
Computer Science
Technical Report

Distributed Self-Stabilizing Algorithm for
Minimum Spanning Tree Construction?

Gheorghe Antonoiu1 and Pradip K. Srimani1

May 20, 1997

Technical Report CS-97-110

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

? A somewhat abridged version of it will appear in the Proceedings of Euro-Par ’97, Passau,
Germany, August 26-29, 1997

Distributed Self-Stabilizing Algorithm for

Minimum Spanning Tree Construction?

Gheorghe Antonoiu1 and Pradip K. Srimani1

Department of Computer Science, Colorado State University, Ft. Collins, CO 80523

Abstract. Minimal Spanning Tree (MST) problem in an arbitrary undi-

rected graph is an important problem in graph theory and has extensive

applications. Numerous algorithms are available to compute an MST.

Our purpose here is to propose a self-stabilizing distributed algorithm

for the MST problem and to prove its correctness. The algorithm uti-

lizes an interesting result of [MP88]. We show the correctness of the

proposed algorithm by using a new technique involving induction.

1 Introduction

Self-stabilization is a relatively new way of looking at system fault tolerance, es-
pecially it provides a \built-in-safeguard" against \transient failures" that might
corrupt the data in a distributed system. The concept of self-stabilization was
�rst introduced in [Dij74] and the possibility of using this concept for designing
fault tolerant algorithms was �rst explored in [Lam84].

A distributed system can be considered as a set of computing elements, in-
terconnected by a network of some �xed topology. These computing elements
or nodes exchange information only through message passing. Every node has
a set of local variables whose contents specify the state of that node. The state
of the entire system, called the global state, is the union of the local states of
all the nodes in the system. The aim of any distributed system is to achieve
some desired global state, referred to as the legitimate state of the system.
Each node is allowed to have only a partial view of the global state, and this
depends on the connectivity of the system and the propagation delay of di�erent
messages. Yet, the objective in a distributed system is to arrive at a desirable
global �nal state (legitimate state).

One of the goals of a distributed system is that the system should function
correctly in spite of intermittent faults. In other words, the global state of the
system should ideally remain in the legitimate state. Often, due to node failures
or other perturbations, the global state of a distributed system is in some ille-
gitimate state, and is desirable that it reaches the legitimate state without the
interference of an external agency. Systems that reach a legitimate state starting
from any illegitimate state in a �nite number of steps are called self-stabilizing
systems [Dij74] [Dij86]. Every node in a self-stabilizing system has a set of rules,
each rule having two parts - an antecedent (boolean condition) part and an ac-
tion part. A node is said to be privileged if the antecedent part of some rule is
true for that node.

Recently there has been a spurt of research in designing self-stabilizing dis-
tributed graph algorithms for many applications [GH90,SS92,BGW89,FD92,ADG92];
a good survey of self-stabilizing algorithms can be found in [Sch93]. One of the
most fundamental structures that is very essential in many distributed appli-
cations is the minimum spanning tree (MST) of a given undirected connected

? A somewhat abridged version of it will appear in the Proceedings of Euro-Par '97,

Passau, Germany, August 26-29, 1997

edge-weighted graph. MST of a given undirected connected edge-weighted graph
is de�ned to be a spanning tree of the graph with minimum total weight of the
edges [HS84]. Most of the communication issues in any distributed system in-
cluding broadcasting, packet routing, resource allocation, deadlock resolution
etc. involve maintaining a minimal spanning tree of the underlying symmetric
graph of the system. Although there exist a number of self-stabilizing algorithms
for the spanning tree problem [CYH91,HC92,SS92,AS95,Agg94], none of those
algorithms deals with constructing a MST. Our purpose in this paper is to pro-
pose a self-stabilizing distributed algorithm for the MST problem in a symmetric
graph and to prove its correctness using induction in an interesting way.

Most self-stabilizing algorithms assume that there is a central daemon [Dij74]
that decides which of the privileged nodes makes a move. In other words, the
central daemon serializes the moves made by the privileged nodes, but the order
in which the privileged nodes are chosen to make their moves is not known a
priori. However, the presence of such a daemon is against the fundamental idea of
a distributed system. We do not assume the presence of a daemon with central
control. Therefore, if two or more nodes are privileged at the same time, we
cannot predict the order in which they make their moves, and it is possible that
more than one privileged node makes a move simultaneously. Any privileged
node that is making a move is called an active node.

