
Computer Science
Technical Report

Characterizing Domain Specific Effects in
Flaw Selection for Partial Order Planners�

Adele E. Howe Eric Dahlman
Computer Science Department

Colorado State University
Fort Collins, CO 80523

e-mail: fhowe,dahlmang@cs.colostate.edu

June 1997

Technical Report CS-97-112

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This research was supported in part by NSF Career Award IRI-9624058 and DARPA contract F30602-95-0257.



Characterizing Domain Speci�c E�ects in

Flaw Selection for Partial Order Planners�

Adele E. Howe Eric Dahlman

Computer Science Department

Colorado State University

Fort Collins, CO 80523

e-mail: fhowe,dahlmang@cs.colostate.edu

June 1997

Abstract

The 
aw selection strategy is integral to good performance in a partial order planner. Yet,

no 
aw selection strategy has been shown to be superior on all problems. Two prominent

strategies, ZLIFO and LCFR, perform well on di�erent problems. We studied three domain

speci�c factors: precondition ordering in domain theories, goal ordering in problems and

dynamic ordering of 
aws. For each factor, we collected data on the performance of ZLIFO,

LCFR and related strategies on systematically varied problems. We found that while all

strategies are sensitive to these factors, some are more so than others. Moreover, even careful

control of domain and problem de�nition in LIFO strategies cannot produce consistently

better performance than Least Cost on all problems. Based on our data, the ultimate 
aw

selection strategy must be dynamic, rather than relying exclusively on any of the existing

strategies.

1 Introduction

As has been shown several times [Joslin and Pollack, 1994], [Srinivasan and Howe, 1995],
[Gerevini and Schubert, 1996], [Pollack et al., 1996], the 
aw selection strategy is integral to
good performance in a partial order planner. A bad 
aw selection strategy can make an appar-
ently simple partial order planning problem practically unsolvable. Although some principles
of 
aw selection strategies have been proven (e.g., e�ect of delaying separable threats when
using FIFO and LIFO strategies [Peot and Smith, 1993]), no proposed solution has been shown
superior on all problems; indeed, a general search algorithm for partial order planning may not
be possible [Knoblock and Yang, 1995]. In fact, strategies appear quite sensitive to seemingly
minor changes in domain and problem de�nition [Srinivasan and Howe, 1995].

Two strategies, ZLIFO and LCFR, have performed well, but di�erently on problems. In
fact, neither seems to have a consistent edge over the other. The strategies at the core of
each are Least Cost and LIFO ordering of plan 
aws. Least cost is a dynamic strategy that
e�ectively performs one step lookahead by ordering all 
aws according to the number of ways
in which they can be repaired. The least cost 
aw is the one with the fewest options for repair,

�This research was supported in part by NSF Career Award IRI-9624058 and DARPA contract F30602-95-

0257.



Name Speci�cation

UCPOP fng LIFO / fog LIFO / fsg LIFO

ZLIFO fng LIFO / fog0 LIFO / fog1New
LIFO /

fog2�1 LIFO / fsg LIFO

LCFR fo; n; sgLCLIFO

LCFR-L fo; n; sgLCLIFO�

LCFR-DS fo; ngLCFIFO / fsg R

LCOC fng LIFO / fogLCLIFO / fsg LIFO

LCOC-F fng LIFO / fogLCFIFO / fsg LIFO

Random fng LIFO / fog R / fsg LIFO

ZLIFO-R fng LIFO / fog0 LIFO / fog1New
LIFO /

fog2�1 R / fsg LIFO

LCFR-R fo; n; sgLCR

Table 1: Flaw selection strategies tested

thus, producing the lowest immediate amount of branching in the plan search space. The
calculated cost depends on the current position in the search space, which makes the ordering
context dependent and dynamic. LIFO is a static strategy that, with some exceptions in ZLIFO,
e�ectively performs depth �rst search on the pursuit of subgoals. The ordering is static in that
it is determined by the order of goals and preconditions set forth by the programmer.

Intuitively, least cost seems superior because it is responsive to the state of the search
space and more e�ectively exploits problem/domain constraints to prune the search space.
However, LIFO based strategies have done better on some of the problems tested previously
(e.g., TRAINS2 and the briefcase problems); some have argued that the LIFO approach exploits
programmer knowledge better [Williamson and Hanks, 1996]. However, a recent study suggests
that ZLIFO's sometimes advantage over LCFR is actually due to its delay of separable threats
[Pollack et al., 1996].

