
Computer Science
Technical Report

Measuring Class Cohesion in Java

Martin F. Shumway

M.S. Thesis
June 11, 1997

Technical Report CS-97-113

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Thesis:

Measuring Class Cohesion in Java

Martin F. Shumway

June 11, 1997

Abstract

Cohesion is an internal software attribute which tells how tightly the components of a software module
are bound together in design or implementation. Highly cohesive software modules have a basic function
and are di�cult to decompose. Cohesion is thought to be a desirable goal in software construction,
leading to better values for external attributes such as maintainability, reusability, and reliability. To
test this hypothesis, a good measure of class cohesion is needed.

We examine the problem of measuring class cohesion in object-oriented systems written in Java. The
research utilizes the class cohesion measure as proposed by Bieman and Kang [Bieman95]. The measure
counts the proportion of method pairs in a class exhibiting connectedness through the use of one or
more common instance variables of that class.

For a measure to be valid, it must obey the requirements of measurement theory. The Bieman and
Kang cohesion measure is shown to meet in large part the requirements of its empirical relation system.
The measure does not completely reect the property of factorability, which is the ability to split a
class without breaking method connections. A new approach to measuring factorability is proposed.

A Java-speci�c object model suitable for measurement is de�ned. A new measure of class size based on
Java byte code statements is proposed. The results of an empirical study demonstrate that cohesion is
not a measure of class size.

To facilitate automatic gathering of class cohesion data from publicly available Java programs, we
present a tool called Celebes. Celebes performs static analysis on parsed Java codes. Acting as a
compiler front-end, Celebes can also serve as a platform for other measurement, analysis, and instru-
mentation functions.

ACKNOWLEDGEMENTS

I wish to thank the support of my committee members, Drs J Bieman, S Gupta, and H Iyer. In
particular, I wish to thank Dr Bieman for supplying me with this research topic, guiding it to its
completion, and for remaining accessible during its investigation. Byung-Kyoo Kang's doctorate work
on cohesion provided a starting point for my investigation.

I also wish to recognize the Computer Science Department for its service in educating me, and my
friends and family for their support throughout the four years I have spent here.

Several institutions have provided me support in various guises. Storage Technologies Corporation
(Louisville, CO) �nanced my research assistanceship during 1994-1996. I wish to thank Robert McNitt
of StorageTek for his support. The SunTest group of Sun Microsystems Incorporated (Mountain View,
CA) provided the parser generator, parse tree builder, and Java grammar necessary to build a static
analyzer tool for Java programs. I wish to recognize Sriram Sankar and his team for their e�orts at
making these tools available to the Java research community free of charge. This generosity continues
the open systems culture which has made so many useful tools available to the public over the years.

Two companies provided publicly accessible Java source codes used in this research. Sun Microsystems
supplied the JDK demo suite. Object Space Incorporated (Dallas, TX) provided the JGL Class Library.
Java is a registered trademark of Sun Microsystems, Incorporated.

Finally, one should mention that Colorado State University is a land grant institution charged with
training the citizens of Colorado and disseminating modern technologies and practices. As such, the
people of Colorado deserve recognition for the educational support they provide through their taxes.

i

DEDICATION

This work is dedicated to my parents.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview of Research . 1