In this paper, we assume that the graph is edge-weighted, i.e., each edge is
assigned a unique nonzero positive weight. This assumption is for convenience
of description only; if the edge weights are not unique, lexicographic informa-
tion can be easily added to make them unique [MP88]. The proposed algorithm
computes the minimal spanning tree (MST) in a distributed fashion, i.e., each
node knows only which of its incident edges belong to the MST.

2 Minimal Spanning Tree (MST) of a Graph

Let G = (V;E) be an undirected (symmetric) graph (with no self-loops and no
parallel edges) representing the distributed system, where V is the set of nodes,
jV j = n, and E is the set of edges. We use G and V interchangeably to denote
the set of nodes of the graph. The minimal spanning tree (MST) of the graph is
de�ned to be a spanning tree of the graph such that the sum of the weights of
the edges in the tree is less than or equal to that for all possible spanning trees
of the graph.

Our objective is to design a self-stabilizing distributed algorithm that con-
structs the MST of the graph. A self-stabilizing algorithm is called uniform if
each processor in the system executes the same program. A algorithm is called
semi-uniform if it has two kinds of nodes: an unique node of one type, referred
as root, and all other nodes of the other type. The program executed by the
root node is di�erent of the program executed by other nodes. A network where
the processors do not have distinct identi�ers is called anonymous network; a
network where the processors have unique identi�ers is called id-based network.
First, we observe the following simple result.

Theorem 1. There is no general uniform self-stabilizing protocol (algorithm)
in anonymous network graphs to compute the minimum spanning tree.

Proof. The proof of this theorem, like many other impossibility proofs for self-
stabilizing algorithms, is based on the impossibility of symmetry breaking. Con-
sider the graph presented in Figure 1. Any minimum spanning of this graph will
have one of the edges (r; a), (r; b), (r; c), (r; d) and three of the edges (a; b), (b; c),
(c; d), (d; a). Hence in the �nal state, the state S(a) of node a, and the state
S(c) of node c, can not be identical. Assume that initially the state of node a is
identical with the state of node c and the state of node b is identical with the
state of node d. If node a is privileged, the node c is privileged too. Since a move
of node a does not modify the status of the neighbors of the node c, any move of
node a may be followed by a move of node c and the state of a is again identical
to the state of node c.

a

2
r

d

1

1

1

1

2 2
b

c

2

Fig. 1. Anonymous Network

Consequently, a self-stabilizing algorithm to compute the minimum spanning
tree have to choose a stronger computational model. In this paper we use an id-
based network model and without loss of generality we assume that the nodes
are numbered 1 through n. Each edge eij 2 E has a positive (non zero) weight
wij assigned to it (note that wij = wji for all i and j). Let N (x) represent the
set of all nodes adjacent to node x.

Remark 2. If the weights fwijg of a graph are unique (distinct), the graph has
a unique MST [HS84].

To design a self-stabilizing algorithm for the MST of a graph, we introduce
a new characterization of any path in a given graph.

De�nition 3. �-cost of any path from node i to j is de�ned to be the maxi-
mum of the weights of the edges belonging to the path. 	ij is de�ned to be the
minimum among the �-cost of all possible paths between the nodes i and j.

d (4,2) c (2,1)

b (2,2)a (3,3) 1

5

3
14

6

Fig. 2. The Example Graph

Remark 4. We call the path, along which 	ij is de�ned, to be the minimum-�
path between nodes i and j; this should not be confused with the traditional
shortest path between nodes i and j. The shortest path is de�ned to be the path
of minimum length where the length of a path is the sum of the weights of the
edges on the path. Most signi�cant di�erence between the two metrics, �-cost
and length, of a path, assuming nonzero positive edge weights, is that when a
path is augmented by an additional edge, length must increase while �-cost may
remain constant.

