for the blocking model correspond to four probabilities of success of compile

time data distribution and scheduling. A 100% success indicates an optimal allocation of

data structures and threads in which no remote access is performed. Obviously, this case

is unrealistic but is used here for comparison. The 90%, 50% and 10% success probabilities

are more realistic situations, corresponding to the average percentage of local structure store

accesses. The overhead of thread switching is neglected in computing the execution time for

the blocking model.

The performances of the blocking model with 90% or 100% success rate are very close.

These two plots outperform the non blocking model with both �ve and ten processor networks.

But the non blocking model performs better than the blocking model when the success rates

of data distribution are less and when the network latency is smaller. The e�ect of added

network latency on the non blocking model is more severe (higher slope) than on the blocking

one. In the non blocking model all accesses are split-phase, and hence the thread is always

switched whenever there is a memory reference. But when the network latencies are large,

10

0.0 50.0 100.0 150.0 200.0
Network Latency(Cycles)

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

E
xe

cu
tio

n
T

im
e

Blocking(100% Hit)
Blocking(90% hit)
Blocking(50% hit)
Blocking(10% hit)
Non−blocking

Figure 7: Execution Time versus Average Network Latency (5 processors and ideal memory hierarchy)

0.0 50.0 100.0 150.0 200.0
Network Latency(Cycles)

0.0e+00

5.0e+06

1.0e+07

1.5e+07

E
xe

cu
tio

n
T

im
e

Blocking(100% Hit)
Blocking(90% hit)
Blocking(50% hit)
Blocking(10% hit)
Non−blocking

Figure 8: Execution Time versus Average Network Latency (10 processors with ideal memory hierarchy)

11

there are not enough ready threads to hide the latency. As expected, this e�ect is made worse

when the processor utilization is low. Hence, even a small percentage success of compile time

data distribution in blocking model will increase the performance at high network latencies.

There, the blocking model does better than the non blocking.

The down side of the blocking model is that its performance is highly dependent on the

success rate of the data distribution and the e�ectiveness of the scheduler to schedule the

threads whose data is always local. When the network latencies are small, it is even more

important to get a high success rate for the data distribution. Otherwise the thread will be

blocked on a remote reference in spite of having some other ready threads.

4 Evaluation and Analysis of Storage Models

The preceding section presented the performance of the two models of execution assuming an

ideal storage hierarchy (no cache misses). The performance evaluation results presented in

this section are based on realistic cache and memory models. The blocking model of execution

uses a frame-based storage, whereas the non blocking model uses a framelet-based one. Both

storage models are analyzed by a trace driven cache simulation. The e�ects of the cache size,

set-associativity, and block size are examined for each of the two models.

The traces are generated from the simulation of a ten processor machine2. All results are

measured separately for each processor and averaged across all processors. The variation in

the miss rates between the processors is less than 2% for all cache con�gurations used in the

simulation. Hence, the mean value closely represents the actual miss rate of each processor.

The simulator output is a set of token traces, one per processor. A trace consists of a

collection of references to the storage hierarchy. A reference can be either the arrival of

a data token (i.e., a data value generated by this or another processor) or an access to a

synchronization counter. The average variance in the trace size among the ten processor

traces for all benchmarks used is 1.5%, which indicates a very reasonable load balance among

the processing nodes. The storage hierarchy simulation uses DineroIII both for the frame

model and the framelet model.

A wide range of cache associativities (direct-mapped, 2-way, 4-way, 8-way and fully asso-

ciative) is used for both models. The cache sizes range from 4 KB to 256 KB per processor.

The framelet-based and the frame-based storage models use block sizes of 32 bytes, 64 bytes,

128 bytes and 256 bytes. Even though some of these sizes are beyond what is commonly found

in today's cache designs, they are used for the sake of experimental investigation. A simple

FIFO scheme is used for block replacement in the frame and framelet models.