2 Measuring Cohesion 3

2.1 Foundations . 3

2.2 Measuring Cohesion in Procedural Programs . 4

2.2.1 Program Slice Abstraction of Bieman and Ott 4

2.2.2 Design Level Cohesion of Kang and Bieman . 4

2.3 Measuring Cohesion in Object-Oriented Programs . 5

2.3.1 Class Slice Abstraction of Ott and Mehra . 5

2.3.2 Module Interactions of Briand, Morasca, and Basili 5

2.3.3 The Lack of Cohesion Measure of Chidamber and Kemerer 6

2.3.4 Relative Strength Measure of Hitz and Montazeri 7

2.3.5 Relative Connectivity Measure of Bieman and Kang 7

2.3.6 Taxonomy of Briand . 8

3 Formal Validation of the Bieman-Kang Cohesion Measures 9

3.1 Theoretical Requirements of a Measure . 9

3.2 De�nitions . 10

3.3 Empirical Relation System . 11

3.4 Numerical Relation System . 12

3.5 The Representation Condition for Tight Cohesion . 14

iii

3.5.1 Demonstration of the Maximum and Minimum (Properties 1, 2) 14

3.5.2 Demonstration of Well-De�nedness (Property 3) 14

3.5.3 Demonstration of the Ordering Relation (Property 4) 14

3.5.4 Demonstration of Homomorphic Invariance (Property 5) 16

3.5.5 Demonstration of Boundedness (Property 9) . 17

3.5.6 Demonstration of Monotonicity (Property 6) . 17

3.5.7 Demonstration of Tight Invariance (Property 7) 17

3.5.8 Demonstration of Partition Invariance (Property 8) 17

3.6 Representation Condition for Loose Cohesion . 18

3.6.1 Demonstration of Loose Invariance (Property 10) 18

3.6.2 Contradiction of Factorability (Property 11) . 18

3.6.3 Analyzing Factorability . 19

3.6.4 Population Study of Cohesion in a MIG with 29 Nodes 21

3.6.5 Improving LCC . 22

3.7 Scale Type of the Measure . 23

4 Java Models 27

4.1 Java Language Model . 27

4.1.1 Syntactic Organization and Language Features 27

4.1.2 Method Quali�cation and Overloading . 28

4.1.3 Dynamic Method Dispatch . 28

4.1.4 Type Resolution in Expressions . 28

4.2 Class Size . 28

4.3 Applying Cohesion Measures to Java . 29

4.3.1 Cohesion Established Through Class Fields and Methods 29

4.3.2 Cohesion Established Through Inheritance . 30

4.3.3 Cohesion Established Through Composition . 31

4.3.4 Cohesion and Helper Classes . 32

4.3.5 Cohesion Established Through Constants . 33

5 Celebes, a Java Metrics Platform 35

iv

5.1 Overview . 35

5.2 Tutorial . 36

5.3 Extending Celebes . 43

5.3.1 Extension Hooks . 43

5.3.2 Example Extension . 45

6 An Experiment to Investigate the Relationship between Class Cohesion and Class

Size 47

6.1 Experimental Design . 47

6.2 Experimental Results . 48

6.2.1 JDK Demonstration Suite . 48

6.2.2 JGL Class Library . 49

6.3 Analysis of General Results . 50

7 Conclusions and Discussion 56

7.1 Results from the Research . 56

7.1.1 Formal Validation of the Bieman-Kang Cohesion Measures 56

7.1.2 De�nition of a Java Object Model Suitable for Measurement 57

7.1.3 Celebes, a General-Purpose Java Measurement Tool 57

7.1.4 Empirical Investigation into the Relationship between Class Cohesion and Class
Size . 57

7.2 Discussion . 58

7.2.1 What Are Cohesion Measures Supposed to Do? 58

7.2.2 The Importance of Experimentation . 59

7.2.3 Cohesion and the Software Designer . 59

7.3 Future Work . 59

v

List of Figures

3.1 Some Method Interconnection Graphs (MIG) for a 5-node Class 13

3.2 Two MIGs with Equal Cohesion, Equal Factors, but Non-Isomorphic Subgraphs 15

3.3 Two MIGs with Contradictory Cohesion Measures . 16

3.4 MIGs of Equal Cohesion but Di�erent Number of Factors 19

3.5 Derivation of the Partitions of P (10; 4) Using Ferrer Diagrams 24

3.6 The Relationship between Number of Factors and Cohesion 25

3.7 Sequence of Cohesion Values by Graph Partition . 25

3.8 Population of Factor Counts . 26

3.9 Population of Cohesion Values . 26

4.1 OMT Diagram of Java Object Model Used for Cohesion Measurement 34

5.1 Block Diagram of Major Components, Inputs, and Outputs to Celebes 37

6.1 Class Size Histogram, JDK Demo Suite . 49

6.2 Cohesion as a Function of Class Size, JDK Demo Suite 50

6.3 Class Size Histogram, JGL Class Library . 51

6.4 Cohesion as a Function of Class Size, JGL Class Library 52

vi

List of Tables

3.1 Partitions Produced by Algorithm 1 with N = 10 and K = 1::10 22

6.1 Cohesion Results for JDK version 1.1 Demo Suite . 53

6.2 Cohesion Results for JGL version 1.1 Class Library, 1 of 2 54

6.3 Cohesion Results for JGL version 1.1 Class Library, 2 of 2 55

6.4 Cohesion of Classes Involved in Private Reuse, JDK Demo Suite 55

vii

Chapter 1

Introduction

1.1 Motivation

