
Computer Science
Technical Report

CORBA Based HLA/RTI Design
Approach�

Klaus Schug Sandeep K. S. Gupta
Anura Jayasumana Pradip K Srimani

Dept. of Electrical Engineering Computer Science Department
Colorado State University Colorado State University

Fort Collins, CO 80523-1373 Fort Collins, CO 80523-1873
Email: jayasuma@engr.colostate.edu srimani@lamar.colostate.edu

kschug@lamar.colostate.edu gupta@cs.colostate.edu

Technical Report CS-97-109

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�To appear in the Summer Computer Simulation Conference (SCSC ’97), Arlington, Virginia, July
13-17, 1997.



CORBA Based HLA/RTI Design Approach�

Klaus Schug Sandeep K. S. Gupta
Anura Jayasumana Pradip K Srimani

Dept. of Electrical Engineering Computer Science Department
Colorado State University Colorado State University

Fort Collins, CO 80523-1373 Fort Collins, CO 80523-1873
Email: jayasuma@engr.colostate.edu srimani@lamar.colostate.edu

kschug@lamar.colostate.edu gupta@cs.colostate.edu

Abstract

DMSO’s effort to provide a CORBA based, standard, com-
mon real time simulation architecture (High Level Archi-
tecture/Run Time Infrastructure, HLA/RTI) [1] for use in
military, Civil Air Traffic Control (CATC - USA, Europe,
Canada), the entertainment industry and NASA has not
produced a CORBA based implementation with adequate
real time performance. The features that are desirable in an
RTI implementation are described. A common HLA/RTI
implementation that is suitable for the above applications
is one that: 1) meets real-time performance requirements,
2) is the same implementation for all federations or simu-
lations, 3) is implemented using commercial-off-the-shelf
(COTS) software and hardware, 4) does not alter or com-
promise the modularity or present design of the RTI, and
5) allows users and owners of simulation applications and
systems to retain control of their systems by not placing
RTI functionality in line with their application code.

Keywords: CORBA, Real Time Simulation, HLA, Inter-
active Simulation.

1 Introduction

The purpose of the HLA/RTI is to provide one architec-
ture, one simulation framework and interface specification
for all distributed simulations, whether FAA, Department
of Defense (DoD), NASA, other government agency, or
commercial industry based. In order to achieve this pur-
pose, the HLA/RTI design and implementation must pro-
vide:

a. The required services and data exchange mechanisms
for real-time distributed simulation

b. Real-time message (data) exchange performance

�To appear in the Summer Computer Simulation Conference
(SCSC ’97), Arlington, Virginia, July 13-17, 1997.

c. One common implementation for all simulation pro-
grams without necessitating custom software coding
for each simulation

d. Modularity of design

e. Scalability to very large simulation exercises with-
out simulation-by-simulation unique implementation
modifications.

The HLA/RTI architecture is derived from the experi-
ence of past efforts to standardize simulation architectures
such as SIMNET and DIS. This vast amount of simula-
tion experience, represented by and accessed through the
HLA/RTI Architecture Management Group (AMG) and
Simulation Interoperability (formerly DIS) Workshops,
has produced a HLA/RTI design that provides a, c, d and e:
the required simulation services and data exchange mech-
anisms in a common, modular and scalable manner. An
existing HLA/RTI implementation prototype is available
that uses object oriented (OO) COTS products such as the
Common Object Request Broker Architecture (CORBA)
and IONA Technologies implementation of CORBA (OR-
BIX). The prototype fulfilled its purpose in providing a
proof of concept and verification of the HLA and RTI de-
sign in the shortest available time.

The existing HLA/RTI prototype has been designed us-
ing CORBA and ORBIX in a distributed fashion. Differ-
ent RTI modules run on different machines connected by a
local area network (LAN) or wide area network (WAN).
Although CORBA and ORBIX provide a natural imple-
mentation framework for the object-based HLA/RTI, the
processing and communications load of such an imple-
mentation preclude meeting real-time performance needs
of distributed simulation. The prototype does not meet real
time performance requirements. As a result, an implemen-
tation of the HLA/RTI design that meets real-time perfor-
mance requirements and also provides the desired design
features is not yet available.