Example 5. Consider the graph shown in Figure 2. The node set is V = fa; b; c; dg

and the edges are labeled with their weights. There are 3 paths from node a to
d: (a; d) with �-cost 14, (a; b; d) with �-cost 6 and (a; b; c; d) with �-cost 5 and
hence 	ad = 5 and the minimum-� path between nodes a and d is (a; b; c; d).
Note that the shortest path between nodes a and d is (a; b; d) with length 7.

Theorem 6. Consider a graph G with unique edge weights. An edge eij is in
the unique MST if and only if 	ij = wij [MP88].

Proof. The proof is by contradiction; for details, see [MP88].

We use Remark 2 and Theorem 6 to develop our algorithm for MST con-
struction. First, we can safely assume the edge weights to be unique; this is no
restriction since if not, we can easily add lexicographic information to make them
unique [MP88]. Second, if a distributed algorithm can compute the �ij values for
all nodes, we can add an additional data structure
i at each node i that keeps
track of the MST edges incident on node i, i.e.,
i = fkj the edge eik 2MSTg.
Computing �ij values for all nodes is not similar to the all pairs shortest path
problem since the metric �-cost does not have the desirable properties of the met-
ric length (see Remark 4); we cannot use a standard self-stabilizing algorithm
for all-pairs shortest path problem. We need to have some additional concepts
and data structures to ensure termination of the algorithm in �nite time.

For convenience of description and understanding we �rst develop a self-
stabilizing algorithm for minimum �-cost path to a given reference node r in the
graph and then generalize the result to solve the MST problem.

2.1 Minimum �-cost path to a Given Node r

Each node attempts to compute the �-cost of the shortest path (minimum �-cost
path) to a given reference node. Call this special node r. 	ir denotes the �-cost
of the shortest path from node i to node r. Note that for all i, 	ir is determined
by the topology of the graph and the weights assigned to the edges. Note that
	rr = 0 (no self-loops). We use the following notations:

{ C: An integer constant such that C � n.
{ N (x): The set of neighbors of node x.
{ L(i): The level of node i, the current estimate of the number of edges on the
minimum �-cost path.

{ D(i): The current estimate of 	ir as known at node i.

Thus each node i maintains two data structures L(i) and D(i) and they de-
termine the local state of node i. We assume that 0 � L(i) � C; we do not
need to consider level values beyond that (even after perturbation), as we can
always assume each processor is capable of doing a modulo (C + 1) operation
and always keeps the remainder as its level value. The variable D(i) assume an
an arbitrary value between 0 and some large positive number which we shall call
MAX (determined by the length of the registers holding these variables).

De�nition 7. For any arbitrary node x, the ordered pair, S(x) = (D(x); L(x))
de�nes the local state of the node x at any given point of time. The vector of all
the node states de�ne the global state of the system.

We introduce a total ordering relation between any two arbitrary local states.

De�nition 8. Given two local states S = (D;L) and S0 = (D0; L0), S is less
than S0 or S < S0, i� (D < D0) _ ((D = D0) ^ (L < L0)), i.e., state tuples are
lexicographically ordered.

Example 9. Consider the graph in Figure 2 where the local state of each node
is indicated as an ordered pair for an arbitrary system state. S(d) > S(a),
S(c) < S(b), S(c) < S(a), and so on.

De�nition 10. In any system state, for any arbitrary node x, we de�neNC(x) =
fyjy 2 N (x); L(y) < Cg, to be the set of its neighbors with level value < C.

De�nition 11. In any system state, for any arbitrary node x,NC(x) 6= ;, we de-
�ne the following: (1) �min(x) = miny2NC(x) fmaxfwxy; D(y)gg; (2) �min(x) =
fyj(y 2 NC(x)) ^ (maxfwxy; D(y)g = �min(x)); (3) Lmin(x) = minfL(y)jy 2

�min(x)g.

We make the following immediate observations:

(a) If the set NC(x) for any node x is empty, all neighbors of node x has a level
equal to C. The parameters �min(x), �min(x) and Lmin(x) are unde�ned
indicating that the estimates at each neighbor of node x is wrong.