Cohesion is an internal software attribute which tells how tightly the components of a software module
are bound together in design or implementation. Highly cohesive software modules have a basic function
and are di�cult to decompose. Uncohesive modules are marked by components whose presence is
completely coincidental. Such components could just as well be located in another module.

Many software engineering researchers have asserted the importance of high cohesion in software con-
struction [Yourdon79]. Highly cohesive program components have better external attributes, such as
number of faults found (reliability), number of components that can be used without modi�cation
(reusability), and cost of modi�cation and enhancement (comprehensibility and maintainability). We
need a clear understanding of cohesion before the relationship between cohesion and these external
quality attributes can be demonstrated.

Cohesion has been studied in the context of procedural programs for some time. Object-oriented
cohesion is a concept still under development. The need to establish a �rm basis for object-oriented
cohesion motivates the current research.

1.2 Overview of Research

This research applies the class cohesion measure of Bieman and Kang [Bieman95] to Java programs.
Classes are measured as to their relative internal connectivity. The measure of cohesion is the proportion
of visible method pairs in a class which exhibit connectivity through their communication with a
common instance variable of the class, compared with the total number of visible method pairs in the
class. There are two variants of class cohesion: Tight Class Cohesion (TCC) and Loose Class Cohesion
(LCC).

The Bieman-Kang cohesion measures were informally proposed in [Bieman95]. The research places the
Bieman and Kang proposal on a more �rm mathematical foundation by demonstrating the represen-
tation condition of the measure [Fenton94]. This requires that the numerical measure of cohesion does

1

not contradict any notional properties of the empirical nature of cohesion. A scale type for the measure
is also derived.

The original Bieman and Kang cohesion measure was applied to C++ programs. This research extends
the application to Java programs. An object model speci�c to Java was developed to deal with numerous
issues arising in class cohesion research. One example is whether to measure cohesion exhibited through
static class methods and variables.

A major contribution of this research is the introduction of a tool to automatically measure cohesion
in Java classes. The tool, called Celebes, is a metrics platform for Java programs. It performs static
analysis on source code and Java byte codes. Celebes can be extended to implement other forms of
static analysis and instrumentation.

The Bieman-Kang cohesion measures were applied to publicly available non-trivial Java software. The
relationship between class size and cohesion was investigated with the hypothesis that the two attributes
are independent.

2

Chapter 2

Measuring Cohesion

2.1 Foundations

Cohesion is an attribute of software modules that captures the degree of association of elements within
a module. The programming paradigm used determines what is an element and what is a module.
A closely related concept called coupling indicates the degree of interconnectedness between modules.
These concepts were �rst introduced in 1974 by Stevens, Constantine, Myers [Stevens74] as a way of
evaluating the e�ective use of modules. Designers generally try to achieve \high" cohesion and \low\
coupling for modules in their software products [Budd91]. A highly cohesive module is one which has
a single basic function and is di�cult to split [Bieman95].

Cohesion of elements in a module can be characterized in an rank scale of desirability, with functional
and data cohesion ranking highest [Budd91] [Fenton91].

� Coincidental : Elements occur together in a module for no reason.

� Logical : Elements occurring together do similar things but otherwise have no formal connection.

� Temporal : Elements occurring together execute at the same time.

� Communication : Elements occurring together share input or output data.

� Sequential : Elements execute in a particular order.

� Functional : Elements contribute to performing a particular function.

� Data : Elements occurring together present a public interface that allows for data abstraction.

It is possible for more than one kind of cohesion to be present. Since this is a rank order, statistics
such as mean are invalid.