LAN

Communications 
Overhead 1

Communications 
Latency A

Communications 
Latency B

Communications 
Overhead 2

Communications 
Latency C

Overhead = 1 + 2
Latency = A + B + C

Sender Receiver

Application Layer

Presentation Layer

Session Layer 

Transport Layer 

Network Layer

Data Link Layer

Physical Layer

7

6

5

4

3

2

1

Application Layer

Presentation Layer

Session Layer 

Transport Layer 

Network Layer

Data Link Layer

Physical Layer

7

6

5

4

3

2

1

Figure 1: Communications overhead and communications
latency

With respect to the characteristics of the RTI services,
the performance of current CORBA and ORBIX is not
yet suited for real-time simulations with constrained pro-
cessing and communications overhead/latency systems.
An OO implementation has increased processing over-
head in contrast to traditional non object oriented or
data oriented approaches. In order to provide the ad-
vantages of object oriented design, mainly easy to use
and easily understood RTI services and interfaces, ad-
ditional processing is required. This processing hides
the object-orientation (encapsulation) and relocatable ob-
ject platform-independence implementation details from
the users. Long-chains of intra-ORB virtual function
calls, and a lack of object oriented mechanisms integration
with underlying operating system (OS) and network qual-
ity of service (QoS) mechanisms are additional sources
of CORBA and ORBIX processing overhead. There is
neither any priority mechanism nor are there any asyn-
chronous requests to aid in speeding up processing.

2 CORBA Based RTI

An OO CORBA and ORBIX RTI implementation has a
great deal of communications overhead and some addi-
tional communications latency in comparison to other non
CORBA/ORBIX OO or non OO implementations. The

time spent by the processor sending or receiving a message
is defined as communications overhead. The time spent
in the actual network hardware, in network interface units
(NIUs) and in the network (e.g., transmission time in a lo-
cal or wide area network - LAN or WAN), is defined as
communications latency (Figure 1).

By examining the RTI architecture and functional block
diagram illustrated in figure 2, by examining the HLA In-
terface Specification, and by examining the CORBA and
ORBIX specifications, it can be seen that a great deal of
communication is required between many RTI functions
to perform RTI simulation services. If the RTI functions
are in the same machine, then the communication requires
processor time only and is therefore overhead. If the RTI
functions are distributed in different machines, the pro-
cessing of the functions is still required and additional net-
work messages are required for coordination between the
different machines, adding communications latency to the
time delay.

A distributed RTI is a major factor to processing and
communications latency/overhead. A distributed RTI
means that each simulator participating in the simulation
must perform some of the functions of the RTI. The de-
gree of RTI distribution is determined by how many func-
tions of the RTI must be performed at each simulator. With
the main RTI functions depicted in figure 2, one recog-
nizes that if there is a high degree of distribution, the RTI
processing burden becomes a major performance impact.
When many, perhaps all, of the RTI functions are per-
formed at each simulator, then combined with the CORBA
and ORBIX processing overhead, the processing required
at all simulator machines can easily exceed the available
capacity. The RTI processing load is particularly impor-
tant for those simulators that were never designed to be
networked and to which additional resources such as CPUs
or memory can not be added. Even for newer, multipro-
cessor simulator machines, the additional processing and
communication delays of a CORBA and ORBIX RTI im-
plementation can cause the simulation application process-
ing to fall behind to the point of simulation failure.

In a distributed implementation of the RTI, where sub-
sets of RTI modules run on a cluster of simulators con-
nected by local area networks (LANs), a close interac-
tion between different RTI modules is needed to ensure the
timestamp ordering of message delivery. Hardware and
software LAN technology was not initially developed for
fast and frequent communication between tightly coupled
functions (as in parallel processing), and thus the commu-
nication overhead between networked simulators can be
quite high. A CORBA and ORBIX implementation, when
combined with a distributed RTI implementation, provides
a number of other inherent processing and communica-
tions delays and overheads:

a. Non-optimized presentation layer conversion and ex-
cessive data-copying

b. Internal message buffering mechanisms leading to
non-uniform latencies



Consistency

Manager

Local

Subscription

Agent State
Consistent Reliable

Best
Effort

Minimum
Rate

Consistency

Protocol

Delete
Request Update

Subscribe, Publish
Set Service,

Set Publication

Control Updates,
Request Update Delete

Update 
Attributes

Reflect 
Attributes Delete,

Request Update

{oid, attribute_values}

Subscription Principal
Transport Manager (TM)

Streams
of Interest

Subscriptions,
Publications,
Resources

{oid, attribute_values}

RTI

Initialization

Data

(RID)

Stream
Mappings

Request

Discovery

Protocol

Resources

create
delete
update

{stream, data, count}

Stream Manager (SM)
Distribution

Database

{oid, attr_names, stream, service, service_data, ...}

Network
Ethernet, FDDI, ATM, ISDN, ...

Lower Layer Communication Service Protocol
UDP, TCP, IPv6, ...

HLA/RTI Simulation Protocol 

Figure 2: The RTI has many computationally and communication intensive functions

c. Inefficient receiver side demultiplexing and dispatch-
ing

d. Synchronous stop-and-wait flow control

e. Non-adaptive retransmission timer schemes.