Our purpose is to tease apart some of the observable domain speci�c factors leading to dif-
ferential performance of the two key 
aw ordering strategies: least cost and LIFO. We examined
three factors known to a�ect their performance: precondition ordering in domain theories, goal
ordering in problems and context dependent or dynamic ordering of 
aws. Our goal is to de-
termine the factors that most in
uence performance and, whenever possible, how performance
can be improved by careful exploitation of those factors.

1.1 Background on Data Collection

To empirically explore domain and problem e�ects, we tested 31 problems from the UCPOP
4.0.6 standard distribution1. The domains were modi�ed to include new precondition orderings.
The problems were modi�ed to include new goal orderings.

1The problem set was somewhat limited by the strategies explored. Some of them do not currently handle

facts.

2



Overall, we tested 10 di�erent 
aw selection strategy algorithms. The LIFO based algo-
rithms were: UCPOP and ZLIFO[Gerevini and Schubert, 1996]; both come with the UCPOP
distribution. The LC based algorithms were: three variants on LCFR2[Joslin and Pollack, 1994]
and two variants on LCOC (Least Cost Open Conditions). Like ZLIFO, LCOC addresses non-
separable threats �rst and delays separable threat, making it easier to compare with ZLIFO.
The LC versions di�er on how equal cost ties are broken; LCFR-L uses a di�erent method of
calculating costs which results in a di�erent LIFO ordering. We also included three strategies
that substitute random selections at key junctures. The 10 algorithms are listed in Table 1
using notation from [Pollack et al., 1996]. o, n, and s refer to the three types of 
aws: open
conditions, non-separable (threats that can only be resolved by re-ordering plan steps) and
separable threats, respectively. Flaw types are ordered by LIFO, FIFO, R (Random) or New
(favor new steps over initial conditions). Subscripts indicate costs; superscripts are tie-breaking
orderings. Steps are separated by \/".

2 E�ect of Domain Theory De�nition

The domain theory consists of the operators that can comprise plans. Operators include
parameters, preconditions and e�ects. Preconditions and parameters that are typed become
open conditions in an evolving plan. Conditional e�ects may also contribute open conditions,
but we have disregarded them as they are di�cult to manipulate in a controlled manner.

When a new step is added to a plan, the preconditions from its operator are added as open
conditions to be resolved. The relative ordering of the preconditions in the operator structure
is preserved when they are added to the the 
aw list. In LIFO strategies, the �rst precondition
listed is likely to be the �rst 
aw repaired.

Obviously, then precondition ordering is one source of domain speci�c performance dif-
ferences. We sought to answer three questions about precondition orderings' contribution to
domain speci�c performance. First, how sensitive are the strategies, particularly LIFO, to the
domain theory? Second, LIFO can only be expected to do well if the programmer was knowl-
edgeable, and the default domain ordering facilitative. So how good are the original orderings?
Third, we expect even LC based strategies to be somewhat sensitive to domain theory de�nition
because they must include a tie breaking strategy. How sensitive are they?

2.1 Precondition Ordering and LIFO

To test the sensitivity of LIFO strategies, we generated new domain theories in which all
operators' precondition orderings were permuted. When the number of permutations was large,
we sampled the space in three ways. First, in the 
at-tire domain, we permuted only those
operators applicable to each problem. Second, we included permutations in which only one
operator was permuted. Third, we sampled a small number of cases in which more than one
operator was permuted. Even with the sampling, two domains, fridge and strips, were still too
large and were not tested.

2Massimo Paolucci and Martha Pollack provided the LCFR code.

3



Problem Perms Tested ZLIFO UCPOP
best orig. worst di� best orig. worst di�

1. Tower-Invert3 5040 5040 38 39 63 4 55 59 131 6
2. Sussman-Anomaly 5040 5040 31 31 41 4 38 38 94 6
3. Tower-Invert4 5040 5040 76 98 589 6 330 330 1594 6
4. Hanoi-3 40320 17584 250 1128 2364 38 4137 11178 - 115
5. Test-Ferry 69120 4262 88 107 134 35 119 596 2950 545
6. Rat-Insulin 120960 31401 318 338 338 2 871 885 1449 6
7. Prodigy-Suss 138240 1862 223 321 13795 313 236 515 32131 1500
8. Monkey-Test1 165888 11653 53 96 142 4 38 165 - 206
9. Monkey-Test2 165888 60 227 1092 1092 5 228 765 1627 29
10. R-Test1 518400 21690 25 28 30 6 25 37 62 25
11. R-Test2 518400 844 5251 7567 - 38 1276 10748 - 94
12. Fix3 2x1022 13451 85 125 149 8 502 565 - 299
13. Fixit 2x1022 1156 6145 20301 - 11 - - - -