(b) �min(x) of any node x is a re�ned estimate of 	xr based on the estimates at
the neighbors of node x. �min(x) is de�ned when NC(x) 6= ;.

(c) The set�min(x) denotes the neighbors y of node x such that maxfwxy; D(y)g =
�min(x). The set �min(x) is de�ned and nonempty when NC(x) 6= ;.

(d) Lmin(x) indicates the minimum of the level values of the nodes in the set
�min(x). The parameter Lmin(x) is de�ned when NC(x) 6= ;.

Our objective is to design an algorithm to compute the minimum �-cost of
each node to the reference node r, i.e., when the algorithm stabilizes, we will
have D(x) = 	xr at each node x. Each node x looks at its own state S(x) (the
pair (D(x); L(x))) and the states of its neighbors and takes action by changing
its own level and cost estimate. Our algorithm has a single rule for all the nodes
in the graph (actually, the reference node take di�erent action than all other
nodes). The rule at node x is as follows:

(R)

8>><
>>:

if (x = r) ^ (L(x) 6= 0 _D(x) 6= 0) then L(x) = 0 & D(x) = 0;
else if (NC(x) = ;) ^ (D(x) 6=MAX _ L(x) 6= C) then D(x) =MAX & L(x) = C

else if (L(x) 6= Lmin(x) + 1) _ (D(x) 6= �min(x))
then L(x) = Lmin(x) + 1; & D(x) = �min(x);

Remark 12. The reference node r is privileged if D(r) 6= 0 or L(r) 6= 0. The
reference node may be privileged in an illegitimate state, but once it takes an
action, it becomes un privileged and can never be privileged again.

Remark 13. Any other node x, withNC(x) = ; is privileged if (D(x) 6=MAX_

L(x) 6= C); any node x, with NC(x) 6= ; is privileged if L(x) 6= Lmin(x) + 1 _
D(x) 6= �min(x). Note that any node x, x 6= r, is privileged and takes action, it
becomes un privileged, but can be privileged again later (only after at least one
move by one of its neighbors).

Remark 14. Given any arbitrary initial system state, the number of all possible
distinct local states that any node can have subsequently is �nite (L values can
range over 0 � � �C � 1 and the D values can range over the edge weights and the
initial D values at the nodes). Thus, the number of all possible global system
states is also �nite.

De�nition 15. Any global system state, when no node is privileged, is called
a legitimate state; any other state is illegitimate.

Remark 16. In a legitimate state, L(r) = D(r) = 0.

Lemma 17. In a legitimate state, any node x, x 6= r, with L(x) < C has
NC(x) 6= ; and has at least one neighbor y such that L(y) = L(x)� 1.

Proof. For any un privileged node x, with L(x) < C, we have L(x) = Lmin(x)+1
and since L(x) < C, we get Lmin(x) < C) NC(x) 6= ;. We also have that
Lmin(x) = L(x)� 1 and since L(x) < C, there exists at least one neighbor y of
node x such that L(y) = L(x)� 1.

Lemma 18. In a legitimate state, when no node is privileged, for any arbitrary
node x, L(x) < C.

Proof. In a legitimate state, the reference node r has L(r) = 0. Assume that a
node x has L(x) = C; since x is un privileged, NC(x) = ;. Consider the subset
of nodes in graph G with level C. This subset forms a subgraph G0 of G. Since
G is connected and r 62 G0, there must be at least one node y 2 G0 such that
NC(y) 6= ; and since this y is unprivileged, there exists a node z such that
L(z) = L(y)� 1 = C� 1. Then, by repeated application of the Lemma 17, there
must be at least one node each with level values C � 1; C � 2; � � � ; 0. This is a
contradiction since C � n where n is the number of nodes in the graph.

Corollary 19. For some integer m, m < C, (m denotes the highest level of a
node in a legitimate state), the set of nodes in the graph is given by

S
0�k�mR(k),

where R(k) is the set of nodes with level k.

Lemma 20. In a legitimate state, (1) R(0) = frg; (2) for each node x 2 R(k),
1 � k � m, there exists a node y 2 R(k� 1) such that D(x) = maxfD(y); wxyg.