Efforts to speed up RTI distributed simulation communi-
cation often include placing the RTI functions code in line
with the simulation application code, making for one large
simulation application process. This implementation is of-
ten not obvious from the design descriptions, block dia-
grams and engineering reviews. The situation results from
the need to speed up RTI processing as much as possi-
ble without sacrificing needed functionality. Once all un-
necessary RTI functionality has been discarded and all re-
maining functionality has been combined in the most pro-
cessing efficient manner, there remains one other ”simple”
speedup option for a distributed RTI: place all RTI and
other communications function code in line with the ex-
isting simulation application program code. This will pro-
duce significant speedup of RTI execution, but at a price
usually not made clear to the owners of the simulation
application programs or the systems running the applica-
tions. By placing all RTI and communications functions
(anything above the TCP/IP protocol) in line with the ap-
plication code, the owners and users of the simulation ap-
plications and their systems lose all control over their ap-
plications and systems. Users and owners are not allowed

to modify their systems and simulation applications with-
out third party approval even for stand-alone, internal or-
ganization simulations. Figure 3 illustrates this situation.
Such a loss of control often results in frustrated users dupli-
cating their simulation applications on a new, stand-alone
system in order to be free from third party RTI operations
and maintenance restrictions. Duplication of the simula-
tion systems as a result of a loss of control by the uses
and owners of such systems, defeats the entire purpose of
networked simulators and increases the cost and mainte-
nance of simulations beyond the cost of pre-networking.
Duplicate systems are procured, two independent versions
of the simulation applications must be maintained, and ad-
ditional personnel are required to maintain the RTI in line
code and duplicate applications and systems.

3 Centralized RTI Design

Our design (figure 4) provides user and owners of simu-
lation systems with the best method of maintaining con-
trol over their applications and systems. Our design mini-
mizes the RTI code at each simulator, therefore not requir-
ing that the RTI code be placed in line with existing ap-
plication code. Not enough RTI functionality is required
at each simulator to warrant integration with the applica-
tion. No speedup at the simulator is required. Indeed, with
simulators already containing network distributed simula-



Simulation
Application

Code

RTI
Code

Simulator Simulator

Simulation 
Manager

etc.

LAN / WAN

Simulation
Application

Code

RTI
Code

Figure 3: RTI speedup often ”silently” places RTI code in line with application code
at a horrific user impact and cost

Simulation Program LAN

RTI
Processing

Simulator

Simulation 
Manager

etc.Simulator
Simulation
Application

Code

Existing 
Interface
e.g., DIS

code

Simulation
Application

Code

RTI
Code

SMP

RTI
Processing

Figure 4: A centralized RTI maintains user control over user applications/systems

tion communications, the existing protocols and message
sets can be used with the centralized RTI node making any
necessary transformation. In such cases, no code needs to
be added, either in line, or as separate processes invoked
through context switches between simulation application,
OS, and RTI processes.

In order to meet the real-time constraints on message
delay and avoid the horrific cost of placing RTI code in
line with simulation application code, RTI functions must
be implemented as separate processes, executed more
quickly, with less processing and communications over-
head at each simulator, and executed with less communica-
tions latency for the entire simulation network. Our design
and implementation provides all of these characteristics.

4 RTI Implementation

As discussed in the Introduction section, poor RTI perfor-
mance is due mainly to communications overhead and pro-
cessing. In our design, all the RTI services, functionalities
and modules are implemented on an inexpensive, COTS
SMP machine. Centralizing the RTI implementation to a
high performance, parallel processing machine improves
performance for the following reasons:

a. Minimizes the amount of RTI processing required at
each simulator

b. Minimizes the amount of network bandwidth (mes-
sages) required for intra-RTI messaging

c. Executes RTI functions in parallel



d. Minimizes the amount of memory accesses required
for RTI execution

e. Reduces (in many cases eliminates) all intra RTI
module communication overheads considerably
since all interactions can be implemented using
uniform data formats on shared memory

f. Performance impacts from increased simulation size
(more entities, etc.) are limited to the central RTI
server

g. RTI maintenance and modifications are limited to the
central RTI server.