Table 2: E�ect of precondition ordering on LIFO based strategies as measured in plans created

Table 2 shows the best, original and worst results for those problems in which precondition
order mattered. We ran 29 problems. Of them, 12 had four or fewer permutations and showed
no e�ect; four of the �x problems, which involve few operators, showed no e�ects for ZLIFO
and made little di�erence for UCPOP. Tested are the number of possible permutations (perms)
actually tested. Di� counts the distinct values found for plans created. An entry of \-" indicates
that it timed out at a search limit of 50,000. The problems have been numbered to save space
on later tables.

One hypothesis is that sensitivity should increase with the number of open conditions
[Pollack et al., 1996]. Such sensitivity would explain why LIFO does not appear to do as well
on larger problems; the more sensitive, the more careful the programmer needs to be. If the
hypothesis held, then di� should increase with perms. However, Table 2 shows that it is more
complicated; it depends on subgoal interaction (r-test2 adds a subgoal to r-test1) and coding
of state and operators (compare sussman-anomaly with prodigy-sussman).

As to exploiting programmer knowledge, in all cases, some precondition reordering led to
as good or better performance than the programmer's (original) did. We analyzed the data
for necessary and su�cient precondition orderings. In most cases, only a few relative orderings
matter. Not too surprisingly, preconditions forcing inequality never matter; however, param-
eter typing does sometimes matter, particularly in domains such as rat-insulin that specialize
operators by parameter types. UCPOP is most sensitive to ordering; thus, we found more
speci�c relative orderings for it. At present, we are still trying to determine, in general, what
makes for a good ordering.

4



Prob LCOC LCFR
best orig worst best orig worst

1 37 37 40 41 41 46
2 28 28 29 33 33 36
3 72 84 100 99 99 116
4 5852 9464 13373 - - -
5 99 186 244 91 180 229
6 72 59 76 77 81 81
7 90 152 152 90 96 103
8 33 33 37 36 36 50
9 86 765 765 123 143 143
10 25 28 29 25 28 29
11 517 517 1159 865 901 1120
12 81 134 137 130 130 133
13 16532 16953 28528 31674 36420 -

Table 3: E�ect on LC strategies of changing precondition order, as measured in plans created

2.2 Precondition Ordering and LC

Strategies that depend less on LIFO should be relatively insensitive to precondition reorder-
ing. So ZLIFO, which uses LIFO for a subset of open conditions, should vary less than UCPOP
across di�erent precondition ordering; in fact, as Table 2 shows, ZLIFO exhibits less di�erence
between best and worst performance.

The LC based strategies require LIFO as a tie breaking strategy. Previous results [Pollack et al., 1996]
showed LCFR-DSep to be less sensitive to precondition ordering than ZLIFO on the trains2
problem. To determine whether the LC strategies are sensitive to the same orderings as the
LIFO strategies, we tested LCFR and LCOC on the original, best and worst precondition or-
derings for ZLIFO and UCPOP. Table 3 shows that, with the exception of Hanoi-3, the LC
methods do vary with these changes in precondition orderings, but much less.3

3 E�ect of Goal Ordering in Problems

The order of goals in problems determines the �rst step in the search space for all strategies.
In LIFO strategies, goals are satis�ed, more or less, in the order in which they were de�ned.
Thus, subgoal interactions may result in variable search performance for some strategies. For
example, although problems get-paid3 and get-paid4 di�er only in the order of their goals,
the number of plans created for each varies under each 
aw selection strategy (see Table 4 for
range in get-paid3).

As with preconditions, we expect all strategies to some extent to be susceptible to changes
in goal ordering. It starts o� search and leads it further at critical junctures. To determine how

3Most of the LCFR results do not agree with the results published in [Pollack et al., 1996]; while we are using

the same basic Lisp code, we are using a di�erent version of UCPOP.