Proof. (1) Clearly, R(0) contains the reference node r since in a legitimate state
L(r) = 0. Assume R(0) contains another node x. Since x is not privileged and is
not the reference node, L(x) = Lmin(x) + 1 and since levels cannot be negative,
L(x) > 0; thus, R(0) cannot contain x.

(2) Since node x is not privileged, Lmin(x) = L(x)� 1 and D(x) = �min(x),
i.e., there exists a node y, such that L(y) = L(x) � 1 (thus, y 2 R(k � 1)) and
�min(x) = maxfD(y); wxyg.

Theorem 21. In a legitimate state, when no node is privileged, for any arbitrary
node x, we have D(x) = 	xr.

Proof. Consider any path r = y0; y1; : : : ; y` = x from the reference node r to any
arbitrary node x. The �-cost of this path is given by w = maxfw(yi; yi+1)ji =
0; � � � ; ` � 1g. Also, since no node is privileged, D(y0) = 0, and for all i, i =
1; � � � ; `, D(yi) = �min(yi) � maxfD(yi�1; w(yi�1; yi)g � w. Thus, we have
proved that for any arbitrary node x, D(x) � 	xr.

To prove D(x) � 	xr, we use induction. Clearly the claim holds for the node
r in R(0). Assume the claim hold for nodes in R(k). Consider any arbitrary
node x in R(k + 1). By Lemma 20, there exists a node y in R(k) such that
D(x) = maxfD(y); wxyg. Since D(y) = 	yr (i.e., there exists a path from node
y to node r with �-cost D(y)), there is a path from node x to r with cost D(x),
i.e., D(x) � 	xr.

Next, we need to prove that the system converges to a legitimate state after
a �nite number of moves starting from any arbitrary initial illegitimate state.
We need some more de�nitions.

De�nition 22. In any illegitimate state, a forcing node of any privileged node
x (x 6= r), is de�ned to be

�
node x if NC(x) = ;

a node yjy 2 �min(x) ^ L(y) = Lmin(x) otherwise

Remark 23. The reference node r, when it is privileged, does not have any forcing
node. Also, for any other node x, the forcing node may not be unique, i.e., the
set fyjy 2 �min(x) ^ L(y) = Lmin(x)g may have more than one node. But, the
new state of a node after the move is the same irrespective of the choice of the
forcing node.

Lemma 24. When a privileged node x takes action, the new state of node x is
greater than the state of its forcing node (in the previous system state).

Proof. If NC(x) = ; and x is privileged, node x is its own forcing node, S(x) <
(MAX;C) and the new state after the move S0(x) = (MAX;C) and hence
S0(x) > S(x). If NC(x) 6= ;, the forcing node y 2 NC(x) has L(y) < C (y 2
Lmin(x) and after the move, D0(x) � maxfwxy; D(y)g � D(y) and L0(x) =
L(y) + 1 > L(y); hence, S0(x) > S(y).

Let A be a subset of the node set V of the graph not including the reference
node r. The following de�nitions are based on such a set A.

De�nition 25. For any given A, the set of nodes in A that have an edge to
some node in V �A is called the border set of A and is denoted by BA.

Remark 26. For a given graph and a given set A, the set BA is always non null
since r 62 A and the graph is connected.

De�nition 27. For a given A, and a system state, the minimum value of the
local states S(x) for all x 2 A is called theminimum value of A and is denoted
by Min(A).

Remark 28. The quantity Min(A) is an ordered pair of estimate values and
levels (just like local states of nodes) and hence can be compared by the total
ordering of De�nition 8. Also, note that Min(A) is a function of the given set A
and a given global system state.

Example 29. Consider the graph in a given system state as shown in Figure 2.
The reference node r = a and let as an example A = fb; cg. Then Min(A) =
(2; 1).

Lemma 30. For a given A and a given global system state with its Min(A) = c,
Min(A) can decrease at a subsequent system state only after a node x 2 BA

makes a move with a forcing node in fV �Ag such that after the move S(x) < c.

Proof. Since no node in fA�BAg has any neighbor outside of A and since the
new state of a node making a move is greater than its forcing node (Lemma 24),
to lower the value of Min(A), a node x 2 BA must make a move with a forcing
node in fV �Ag such that after the move S(x) < c.