3

2.2 Measuring Cohesion in Procedural Programs

In procedural programs (programs with procedures and data declared independently, for example C,
C++, Pascal, Ada), the module is a procedure and element is a global value visible throughout the
program. The approaches taken to measure cohesiveness of these kind of programs have generally tried
to evaluate cohesion on a procedure by procedure basis. The notional measure is one of \functional
strength" of a procedure, meaning the degree to which data and procedures contribute to performing
the basic function [Fenton91].

2.2.1 Program Slice Abstraction of Bieman and Ott

Bieman and Ott [Bieman93][Bieman94] formulate a measure of functional cohesion on procedures based
on a relation between output tokens (output variables) and program slices. A program slice is a set of
program statements which include references to a particular program variable. A glue token is a token
which is used in more than one program slice that includes a certain statement. A super glue token

unites all the program slices at some statement. The measures capture the number of program slices
having glue or super glue tokens as a proportion of total program slices.

Bieman and Ott give three measures:

Strong Functional Cohesion (SFC) of Procedure p

SFC(p) =
jsuper glue tokensj

jtokensj

Weak Functional Cohesion (WFC) of Procedure p

WFC(p) =
jglue tokensj

jtokensj

Adhesiveness (A) of Procedure p

A(p) =
�tokens

jprogramslices containing a glue tokenj
jprogramslicesj

jtokensj � jprogramslicesj

A more cohesive module will be more di�cult to separate by factoring the procedure into separate
ones containing distinct output tokens and data slices involving them. A procedure having no cohesion
would have no glue tokens (not to mention super glue tokens). A procedure having perfect cohesion
would have super glue tokens at every statement.

2.2.2 Design Level Cohesion of Kang and Bieman

Cohesion can be measured at design level as well as at code level. This is advantageous if the code has
yet to be implemented. Building on their earlier work, Kang and Bieman [Kang96a] [Kang96b] show
how the relationship between pairs of output tokens can indicate the relative \strength" of a module.

4

An ordinal scale of cohesion measures is de�ned: Coincidental, Conditional, Iterative, Communicative,
Sequential, and Functional. Each pair of output tokens in a module is evaluated for the strongest
cohesion the pair exhibits. The minimum such value over all output token pairs gives the Design Level

Cohesion (DLC) for the module. DLC is an associative measure which serves as a lower bound for our
intuition of module cohesion.

Kang and Bieman developed another measure called Design Functional Cohesion (DFC). DFC is a
slice based measure which averages adhesiveness of output token slices corresponding with the interface
points of the module. Since the module's interface is known at design time, cohesion can be measured.
Averaging is possible because of the proportional (ratio scale) nature of adhesiveness. In practice, DFC
and DLC measures correlate closely.

Both DLC and DFC measure the intuitive \relatedness" of module components. These measures can
identify modules that perform multiple functions having little or nothing to do with one another. These
modules may be poorly designed and present good candidates for restructuring. In [Kang96b] Kang
and Bieman show how design level cohesion can be visualized. They propose program transformations
which decompose modules exhibiting low cohesion.

DLC and DFC are cohesion measures applied to procedural programs. One goal of the present research
is to bring the analysis of class cohesion to a similar starting point where visualization and restructuring
may proceed.

2.3 Measuring Cohesion in Object-Oriented Programs

In the object-oriented programming paradigm, modules are instances of classes. Elements are the
public methods accessible through the class interface. Functional and Data cohesion are the same in
this paradigm. Most cohesion measurement approaches consider interactions between methods and
instance variables. The cohesion measure of a class refers to the di�culty of factoring the class into
separate classes: the more cohesive a class, the more di�cult it is to factor.

2.3.1 Class Slice Abstraction of Ott and Mehra

Ott and Mehra [Ott95] extend the earlier work of Bieman and Ott that uses program slices to measure
connectedness of class slices. Ott is currently pursuing this line of investigation.

2.3.2 Module Interactions of Briand, Morasca, and Basili

Briand, Morasca, and Basili de�ne cohesion in design terms [Briand94, Briand96]. They view the
elements of the module as its exported features, and a module as an abstract data type (ADT). An
exported feature A interacts with feature B if the change of one of A's de�nitions or uses may require a
change in one of B's de�nitions or uses. A single procedure may export features A, B. Thus, cohesion
is the interaction between the exported features of a procedure.