5



Problem UCPOP ZLIFO LCOC LCFR

best orig worst best orig worst best orig worst best orig worst

2 28 38 38 27 31 31 28 31 31 30 30 31

3 105 330 330 98 98 98 77 84 84 99 99 124

4 11178 11178 - 805 1128 1128 9464 9464 9674 - - -

6 885 885 3055 338 338 518 76 81

7 515 515 981 115 321 321 96 96 126 96 96 110

9 765 765 816 138 1092 1092 86 143

11 10748 7506 7567 7567 961 964 964 900 901 901

12 565 565 951 92 125 697 112 112 136 105 105 132

13 4233 - - 665 20301 - 14287 16953 - 11752 - -

14 Ho-Demo 71 71 75 74 74 103 74 80

15 Get-Pd 15 20 47 15 21 27 15 20 24 15 20 24

16 Get-Pd2 32 76 244 31 31 33 32 32 33 44 51 51

17 Uget-Pd2 43 115 282 42 43 50 50 58

18 Get-Pd3 97 326 384 69 69 72 215 245 245 633 2291 2291

19 Uget-Pd3 185 1585 1585 109 109 121 259 275 275 27436 - -

Table 4: E�ect of goal ordering on strategies, measured in plans created.

much e�ect, we permuted the goal orderings and ran the four basic strategies on each problem.
Some problems were already goal permutations of others; some exhibited little or no e�ect. As
the results for the remaining problems show (Table 4), as with precondition ordering, more
reliance on LIFO does, in general, lead to more susceptibility to ordering e�ects. The strategies
can be ordered by the number of problems for which order matters and by the average di�erence
between best and worst values (420 for UCPOP, 171 for ZLIFO, 24 for LCOC and 8 for LCFR,
if get-paid3 is exempted).

Goal re-ordering produced better performance than the original in nine, eight seven and
�ve of the problems for UCPOP, ZLIFO, LCOC and LCFR, respectively. In the cases in the
table, the best ordering with ZLIFO produces the lowest plans created in nine cases, LCOC in
�ve, LCFR in three, and UCPOP in two. Thus, many problems would be solved more quickly
if the goals could be re-ordered automatically. What makes for good orderings? To determine
this, we analyzed the best orderings for the two LIFO strategies as they are the most a�ected
by goal ordering. In all cases, a single ordering was best for UCPOP, while multiple orderings
were equivalently good for ZLIFO due to its separating out zero and one cost open conditions.
The \winning combinations" for ZLIFO proved to be two relative orders with the �rst most
important: the goals that have initial cost of 1 (can only be resolved by adding actions) and the
rest. In the cases examined, the goals should be ordered by their required path length through
the plan; in other words, those goals that require more actions in order to be solved should
go �rst. For the cost one goals, this order can be easily computed by solving for these goals
individually and counting the number of actions in the resulting plan. For the other goals, we
have yet to determine an easy method for calculating the order.

For example, the �xit problem is fairly complicated (the �nal plan contains 19 steps) and
showed dramatic improvement for the LIFO strategies. The best ordering for ZLIFO was [7, 3,

6



6] for cost one and [5, f4, 2g, 0, 1] for the rest where the original goal ordering was [0, 1, 2, 3,
4, 5, 6, 7]. While not a complete reversal of the original, it demonstrates how crippled a LIFO
strategy can be by poor ordering. The best ordering for UCPOP was [6, 3, 0, 4, 5, 7, 2, 1].
For the LC strategies, the good orderings for UCPOP and ZLIFO were easier for LCOC and
LCFR to solve than the original ordering; in fact, LCFR's best goal ordering was the UCPOP
ordering. We have not yet uncovered a pattern to the winning orderings for the LC methods,
which is not surprising, given the relative complexity of these methods.

4 E�ect of Dynamic Versus Static Flaw Selection Strategies

LCFR is a dynamic strategy that determines for a given point in search what next 
aw will
minimize the immediate branching. This strategy exploits information available at that point
in the search; unfortunately, the ordering based on cost is not always right. Iterative sampling

[Langley, 1992] follows paths randomly until a solution is found; this strategy is e�ective when
the solution density is high. A contributor to the success of LCFR may be its dynamic nature.
To help determine whether a dynamic strategy might not be best, we substituted a random
choice at key points in the algorithms and compared their best and worst performance on the
standard problem set. If one of the current strategies is best, then adding random choices
should not improve on the previous solutions.