Our approach to prove the convergence of the algorithm is to prove that
the assumption of an in�nite sequence of moves leads to a contradiction. Let us
consider one such in�nite sequence of moves starting from a given illegitimate
state without reaching the legitimate state. We can divide the set of nodes, V ,
in two subsets: A, the set of nodes each of which makes an in�nite number of
moves in the sequence and fV �Ag, the set of nodes each of which makes �nitely
many moves in the sequence. The reference node r cannot belong to the set A
since it can make at best only one move (see Remark 12). Starting from any
illegitimate state, after a �nite number of moves, all nodes not in set A will stop
making moves (from the assumption). Let t1 denotes this point in time. Let the
minimum value of A at t1 be Min1(A). The following lemmas are based on such
an assumed in�nite sequence, the set A and the time instant t1.

Lemma 31. Consider an arbitrary system state (after t1) with Min(A) = c. If
there exists a node x 2 BA such that S(x) = c and x is un privileged, then x can
be privileged again in a subsequent system state only when Min(A) becomes less
than c.

Proof. We need to consider two cases:

(1) S(x) = (MAX;C); since x is the minimal node, each node in A has the
state (MAX;C); no node in A�BA can be privileged; only a node z 2 BA can
be privileged and can make a move due to a forcing node in fV �Ag and after
the move, S(z) < (MAX;C).

(2) S(x) < (MAX;C); since x is un privileged, NC(x) 6= ; and there exists
a neighbor y of x such that max(wxy; D(y)) = D(x) and L(y) = L(x) � 1.
Since x is a minimal node in A, the node y is in fV � Ag and hence node y
does not make a move. Since y does not make any move, by the construction of
the algorithm (and the de�nitions of �min and Lmin), in order that node x be
privileged again, another neighbor z of x must acquire a state S0(z) < S(x) in a
subsequent system state. Since nodes in fV �Ag do not make any move, z 2 A

and hence Min(A) is now less than c.

Lemma 32. If in any system state (after t1) the subset BA does not contain
any minimal node of A, then it will do so in �nitely many moves.

Proof. The value of Min(A) can possibly be lowered only by a move of a node
in BA with a forcing node in fV � Ag (see Lemma 24). We now consider two
cases:

(1) When a node in BA makes a move with a forcing node in fV � Ag such
thatMin(A) is lowered, the node (in BA) making the move becomes the minimal
node of A;

(2) otherwise, by assumption each node in A makes in�nitely many moves.
Let t2 be the time when each node has made at least one move. If BA does not
still contain any minimal node, then Min2(A) > Min1(A) by Lemma 24. Since
the number of all possible local states is �nite, repeating the argument the proof
follows.

Theorem 33. Starting from any illegitimate state, the system reaches the legit-
imate state in a �nite number of moves, irrespective of the order in which the
nodes make their moves and the number of nodes that move at any instant.

Proof. Suppose otherwise. Since each node in A is to make in�nitely many moves
(the number of all possible local states is �nite), and a node making a move
becomes un privileged (until one of its neighbors makes a move; see Remark 13),
in light of Lemmas 31 and 32, we must have a in�nite sequence Min1(A) >
Min2(A) > � � � >, which is a contradiction.

Corollary 34. In the sequence of state transitions from the initial global ille-
gitimate state to the �nal global legitimate state, no illegitimate system state is
repeated.

Proof. The proof follows from the previous lemma. If it were possible to reach
the same global illegitimate state in a �nite number of moves, then it is possible
that the same sequence of moves repeat inde�nitely and the system never reaches
a legitimate state in a �nite number of moves.