4.1 Trace Size

One of the presumed drawbacks of the framelet model is duplication of the tokens. The

framelet stores tokens corresponding to one thread. Hence, multiple threads of a code-block

sharing a data value will have multiple copies of this value in the frame model, on the other

hand, only one copy of this value is stored. Table 3 shows the percentage of replication in the

framelet model: for all benchmarks it is under 3.5%. The explanation is that even though the

frame model has no replicated data tokens within a same frame, it still requires one or more

accesses to synchronization counters: one for each thread that will read the shared data token.

Hence, the trace sizes are nearly equal.

2
The number of processing nodes, ten, was chosen because it provides a realistic processor utilization for the problem sizes

that can be run in a reasonable time on the simulator.

12

Table 3: Trace Sizes

Trace Size

Benchmarks Frame Framelet Replication(%)

AMR 641648 645321 0.57

FFT 829702 859232 3.43

PSA 1419798 1459898 2.82

SDD 2104168 2104822 0.03

SGA 1742532 1802562 3.44

SIMPLE 1853822 1853962 0.01

WEATHER 1609176 1619876 0.66

0

2

4

6

8

10

12

14

16

48 16 32 64 128 256

W
ei

gh
te

d
M

is
s

R
at

e%

Cache Size(KB)

64 Byte Block
128 Byte Block
256 Byte Block

Figure 9: E�ect of Cache Size : Frame Based 4-way Associative Cache.

4.2 Frame-based Simulation

Cache Size: Figure 9 shows the e�ect of varying the cache size from 4 KB to 256 KB per

processor for a 4-way set-associative cache with 64, 128, and 256 byte blocks3. The incremental

improvement in the miss rates beyond a size of 32 KB is small for all the benchmarks. As

the size of cache increases, the compulsory misses tend to dominate the overall miss rates.

Since compulsory misses are una�ected by the cache size, the improvement in the miss rates

diminishes as the cache size increases. Given the trace size, we chose to restrict our further

analysis to a cache size of less than 16 KB. The ratio of cache size to the trace size ranges

from 0.5% to 2% for a cache size of 16 KB, which is a valid ratio. Unless otherwise speci�ed,

all our further results are given for a cache size of 16 KB.

Set-Associativity: Table 4 shows the miss rates for direct-mapped, 2-way, 4-way, 8-way set-

associative, and fully associative 16 KB cache per processor with 64-byte blocks. The associa-

tivity has no appreciable e�ect on the miss rates. This result indicates that the percentage of

con
ict misses is small, which is an indication of the high reference locality in the traces. The

high locality means that all the references to a given frame are clustered in a relatively small

time span. Hence, as long as the cache size is reasonably large enough to accommodate the

locality, the con
ict misses will be negligible.

Block Size: When su�cient locality exists in the address trace, the compulsory misses can be

reduced by increasing the block size. Table 5 shows the e�ect of block size on the miss rates.

3
To make the graphs readable, we have drawn plots for the weighted average of the miss rates of all the seven benchmarks,

the weights being the size of the traces.

13

Table 4: E�ect of Associativity: Frame Based Cache, 16 KB, 64 byte blocks

Miss Rates %

Benchmarks Associativity

1 2 4 8 Full

AMR 6.36 6.03 6.00 6.00 6.00

FFT 6.33 6.03 6.02 6.02 6.02

PSA 2.58 2.62 2.62 2.62 2.62

SDD 14.55 14.01 13.97 13.97 13.97

SGA 9.84 8.50 8.07 7.98 7.98

SIMPLE 7.73 7.27 7.21 7.23 7.23

WEATHER 15.60 15.03 14.86 14.79 14.79

Weighted Avg 9.82 9.27 9.15 9.12 9.12

Table 5: E�ect of Block size: Frame Based 8-way Associative Cache, 16 KB

Miss Rates %

Benchmarks Block Size

32 64 128 256

AMR 10.59 6.01 3.60 2.26

FFT 11.13 6.02 3.32 1.78

PSA 5.01 2.62 1.42 0.85

SDD 19.36 13.97 10.41 7.93

SGA 11.12 7.98 6.35 5.78

SIMPLE 11.43 7.23 4.72 3.03

WEATHER 20.38 14.79 11.86 10.57

Weighted Avg 13.46 9.13 6.66 5.25

14

0

1

2

3

4

5

6

7

8

48 16 32 64 128 256

W
ei

gh
te

d
M

is
s

R
at

e%

Cache Size(KB)

64 Byte Block
128 Byte Block
256 Byte Block

Figure 10: E�ect of Cache Size : Framelet Based 4-way Associative Cache.