Given a procedure, three measures are de�ned: Neutral Ratio of Cohesive Interactions, Pessimistic

5

Ratio of Cohesive Interactions, and Optimistic Ratio of Cohesive Interactions. These measures capture
the degree to which the software modules share features. The idea that cohesion only matters with
respect to exported, or public, interfaces is a useful one. The reason a module exhibits low cohesion is
that its public procedures and data have few interactions with one another.

2.3.3 The Lack of Cohesion Measure of Chidamber and Kemerer

Chidamber and Kemerer [Chidamber94] were one of the �rst to formulate a measure of cohesion based
strictly on objects. We take many ideas from this work. Objects are instantiations of classes. A class is
considered a design for the production of an object. Classes can be sub-classed (a more speci�c version
can be derived through inheritance), factored into smaller classes, or composed into larger classes
[Booch94]. This work makes an appeal to the deeper structure of classes, in which the combination
of two classes yields a class whose properties are the union of those of the constituent classes. Where
there is an intersection of these properties, the constituents exhibit an intersection of sets of instance
variables that are used by methods. If the methods of a class perform their operations on all the
same instance variables, then the class is maximally cohesive. If each method of a class performs its
operations on a singleton or empty set of instance variables, then the class exhibits zero cohesiveness.

The Lack of Cohesion Measure (LCOM) indicates the di�erence between the number of method pairs
which share access to an instance variable, and the number of method pairs which do not. It is an
inverse measure of cohesiveness:

LCOM = jP j � jQj if jP j > jQj; 0 otherwise:

where P is a method pair with intersecting instance variable sets, and Q is a method pair with non-
intersecting instance variable sets.

One key question is what constitutes a method. In a critique of Chidamber and Kemerer, Churcher and
Shepherd [Churcher95] consider whether the number of methods should be equal to those de�ned within
the current class, or those inherited from superclasses. The former view emphasizes the functionality
of the class. The latter view admits to its state space.

Another issue raised by Churcher and Shepherd is whether to count only visible methods (those that
are public and not hidden), based on the notion that the class interface, or the view it presents to the
world, is the thing of interest, not the set of all methods (whether inherited or not). The di�culty
with this approach is that one class may present multiple interfaces. The main point here is that one
must reconcile the language-speci�c issues with the general applicability of the class cohesion measure,
a view that this research adopts.

The Chidamber and Kemerer approach, while exhibiting key ideas, fails to meet the basic representation
requirements of an empirical relation system. This is one of the �rst requirements of measurement
theory, so the LCOM measure cannot be used as such. Hitz and Montazeri [Hitz96] point out some
examples where LCOM fails to show enough sensitivity to changes in method connection con�gurations,
or shows too much. One example shows LCOM to have di�erent values for a constant number of splits
of a graph of method connections. Another example shows the case in which no further splits are
possible in a chain of method connections, and yet incremental additions to the connection graph yield
marginal changes in the LCOM measure.

6

2.3.4 Relative Strength Measure of Hitz and Montazeri

Hitz and Montazeri propose an improvement to the LCOM measure of Chidamber and Kemerer by
making it more sensitive to small changes in structure when the graph of method connections is
complete [Hitz96]. The idea here is to measure the \connectivity of degree K", where K is the number
of edges which must be removed in order to disconnect the graph. This would be done to distinguish
\ties" of the kind which happen when LCOM = 1. A linear mapping is proposed from the interval

[N � 1;

N

2

!
], where N is the number of methods and K is the number of method connections, to

the interval [0; 1] with the following relation:

C = 2
jEj � (N � 1)

(N � 1)(N � 2)

Hitz and Montazeri take care to con�rm the representation condition for their cohesion measure. In
their view, class cohesion is based on di�culty of separating methods in a class. With more connections,
cohesiveness should increase. This corresponds to counting more edges in the connectivity graph. C
indicates the extent to which the graph has deviated from the miminal graph required to maintain
connectivity among a group of methods.

2.3.5 Relative Connectivity Measure of Bieman and Kang

In their work on object-oriented cohesion, Bieman and Kang [Bieman95] adopt the notion of cohesion
as the interaction of methods of a class through the instance variables of the class. Two measures are
proposed: Loose Class Cohesion (LCC), which counts direct and indirect connections between methods,
and Tight Class Cohesion (TCC), which counts only direct connections between methods.