Poor performance of a distributed OO RTI can be mainly
attributed to communication latency and overhead in-
curred in exchange of information between different en-
tities. Factors such as propagation delay and network in-
terface delay that define latency, depend on the technol-
ogy and the physical network configuration and therefore
can be influenced only marginally. However, communi-
cation overhead, caused by the processor cycles required
to deal with the information at each node, is more impor-
tant. Response times seen by an application are dominated
by the communication overhead. By centralizing the RTI
functionality, the communications and therefore process-
ing overhead at each node is minimized. The central RTI
machine performs most, if not all, RTI module commu-
nication within itself. This minimizes any RTI network
communications, reducing the number of messages trav-
eling over the simulation LAN/WAN, reduces the number
of messages that each simulator node has to receive and
transmit, and minimizes RTI induced processing at each
simulator. These reductions in network bandwidth, and
the number of messages and RTI code that simulators have
to process, has tremendous performance gains. In addi-
tion, a perhaps even greater benefit results. With the re-
duction and perhaps elimination of any additional RTI pro-
cessing, functions or communication messages, simulators
that could not accommodate any further processing can
now be used as is within a distributed simulation. No re-
coding, communication front ends, rehosting or resource
additions are required. In addition, if the simulator already
uses DIS or another protocol to communicate, that exist-
ing protocol and interface can be reused for HLA compli-
ant simulations by making the conversion to RTI services
only once, at the centralized RTI node. Figures 5 and 6
illustrate the design principles.

Several other reasons why a centralized RTI implemen-
tation will be more efficient are as follows:

a. Multicasting is most efficiently implemented as the
centralized version will have all the information
needed to make the decisions

b. Data Logging is the most thorough and would have a
single, common format output file.

c. Overhead required to make sure that the different RTI
entities have consistent state information will be re-
duced

d. Overall network traffic is reduced as the need to han-
dle multiple acknowledgments, etc. will be less

e. SMP machines can achieve very high effective mem-
ory bandwidths, reducing the biggest bottleneck to
communications overhead - memory access, thereby
greatly speeding up RTI function execution.

It is to be noted that all RTI functions may not be able to
see the same level of improvement when centrally imple-
mented. One interesting question is to categorize RTI ser-
vices into groups that may have different levels of effect of
centralization or distribution. For example, if we consider
Time management services of the RTI (these services coor-
dinate the advancement of logical time and its relationship
to real-time during the federation execution), we see that
a centralized RTI would be suitable for simulations whose
requirements for time management either fall in Category
I (paced with agreement) or Category III (Not paced with
agreement). The RTI manages the current federation time
by arbitrating between the Time Advance Requests of the
simulations in the federation. The RTI grants a time ad-
vance to the simulation(s) whose requested time falls next
in sequence. On the other hand, centralization of RTI im-
plementation may not have much impact on simulations
which do not require the RTI to play an active role such
as in Category II (paced with no agreement) and Category
IV (not paced with no agreement) simulations. Our imple-
mentation efforts and testing provides an exhaustive exper-
imental measurement going a long way to give new insight
into fine tuning the implementation strategies to optimize
performance over all kinds of simulation clients.

Efficient parallel execution of RTI subtasks is necessary
to meet the real-time constraints on message delay. Effi-
cient parallel execution is often dependent on a high level
of synchronization between tasks. There is typically little
support for this in the existing complex, multitasking, mul-
tiuser simulator environment. A centralized SMP based
RTI provides efficient parallel task execution support hard-
ware and software mechanisms reducing context-switch
overheads.

Unlike DIS, the RTI presents data in format native to
the processor. This incurs extra overhead in the form
of multiple memory accesses and system data bus trans-
fers which reduce performance. SMPs have multiple
high-performance multiprocessors that (logically) share
the same memory. Since they provide a single address
space, shared-memory multiprocessors are a convenient
platform for both serial and parallel programs. They are
also cost-effective for high-performance computing since
they take advantage of commodity microprocessor and
memory components. Most major computer manufactur-
ers offer relatively inexpensive SMP systems.

5 Conclusions

In this paper we have presented a HLA/RTI implementa-
tion approach which will meet the real-time performance



Simulator
Simulation 
Manager

etc.
Simulator

LAN / WAN

RTI
Processing

Existing Interface
e.g., DIS

Simulation
Application
Processing

RTI
Processing

Simulation
Application
Processing

RTI
Processing

Simulation
Application
Processing

Figure 5: A distributed RTI causes extensive processing and communications over-
head at all simulators in the simulation exercise

LAN / WAN

Simulator
Simulation 
Manager

etc.

RTI
Processing

Simulator

SMP

Existing Interface
e.g., DIS

Simulation
Application
Processing

Simulation
Application
Processing

Simulation
Application
Processing

RTI
Processing

Figure 6: A centralized RTI minimizes processing and communications overhead
at all simulators in the simulation exercise

requirement of distributed simulations as well as be scal-
able to STOW-size simulations.

References

[1] DMSO 1997. HLA interface specification version 1.1,
final draft, february 4, 1997. Available through inter-
net http://www.dmso.mil/projects/hla/, January 1997.