An 8-way associative 16 KB cache is used with block sizes set to 32, 64, 128, and 256 bytes.

At an associativity of 8, the con
ict misses are almost zero. Table 5 indicates a noticeable

reduction in miss rates with the increase in block size. The reason is as follows. When the

block size is small, a few tokens are su�cient to �ll the block, and the next incoming token

will cause a compulsory miss. Because of the high locality, the token causing the miss will

likely have a virtual address close to the block that is just �lled. By increasing the block size,

these misses are reduced.

4.3 Framelet-based Simulation

Cache Size: Figure 10 shows the e�ect of varying the cache size from 4 KB to 256 KB for a 4-

way set-associative cache with blocks of 64, 128, and 256 bytes. The incremental improvement

in the miss rates starts to decrease after a cache size of just 8 KB. This behavior is explained

by the high locality in the trace. The cache size of 8 KB can e�ectively reduce the capacity

misses. An associativity of 4 can reduce the con
ict misses thereby making the misses just

compulsory misses. For the traces used here, the ratio of the cache size to the trace size ranges

from 0.5% to 1% when the cache size is 8 KB. Hence, the cold start misses are not dominant

for a cache size of 8 KB.

Set-Associativity: Table 6 shows the e�ect of varying the associativity. The results are derived

for a 64-byte block and direct-mapped, 2-way, 4-way, 8-way set-associative, and fully associative

16 KB cache. Here, the associativity has negligible e�ect on the cache miss rates, the same

reason given for the frame model.

Block Size: When su�cient locality exists in the address trace, the compulsory misses can be

reduced by increasing the block size. Table 7 shows the e�ect of block size on the miss rates.

An 8-way associative 16 KB bytes cache is used with block sizes set to 32, 64, 128, and 256

bytes. At the associativity of 8, the con
ict misses are almost zero. Moreover, the capacity

misses are small for cache sizes of 16 KB.

4.4 Discussion of the Two Storage Models

Figure 11 compares the best case performance of the frame and framelet models for a cache

size of 16 KB. The best performance is achieved when the block size is 256 byte blocks for both

models. Since associativity does not have a large impact on miss rates, a 4-way associativity

is used for both. Except for PSA, the performance of the framelet model is better than the

frame model. For SDD, SGA, and WEATHER, the framelet model does signi�cantly better

15

Table 6: E�ect of Associativity: Framelet Based Cache, 16 KB, 64 byte blocks
Miss Rates %

Benchmarks Associativity

1 2 4 8 Full

AMR 4.61 4.61 4.63 4.64 4.67

FFT 3.89 3.87 3.87 3.87 3.88

PSA 3.88 3.88 3.88 3.88 3.88

SDD 4.65 4.62 4.63 4.63 4.64

SGA 5.24 5.10 5.08 5.08 5.08

SIMPLE 4.71 4.63 4.61 4.60 4.60

WEATHER 6.57 6.43 6.40 6.38 6.37

Weighted Avg 4.95 4.88 4.87 4.86 4.87

Table 7: E�ect of Block size: Framelet Based 8-way Associative Cache, 16K bytes
Miss Rates %

Benchmarks Block Size

32 64 128 256

AMR 8.87 4.64 2.48 1.34

FFT 7.35 3.87 2.03 1.05

PSA 7.71 3.88 1.95 0.98

SDD 8.74 4.63 2.54 1.47

SGA 8.82 5.08 3.25 2.44

SIMPLE 8.75 4.60 2.50 1.45

WEATHER 10.07 6.38 4.24 3.19

Weighted Avg 8.79 4.86 2.83 1.82

than the frame model. Further analysis of these benchmarks showed that they have a high

percentage of large frames (larger than 256 bytes) in the trace. In these cases the counter

frequently belongs to a di�erent cache block from that in which the data is stored. Hence,

each data storage results in accesses to two di�erent cache blocks. In the framelet model,

since each framelet holds just one thread, the counters and the inputs for the thread belong

to the same cache block more frequently. In fact, 99% of the threads need less than 64 bytes

of framelet, making the counter access and the input access to the same block.