The goal of LCC is to detect coincidental components in a class. Low LCC suggests that some of the
components of the class belong in another class instead. High LCC indicates few components can be
split from the class.

The goal of TCC is to gauge the \visibility" of the connections in the class. High LCC and low TCC
measures for a class indicate that many of the method connections are indirect and possibly not obvious
from the source code. High LCC and high TCC indicate a highly cohesive class: no components can
be split and all connections are visible from the source code.

The concept of \splitability" is succinctly stated in their paper:

\If a class is designed in an ad hoc manner and unrelated components are included in
the class, the class represents more than one concept and does not model an entity. A class
designed so that it is a model of more than one entity will have more than one group of
connections in the class. The cohesion value of such a class is likely to be less than 0.5. For
example, if �ve of the six methods in a class are connected and the remaining method has
no connections, the TCC and LCC of the class are both 0.67. If three of the six methods in
a class are connected, and the other three are also connected with no connection between

7

those two groups, both the TCC and LCC of the class are 0.40. Therefore, the class cohesion
measures can be used to locate the classes that may have been designed inappropriately."
[Bieman95]

Chapter 3 is devoted to a formal validation of the Bieman-Kang cohesion measures.

2.3.6 Taxonomy of Briand

Briand et al review the cohesion measures currently under proposal with the intent of unifying them
under a common framework [Briand97a][Briand97b]. A uni�ed empirical relation system is proposed
with the following properties, informally stated:

� The Nonnegativity and Normalization property says that cohesion values must lie in a bounded
interval.

� Null Value and Maximum Value says that cohesion is zero if there are no relationships in a class,
and maximum if no relationships can be added to the class.

� Monotonicity says that the addition of a relationship to a class should not decrease cohesion.

� Composition says that merging unconnected classes must not result in a cohesion value for the
merged class which is greater than those of its constituent classes.

The Bieman-Kang cohesion measures are shown to ful�ll this empirical relation system.

The authors make some interesting observations about cohesion measures in general [Briand97b]:

� Indirect connections appear to be better indicators than direct connections for showing whether
a class should be split.

� A class having maximum cohesion as measured by direct connections would be required to possess
direct connections between every element to every other element. This situation is rare.

� Many classes are maximally cohesive when measured by indirect connections.

8

Chapter 3

Formal Validation of the Bieman-Kang

Cohesion Measures

3.1 Theoretical Requirements of a Measure

Historically, work in software measurement has su�ered from a lack of basis in scienti�c measure-
ment technique, or a misunderstanding of its application. The contributions of [Baker90] [Fenton91]
[Fenton94] [Melton90] [Kitchenham95] [Zuse91] have placed software measurement on a proper math-
ematical foundation. The work of [Bieman94] [Hitz95] [Briand96] are examples of modern software
measures �rmly grounded in measurement theory. We wish to apply the same rigor to the Bieman-
Kang cohesion measure.

The design of a measure should start with an understanding the entity being studied [Fenton94]. The
entity in this research is a Java class. Next, the notional, or intuitive, meaning of the attribute which
is to be measured must be understood. The attribute studied here is class cohesion. Notions about
cohesion include \basic function," \di�cult to split," \connectedness." Cohesion is an internal attribute
derivable from the entity itself.

An empirical relation system identi�es the entity (a Java class) and a relation which obtains on the
entity (is less cohesive than). A numerical relation system is de�ned over a set of numbers (any kind)
and the relation is less cohesive than. With respect to the Bieman-Kang measure, this is the proportion
of methods connected to total methods (TCC and LCC). TCC and LCC are measures because they
de�ne a mapping from Java classes, and the relation is more cohesive than, to TCC and LCC values
of Java classes. These values are de�ned over the rational interval [0:0; 1:0].

The representation condition imposes an additional requirement on a measure: all empirical relations
must be preserved in the mapping. In other words, there exists no contradiction between an entity's
image in the numerical system and any notion about cohesion of the entity in the empirical system. A
mapping which meets all these requirements is a representation.