The three random algorithms are listed in Table 1. Random is UCPOP/LCOC in which
an open condition is selected at random for repair; ZLIFO-R substitutes a random choice only
for open conditions of cost more than one; LCFR-R breaks cost ties using a random selection.
We expect that Random will produce the largest spread between best and worst. For every
problem, each random strategy was executed 500 times.

The results in Table 5 show that we can often do better with a dynamic rather than �xed
strategy. In every problem, the best of the random found at least as good a solution as one of
the non-random strategies. In �x4 and �x5, every solution performed the same. In seven simple
problems not included in the table, some strategy did as well as the best of the random. In
a few cases (e.g., monkey-test2 and Hanoi3), the random versions found dramatically better
solutions.

We cannot say whether one random strategy is better than the other; due to the sampling,
we cannot be sure whether any random algorithm might not �nd the same solution. However,
we can point out that Random reached the search limit more and had the largest spread between
best and worst (counting only worst results that are not at the search limit). The average spread
was 2932 for LCFR-R, 5967 for ZLIFO-R and 5968 for Random. However, Random also found
the most best solutions: ten for Random, four for ZLIFO-R and six for LCFR-R. In general,
all strategies at their worst still solved over 90% of their trials; the two exceptions were Hanoi3
in which LCFR-R solved 65%, ZLIFO-R solved 47%, and Random solved 18% and Fixit in
which LCFR-R solved 56%, ZLIFO-R solved 12% and Random solved 4%.

7



Prob LCFR-R ZLIFO-R Random
Min Max Min Max Min Max

1 36 304 35 2553 43 2310
3 67 2024 72 - 74 -
4 331 - 203 - 2386 -
5 84 1374 57 1617 56 45012
6 43 271 82 6150 49 5170
7 82 571 255 - 208 -
8 34 50 37 219 30 1043
9 62 - 73 3969 71 7406
11 133 4226 196 - 190 -
12 76 181 78 40249 100 -
13 5600 - 894 - 15008 -
14 34 98 74 103 28 150
16 32 239 31 357 31 266
17 43 755 42 882 38 211
18 69 31637 48 2514 40 2197
Get4 90 - 50 2042 39 1300
19 101 - 72 7378 55 2571
Uget4 96 - 73 4377 53 6814
Road 28 34 25 40 24 233
Fixa 58 68 55 210 64 -

Table 5: Results of random choice at key points in three algorithms, as measured in plans
created

8



5 Conclusions

Good 
aw selection in partial order planning is known to be domain sensitive. In this
paper, we have studied how three factors in
uence the performance of two core 
aw selection
strategies, LIFO and LC, as incorporated in well known algorithms. Our long term goal is to
identify facets of problems that can be detected either before or during planning that will help
determine the best strategy to apply.

5.1 Implications of the Study for Evaluation

All of the problems studied are extremely simple by almost any standard. Yet, the perfor-
mance of every one of the strategies varied, sometimes widely, for each of the factors examined.
As it happened, the original encoding of the problems did not consistently favor any strategy.
The di�erence in performance is addressed in the standard problem set in a few cases, in which
di�erent goal orderings are already included (e.g., the get-paid and uget-paid problem sets).
In comparing strategies, we need to be aware of possible bias in the precondition and goal
orderings in problems.

As the study shows, the distributed problem set is not necessarily the best for compari-
son. The orderings are not usually the \best" for any strategy and sometimes are quite poor.
The problem set was compiled to provide examples, but has become a benchmark of sorts.
Additionally, many of the domains are quite similar at their core. For example, the briefcase
world, ferry-domain and monkey-domain require planning movements using a single resource
(the briefcase, boat and monkey) thus, we should expect similar performance on similar prob-
lems; the problems do di�er in a few key aspects: the test-ferry problem does not direct the �nal
placement of the boat and the briefcase can carry multiple objects. To mitigate the apparent
di�erences, we will be developing a problem generator that will be based on our analysis of the
standard problem set and the problems that have been added in other analyses (e.g., TRAINS,
Tileworld, TruckWorld).