The cumulative miss rate in Figure 11 shows that overall the frame model has about three

times the miss rate of the framelet model for the benchmarks used. Obviously, the scope of

these results is limited by the benchmarks used.

5 E�ect of Non Ideal Memory Hierarchy

The results presented in Section 3.3 give the weighted execution time of the seven benchmarks

with an ideal memory system. The data needed for execution is assumed to be in the cache al-

ways. In reality, however, the memory system performance depends on the cache hit ratio and

cache miss penalty. This section studies the e�ect of cache misses on the overall performance.

The execution performance with a non ideal memory hierarchy is considered here. The results

presented here are obtained by combining the execution time results of Section 3.3 with the

miss rates of Section 4. Two parameters are studied: network latency and the e�ect of the

miss penalty on the performance.

Network Latency The plots in Figures 12 and 13 show the execution time versus average

network latency with �ve and ten processors. These plots take into consideration the e�ect of

16

Frame Based

Framelet Based

1

2

3

4

5

6

7

8

9

10

11

M
is

s
R

at
es

%
2.26

1.34
1.79

1.05
0.820.98

7.95

1.46

5.89

2.47

3.09

1.46

10.64

3.20

5.29

1.82

AMR FFT2 PSA SDD SGA SIMPLE WEATHER Wt., Avg

Figure 11: Comparison of Models: Best Performance Parameters, 16 KB, 4-way Associative, 256 byte block
Cache

cache misses on the execution time. Comparing these plots with the plots in Figures 7 and 8

we can make the following inferences.

� The execution time with a non ideal memory system is higher for both the blocking and

non blocking models.

� The performance of the blocking model degrades more than that of the non blocking

model with a non ideal memory system. This is due to the higher miss rates of the frame

memory used for the blocking execution model. Since the number of tokens generated

both in the blocking and non blocking models is almost the same, and since the miss rate

is higher for the blocking model, the memory access time is also higher, and hence the

performance degrades.

� With a non ideal memory at a network latency of 100 cycles, the performance of the

non blocking model is comparable to that of the blocking model with 50% success rate.

Note that, with an ideal memory, the blocking model performed better than the non

blocking one at 100 cycles network latency. The reason is, again, the higher miss rate of

the blocking model.

Miss Penalty Figure 14 shows the e�ect of varying miss penalties on the execution time.

Three miss penalties (8, 25, and 50 cycles) are used in this �gure. A network latency of

50 cycles is assumed here. The non blocking model masks higher miss penalties e�ectively

compared with the blocking model. The slopes of all four plots corresponding to the blocking

model are the same. The slope is higher than that of the non blocking model. Since the miss

rates are higher for the blocking model, the miss penalties a�ect the execution time more

severely than the non blocking model.

6 Related Work

Culler et al. [9] demonstrates that the performance of the storage hierarchy to an extent

limits the amount of multithreading within a processor, thus limiting the latency that can be

tolerated. The idea of storage hierarchy rests on the principle that fast memories are small and

expensive while slow memories are large and inexpensive. The observation is that switching

is cheap only for those threads residing in the top part of hierarchy. Hence, only a limited

number of threads may be switched inexpensively. A scheduling policy that favors threads

17

0.0 50.0 100.0 150.0 200.0
Network Latency(Cycles)

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

E
xe

cu
tio

n
T

im
e

(N
on

−
id

ea
l M

em
or

y)

Blocking(100% Hit)
Blocking(90% hit)
Blocking(50% hit)
Blocking(10% hit)
Non−blocking

Figure 12: Execution Time versus Average Network Latency(5 processors ad 8 cycle miss penalty)

0.0 50.0 100.0 150.0 200.0
Network Latency(Cycles)