2.2 The MST algorithm

We can now generalize the algorithm in the previous section to compute the
minimum �-cost paths to all nodes and thereby compute the MST of the graph.
Instead of the simple local variable D(i), each node i now maintains a local array
Di[1::n] and instead of the simple local variable L(i), each node i now maintains
a local array Li[1::n]. The value of Di[j], for all i; j 2 V , at any system state
gives the cost of the minimum �-cost path from node i to j in that system state.
Similarly, the value of Li[j] is the value of the level of node i with respect to
the implicit tree rooted at node j. The contents of the arrays Di[] and Li[]
denote the local state of the node i and the union of all local states de�nes the
global system state. 	ij denotes the cost of the minimum �-cost path from node
i to node j for all i and j. Note that 	ii = 0 for all i. Each node behaves as
a special (reference) node when it attempts to compute the �-cost to itself; it
unconditionally sets that value to 0. The data structure
i at each node i keeps
track of the MST edges incident on node i

We now present the self-stabilizing algorithm to compute the MST. Every
node in the system has the same uniform rule. The rule at node i is as follows:

(R)

8>>>>>>>><
>>>>>>>>:

8j = 1; � � � ; n do

if ((j = i) ^ (Di(j) 6= 0) _ (Li(j) 6= 0)) then Li(j) = 0 & Di(j) = 0;
else if ((j 6= i) ^ (NC(i) = ;) ^ (Di(j) 6=MAX _ Li(j) 6= C)

then Di(j) =MAX & Li(j) = C

else if ((j 6= i) ^ ((Li(j) 6= Lmin(j) + 1) _ (Di(j) 6= �min(j)))
then Li(j) = Lmin(j) + 1 & Di(j) = �min(j) &

i = fkjk 2 N (i) ^ wik = Di(k)g;

3 Conclusion

We have proposed a self stabilizing algorithm for MST computation in a arbitrary
undirected graph; each edge of the graph is assigned an unique non zero weight.
When the algorithm terminates (in �nite time), each node knows which of its
incident edges belong to the MST of the graph.

References

[ADG92] A. Arora, S. Dolev, and M. Gouda. Maintaining digital clocks in step. Parallel

Processing Letters, 1(1):11{18, 1992.

[Agg94] S. Aggrawal. Time optimal self-stabilizing spanning tree algorithms. Techni-

cal Report MIT/LCS/TR-632, Massachusetts Institute of Technology, May

1994.

[AS95] G. Antonoiu and P. K. Srimani. A self-stabilizing distributed algorithm

to construct an arbitrary spanning tree of a connected graph. Computers

Mathematics and Applications, 30(9):1{7, September 1995.

[BGW89] G. M. Brown, M. G. Gouda, and C. L. Wu. Token systems that self-stabilize.

IEEE Trans. Comput., 38(6):845{852, June 1989.

[CYH91] N. S. Chen, H. P. Yu, and S. T. Huang. A self-stabilizing algorithm for

constructing spanning trees. Inf. Processing Letters, 39(3):14{151, 1991.

[Dij74] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-

munications of the ACM, 17(11):643{644, November 1974.

[Dij86] E. W. Dijkstra. A belated proof of self-stabilization. J. of Distributed Com-

puting, 1(1):5{6, 1986.

[FD92] M. Flatebo and A. K. Datta. Two-State self-Stabilizing algorithms. In Pro-

ceedings of the IPPS-92, California, June 1992.

[GH90] M. Gouda and T. Herman. Stabilizing unison. Inf. Processing Letters,

35(4):171{175, 1990.

[HC92] S.T. Huang and N.-S. Chen. A self-stabilizing algorithm for constructing

breadth �rst trees. Inf. Processing Letters, 41:109{117, January 1992.

[HS84] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Computer

Science Press, 1984.

[Lam84] L. Lamport. Solved problems, unsolved problems, and non-problems in con-

currency. In Proceedings of the 3rd Annual ACM Symposium on Principles

of Distributed Computing, pages 1{11, 1984.

[MP88] B. M. Maggs and S. A. Plotkin. Minimum-cost spanning tree as a path

�nding problem. Information Processing Letters, 26:291{293, January 1988.

[Sch93] M. Schneider. Self-stabilization. ACM Computing Surveys, 25(1):45{67,

March 1993.

[SS92] S. Sur and P. K. Srimani. A self-stabilizing distributed algorithm to con-

struct BFS spanning tress of a symmetric graph. Parallel Processing Letters,

2(2,3):171{180, September 1992.