5.2 What is Best When?

Can clever reordering of preconditions and goals for LIFO strategies beat a least cost strat-
egy? The previous sections describe factors that strongly in
uence the performance of LIFO
strategies. The testing of random tie breaking in LCFR suggests that the tie-breaking strategy
may be a major in
uence on LC performance. We compiled the previous results allowing the
best precondition or goal ordering to represent the ZLIFO strategy and collected results for
the three versions of LCFR and two of LCOC allowing the best of those to represent the LC
based method. Table 6 includes those problems in which the best di�ered by more than 10%.
Even with carefully designed domain theories, ZLIFO outperforms the LC based strategies in
only half the cases. Moreover, by modifying the tie breaking strategy, the LC based methods
improved performance on the Uget-paid problems, which were di�cult for them previously.
These results emphasize the role of dynamic strategies and the need to carefully design the
tie-breaking strategies for the LC based methods.

On problems that are di�cult for LCFR, LCOC often does better and sometimes as good
as ZLIFO; this supports the hypothesis that the advantage of ZLIFO may be due primarily to

9



Prob ZLIFO LCOC LCFR Best?

3 76 84 81 ZLIFO
4 250 9464 8715 ZLIFO
5 88 140 186 ZLIFO
6 318 61 59 LCOC
7 115 96 96 LCFR
8 53 33 35 LCOC
9 138 123 86 LCOC
11 5251 517 353 LCFR-L
13 665 16953 16073 ZLIFO
14 74 74 51 LCFR-F
16 31 32 32 ZLIFO
17 42 46 49 ZLIFO
18 69 117 191 ZLIFO
19 109 138 102 LCFR-L
20 72 132 200 ZLIFO
21 121 143 109 LCFR-L
23 545 60 60 LC

Table 6: The lowest plans created for the strategies

its delaying separable and forcing non-separable threats rather than its underlying LIFO strat-
egy. The ordering sensitivity of the LC based strategies indicates the importance of carefully
designing tie breaking rules. The success of injecting random selection into problems suggests
that a dynamic strategy that can adapt to the domain is the best solution.

The results presented here are suggestive and require considerable future work. Although
we have found key patterns in the preconditions and goals, we have not yet identi�ed rules for
re-ordering the preconditions and goals for best performance. As the last table shows, no tie-
breaking strategy held a clear advantage; the role of tie breaking needs to be further explored.
We collected traces of the random selections; we will be analyzing these traces to determine:
critical choice points, an alternative cost heuristic based on the choices that were shown to be
best, and cases in which the choices matched any of the current strategies. We will use these
results to design a new adaptive search algorithm that can recognize the domain speci�c feature
and adapt the search strategy to them.

10



References

[Gerevini and Schubert, 1996] Gerevini, A. and Schubert, L. 1996. Accelerating partial-order
planners: Some techniques for e�ective search control and pruning. Journal of Arti�cial

Intelligence Research 5:95{137.

[Joslin and Pollack, 1994] Joslin, David and Pollack, Martha E. 1994. Least-cost 
aw repair: A
plan re�nement strategy for partial-order planning. In Proceedings 12th National Conference

on Arti�cial Intelligence (AAAI-94), volume 2. AAAI, AAAI Press/MIT Press. 1004{1015.

[Knoblock and Yang, 1995] Knoblock, Craig A. and Yang, Qiang 1995. Relating performance
of partial-order planning algorithms to domain features. SIGART Bulletin 6(1).

[Langley, 1992] Langley, Pat 1992. Systematic and nonsystematic search strategies. In Pro-

ceedings of the First International Conference on Arti�cial Intelligence Planning Systems.
Morgan Kaufmann Publishers, Inc. 145{152.

[Peot and Smith, 1993] Peot, Mark A. and Smith, David E. 1993. Threat-removal strategies
for partial-order planning. In Proceedings of the Eleventh National Conference on Arti�cial

Intelligence, Menlo Park. AAAI, AAAI Press/MIT Press. 492{499.

[Pollack et al., 1996] Pollack, Martha; Joslin, David; Paolucci, Massimo; and DeLeon, Yazmine
1996. Flaw selection strategies for partial-order planning. Technical Report 96-20, Univ. of
Pittsburgh, Computer Science Dept.

[Srinivasan and Howe, 1995] Srinivasan, Raghavan and Howe, Adele E. 1995. Comparison of
methods for improving search e�ciency in a partial-order planner. In Proceedings of the 14th

International Joint Conference on Arti�cial Intelligence, Montreal, CA. 1620{1626.

[Williamson and Hanks, 1996] Williamson, Mike and Hanks, Steve 1996. Flaw selection strate-
gies for value-directed planning. In Proceedings of the Third International Conference on

Arti�cial Intelligence Planning Systems. 237{244.

11