5.0e+06

1.0e+07

1.5e+07

2.0e+07

E
xe

cu
tio

n
T

im
e

(N
on

−
id

ea
l M

em
or

y)

Blocking(100% Hit)
Blocking(90% hit)
Blocking(50% hit)
Blocking(10% hit)
Non−blocking

Figure 13: Execution Time versus Average Network Latency(10 processors and 8 cycle miss penalty)

8 25 50
Miss Penalty (cycles)

5.0e+06

1.0e+07

1.5e+07

2.0e+07

2.5e+07

E
xe

cu
tio

n
T

im
e

Blocking(100% Hit)
Blocking(90% hit)
Blocking(50% hit)
Blocking(10% hit)
Non−blocking

Figure 14: Execution Time versus Miss Penalty (5 processors, 50 cycle network latency)

18

that already lie in the top part of hierarchy would be preferred. An important question in

parallel architecture is the problem of organizing the storage hierarchy to operate in concert

with the scheduling of computations in parallel programs. One simple approach is TAM's

scheduling policy, which favors threads within the currently executing quantum. The blocking

model of execution presented in this article schedules the threads belonging to a code-block

together. The concept of quantum is thus similar to the code-block based scheduling.

In Monsoon, thread scheduling cannot be controlled by the programmer. The token queues

are completely hardware managed; software is not permitted to read or write the token queues.

Hardware uses a pure FIFO scheme to schedule threads. A bad sequence of tokens could

signi�cantly increase run-time or resource usage of the entire program.

*T provides the sched instruction for a hardware supported scheduling of threads. It is also

possible to explicitly read the continuation stack, opening the possibility to explicitly control

thread scheduling. This
exibility of scheduling can be used by the compiler for achieving

better performance.

The M-machine uses scoreboarding for scheduling the instructions from H-threads. An

instruction is not issued till the register used by this instruction has a valid value. This type

of scheduling is e�cient but needs a large amount of hardware support. Scoreboarding is a

sequential bottleneck that can reduce the performance.

Research on storage hierarchy design for multithreaded architectures is ongoing. Most of

the research e�orts are on incorporating caches into multithreaded executions and measuring

their e�ectiveness. Cache designs in a data
ow model is discussed in [39] for DFM-II [40]. This

model is designed for a �ne-grained data
ow machine and must therefore take into account the

explosion of parallelism that is typical in these machines [7]. The model is evaluated by using a

relatively small set of hand-coded benchmarks. The caching mechanism attempts to preserve

the working set of the program in the cache. Compulsory misses form most of the misses in

the caches for multithreaded architectures. Hence, the techniques to reduce the compulsory

miss penalty give signi�cant performance bene�ts. Kavi et al. [22] use a cache with a frame

based storage (called SuperBlocks) in a data
ow execution model. Their mechanism uses a

Cold Store bit to identify compulsory misses and avoid bringing in the cache block. In [35]

it is shown that by using certain simple hardware support, the cache performance can be

increased by an order of magnitude. Some blocks of the cache are reserved for satisfying the

compulsory misses. This scheme, called reserve block scheme, reduces the miss penalty on

compulsory misses. In [41] Tekkath and Eggers show that a minimal amount of contention

misses occur due to inter thread communication. Therefore thread co-placement strategies

designed to enhance inter-thread locality and reduce cache misses have minimal e�ects.

Among the proposed multithreaded architectures that are being developed, the Tera MTA [2]

does not have a cache memory. The M-Machine [14] does not have a proper data cache but

uses the local memory to cache remote data. This caching mechanism is also supported in

the local TLB providing hardware support for the coherence mechanism at the block level

(8 word granularity). The *T-NG [3] uses coherent caches for global shared memory. It also

retains the message passing ability of the *T machine. The coherency is implemented by using

a directory based coherency scheme.

Because the processor speeds have been improving at a much faster rate than the memory

speeds in the past decade, the design of on-chip caches has become more crucial. The details

of various issues in cache designs are treated in [18]. Several designs have tried to combine the

advantages of direct-mapped caches with those of set-associative caches, these designs include

the victim-cache [21], MRU cache [38], hash-rehash cache [1], and half-half cache [42]. In

general, these schemes split the cache into two parts: one is direct mapped, while the other

is set associative. The idea is to simultaneously send the desired address to both parts of the

cache and to assume that the direct-mapped portion contains the data. If the assumption

turns out to be false, the set-associative portion of the cache provides the data (if available)

at a slightly greater cost. With su�cient locality, this method can result in a lower average

access time than either a pure direct-mapped or a pure set-associative cache of the same size.

While the thread execution models discussed in this paper rely on hardware support, several

19

projects have developed software run-time systems that support lightweight thread execution

on either a symmetric multiprocessors (SMPs) or distributed memory multiprocessors. An

extensive discussion of these approaches is beyond the scope of this section. In the absence

of architecture support, lightweight threads that support e�cient inter-thread communication

provide an e�cient and attractive platform for parallel processing. Further information can

be found in [15, 17, 12, 16, 11, 23, 27, 29, 13, 6, 25, 28, 4].

7 Conclusions

This article compares the performance of two data-driven multithreaded execution models

and their associated synchronization schemes. The blocking model relies on frame-based data

storage. A frame contains all the data related to a code block. All the thread instances that

belong to that code block share the same frame. In the blocking model it is assumed that a

static data distribution has been done at compile time, and therefore some of the structure

accesses are assumed to be local. Local accesses are done with a single phase access. All other

data structure accesses are done in split phase. Threads are split only on split-phase accesses

but not on uni-phase access. This approach should lead to fewer of large granularity threads.

In the non blocking model the data belonging to each thread instance is stored in a separate

framelet. Access to data structures in the non blocking model is always done with a split-phase

operation: the request is sent by one thread, and the results are received by another.

The evaluation of the program execution characteristics of these two models shows that

the blocking model has a signi�cant reduction in threads, instructions, and synchronization

operations executed with respect to the non blocking model. It also has a larger average

thread size and a lower synchronization per instruction. But the lower synchronization per

instruction does not reduce the load on the synchronization processor. The tra�c in terms

of the tokens sent to the synchronization processor remains the same in both the blocking

and the non blocking models, as is clear from the fact that the trace sizes obtained for both

models are nearly equal. Although the number of data tokens is less in the frame model, there

are a signi�cant number of synchronization tokens (decrementing counters) that negate the

advantage of fewer data tokens. Hence, synchronization overhead is the same for the frame

and framelet models of synchronization.

The execution time of the blocking model is highly dependent on the success rate of the

static data distribution. At a 100% or 90% success rate, the execution times are comparable

and outperform those of the non blocking model. For a success rate of 50%, however, the

execution time may be higher than that of the non blocking model: the performance depends

largely on the processor utilization and the average network latency. When the network

latency is low and the processor utilization high, the non blocking model performs as well as

the blocking model with a 100% or 90% success rate.

A non blocking, dynamically scheduled, multithreaded execution model provides an e�-

cient mechanism to overlap communication with computation, thus improving the processor

utilization. An important issue in this model is the e�ciency of the synchronization. Since

the number of synchronizations required for the blocking and non blocking models is similar,

the performance depends on the e�ciency of accessing the structure store in the two models.

Hence, an evaluation of two possible storage hierarchy models is carried out: one, associated

with the blocking model is called the frame model; the other, associated with the non blocking

model, is called the framelet model. The cache miss rates indicate that the framelet model

of synchronization outperforms the frame model of synchronization. Hence, the execution

time of the non blocking model is better than the blocking model under a non ideal memory

hierarchy.

The results have provided several insights into multithreading operations. With the lack

of a proper compile-time, data-distribution strategy, the blocking model of thread execution

is at a disadvantage. A simple non blocking model requiring minimal hardware support can

outperform the complex blocking model. The storage model performance indicates that a

20

signi�cant amount of inter thread locality can be exploited in this dynamically scheduled

multithreaded model. A traditional cache organization is su�cient to exploit this locality.

The previous work indicates that by tailoring the cache organization to take advantage of the

thread execution model, the performance can be greatly improved.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating systems and multi-

programming. ACM Trans. on Computer Systems, 6:393{431, November 1988.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Port�eld, and B. Smith. The Tera

computer system. In Int. Conf. on Supercomputing, pages 1{6. ACM Press, 1990.

[3] B. S. Ang, Arvind, and D. Chiou. StarT the Next Generation: Integrating Global Caches and

Data
ow Architecture. Technical Report 354, LCS, MIT, August 1994.

[4] G.D. Benson and R.A. Olson. A portable run-time for the SR concurrent programming language.

In Proc. Workshop on Run-Time Systems for Parallel Programming, 1997.

[5] D. C. Cann. Compilation techniques for high performance applicative computation. Technical

Report CS-89-108, Colorado State University, 1989.

[6] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and performance of munin. In

Proc. of 13th ACM Symp. on Operating Systems, pages 152{164, October 1991.

[7] D. E. Culler. Managing parallelism and resources in scienti�c data
ow program. PhD thesis, MIT,

June 1989.

[8] D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain parallelism

with minimal hardware support: A compiler-controlled threaded abstract machine. In Proc. Int.

Conf. on Architectural Support for Programming Languages and Operating Systems, pages 164{175,

1991.

[9] D. E. Culler, K. E. Schauser, and T. von Eicken. Two fundamental limits on data
ow multipro-

cessing. In Cosnard, Ebcioglu, and Gaudiot, editors, Proc. IFIP WG 10.3 Conf. on Architecture

and Compilation Techniques for Medium and Fine Grain Parallelism, Orlando, FL, 1993. North-

Holland.

[10] W. J. Dally, J. Fiske, J. Keen, R. Lethin, M. Noakes, P. Nuth, R. Davison, and G. Fyler. The

message-driven processor: A multicomputer processing node with e�cient mechanisms. IEEE

Micro, 12(2):23{39, April 1992.

[11] D.L. Eager and J. Zahorjan. Chores: Enhanced run-time support for shared memory parallel

computing. ACM Trans. on Computer Systems, 11(1):1{32, February 1993.

[12] D.R. Engler, G.R. Andrews, and D.K. Lowenthal. Filaments: E�cient support for �ne-grain

parallelism. Technical Report TR 93-13, Dept. of Computer Science, University of Arizona,

April 1993.

[13] E. Felton and D. McNamee. Improving the performance of message-passing applications by

multithreading. In Scalable High-Performance Computing Conf., pages 84{89, April 1992.

[14] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and W. S Lee. The

m-machine multicomputer. In Proc. Int. Symp. on Microarchitecture, November 1995.

[15] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading and

communication. J. of Parallel and Distributed Computing, (37):70{82, 1996.

[16] V.W. Freeh, D.K. Lowenthal, and G.R. Andrews. Distributed Filaments: E�cient �ne-grain

parallelism on a cluster of workstations. Technical Report TR 94-11, Dept. of Computer Science,

University of Arizona, 1993.

[17] M. Haines, D. Cronk, and P. Mehrotra. On the design of Chant: A talking threads package. In

Supercomputing, pages 350{359, Washington, D.C., November 1994.

[18] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan

Kaufmann Publishers Inc., 1990.

21

[19] H. Hum, O. Macquelin, K. Theobald, X. Tian, G. Gao, P. Cupryk, N. Elmassri, L. Hendren,

A. Jimenez, S. Krishnan, A. Marquez, S. Merali, S. Nemawarkar, P. Panangaden, X. Xue, and

Y. Zhu. A design study of the EARTHmultiprocessor. In Proc. Int. Conf. on Parallel Architectures

and Compilation Techniques, 1995.

[20] R. A. Iannucci. Toward A Data
ow/Von Neumann Hybrid Architecture. In Proc. 15thInt. Symp.

on Computer Architecture, pages 131{140, 1988.

[21] N. P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch bu�ers. In Int. Symp. on Computer Architecture, pages pp. 364{373,

May 1990.

[22] K. M. Kavi, A. R. Hurson, P. Patadia, E. Abraham, and P. Shanmugam. Design of cache memories

for multi-threaded data
ow architecture. In Int. Symp. on Computer Architecture, pages 253{264,

June 1995.

[23] D. Keppel. Tools and techniques for building fast portable threads packages. Technical Report

UWCSE 93-05-06, University of Washington, 1993.

[24] Y. Kodama, H. Sakane, M. Sato, H. Yamana, S. Sakai, and Y. Yamaguchi. The EM-X parallel

computer: Architecture and basic performance. In Int. Symp. on Computer Architecture, pages

14{23, June 1995.

[25] J. Kramer, J. Magee, M. Sloman, N. Duley, S.C. Cheung, S. Crane, and K. Twindle. An intro-

duction to distributed programming in REX. In Proc. of ESPRIT-91, pages 207{222, Brussels,

November 1991.

[26] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert, C. Kirkham, B. Noyce, and

R. Thomas. SISAL: Streams and Iteration in a Single Assignment Language: reference manual

version 1.2. Manual M-146, Rev. 1, Lawrence Livermore National Laboratory, Livermore, CA,

March 1985.

[27] F. Mueller. A library implementation of POSIX threads under UNIX. In Winter USENIX, pages

29{41, San Diego, CA, January 1993.

[28] Frank Mueller. Distributed shared memory threads: DSM-Threads. In Proc. Workshop on Run-

Time Systems for Parallel Programming, 1997.

[29] B. Mukherjee, G. Eisenhauer, and K. Ghosh. A machine independent interface for lightweight

threads. Technical Report CIT-CC-93/53, College of Computing, Georgia Institutre of Technol-

ogy, 1993.

[30] R. S. Nikhil and Arvind. Can data
ow subsume von Neumann computing? In Proc. 16thInt.

Symp. on Computer Architecture, pages 262{272, 1989. Also: CSG Memo 292, MIT Laboratory

for Computer Science 545 Technology Square, Cambridge, MA 02139, USA.

[31] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreaded massively parallel architec-

ture. In Proc. 19thInt. Symp. on Computer Architecture, pages 156{167, May 1992.

[32] G. M. Papadopoulos. Implementation of a General-Purpose Data
ow Multiprocessor. Technical

Report TR-432, MIT Laboratory for Computer Science, August 1988.

[33] G. M. Papadopoulos and D. E. Culler. Monsoon: An explicit token-store architecture. In Proc.

17thInt. Symp. on Computer Architecture, pages 82{91, June 1990.

[34] L. Roh, W. A. Najjar, B. Shankar, and A. P. W. B�ohm. An evaluation of optimized threaded code

generation. In Proc. Int. Conf. on Parallel Architectures and Compilation Techniques, Montreal,

Canada, 1994.

[35] Lucas Roh and Walid Najjar. Design of storage hierarchy in multithreaded architectures. In

Proc. Int. Symp. on Microarchitecture, pages 271{278, November 1995.

[36] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An architecture of a data-
ow

single chip processor. In Proc. 16thInt. Symp. on Computer Architecture, pages 46{53, May 1989.

[37] B. J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System. SPIE

(Real Time Signal Processing), 298:241{248, 1981.

[38] K. So and R. N. Rechtscha�en. Cache operations by MRU-Change. Intl. Conf. on Computer

Design, pages pp. 584{586, October 1986.

[39] M. Takesu. Cache memories for data
ow machines. IEEE Trans. on Computers, 41(6):677{687,

June 1992.

22

[40] M. Takesue. A uni�ed resource management and execution control mechanism for data
ow

machine. In Int. Ann. Symp. on Computer Architecture, pages 90{97. ACM, 1987.

[41] R. Thekkath and S. J. Eggers. Impact of sharing-based thread placement on multithreaded

architectures. In Proc. 21thInt. Symp. on Computer Architecture, pages 176{186, Chicago, Illinois,

1994.

[42] K. B. Theobald, H. H. Hum, and G. R. Gao. A design framework for hybrid-access caches. In

Int. Symposium on High-Performance Computer Architecture, pages pp. 144{153, January 1995.

23