As an example, consider two classes A and B, where A has more partitions than B. Our empirical
understanding of cohesion is such that A is more factorable than B. Therefore, A is less cohesive than

9

B. If a case exists in which two classes have the same cohesion measure but di�erent factorability, that
case would contradict the representation condition. If on the other hand it were possible to prove no
such case exists, then that proof would help con�rm the representation condition.

In addition to demonstrating the representation condition, a measure must have a scale type. This may
be any one of nominal, ordinal, interval, ratio, and absolute. A measure of nominal scale type does
nothing more than distinguish among the entities being measured. A measure of ordinal scale type
imposes a total order on the entities being measured. We should specify the admissible transformation

on the measure which distinguishes its scale type. In the case of nominal scale type, the admissible
transformation is a bijection to a di�erent set of distinguishing values. For ordinal scale type, it is a
monotonic increasing function remapping the values to a new total order. For a ratio scale type, it is
multiplication by a scalar.

3.2 De�nitions

In their work on object-oriented cohesion, Bieman and Kang [Bieman95] adopt the notion of cohesion
as the interaction of methods of a class through the instance variables of the class. This section states
the measure's de�nition in terms where the representation condition for measures can be assessed.
Then the empirical relation systems and numerical relation systems are de�ned, and the representation
condition is assessed for the measures.

De�nition 1 (Directly Uses Relation) An instance variable I is directly used by a visible method M

in a class C if I appears as a data token in M .

A method is visible if it can be accessed from outside the class. An instance variable does not have
to be visible. In this model, visible methods do not include the class constructors or destructors,
(finalize in Java). This is because in general the constructor directly uses every instance variable.
These relations would obscure any meaningful cohesion measurement. The same applies for the self
pointer (this in Java) since it is implicitly used in every expression.

De�nition 2 (Indirectly Uses Relation) An instance variable I is indirectly used by a method M in a

class C if I is directly used by some other M 0 in C such that M 0 is directly called by M , or is indirectly

called through a chain of intermediate Mi also of C.

De�nition 3 (Uses Relation) A method uses an instance variable if it directly or indirectly uses it and

the method and instance variable are in the same class.

De�nition 4 (Method Abstraction) A method abstraction is a set of instance variables used by a

method.

De�nition 5 (Directly Connects Relation) A relation directly connects is de�ned on a pair of distinct

methods of a class if there exists a non-empty intersection of the method abstractions.

10

De�nition 6 (Indirectly Connects Relation) A relation indirectly connects is de�ned on a pair of

distinct methods of a class if there exists a chain of direct connections between the methods through one

or more intermediate methods also in the class.

The relation directly connects is anti-reexive and symmetric. The relation indirectly connects is sym-
metric and transitive. The relation indirectly connects is also the transitive closure of the directly

connects relation less the directly connects relation.

De�nition 7 (Tight Class Cohesion) Tight Class Cohesion is the proportion of direct connections of

visible methods in a class.

TCC(C) =
j (Mi;Mj)DirectlyConnects

j
jM j

2

!

De�nition 8 (Loose Class Cohesion) Loose Class Cohesion is the proportion of direct or indirect

connections of visible methods in a class.

LCC(C) =
j (Mi;Mj)DirectlyConnects

j+ j (Mi;Mj)IndirectlyConnects j
jM j

2

!

An invariant is that TCC(C) � LCC(C).

3.3 Empirical Relation System

The empirical relation system captures the intuition of a measure. In this section the notions of the
cohesion measure are formally stated.

Section 2.3.4 presented the proposed measure of cohesion by Hitz and Montazeri. The goal for that
measure is the assessment of the cost of detaching a method from its class. This is not the goal of the
Bieman-Kang cohesion measures.

The goal of the Bieman-Kang loose cohesion measure is to identify components which are \coinciden-
tal." Such classes are \factorable" into separate classes without a�ecting method call and �eld use
relationships. For two MIGs a cohesion measure should yield lower cohesion for the MIG that has
more factors.

The goal of the Bieman-Kang tight cohesion measure is to �nd the degree to which the class is \�lled
out" with explicit method connections. It is not meant to identify separable factors.

In general, a class cohesion measure based on method connectivity should possess the following prop-
erties. See De�nition 13 for a de�nition of partition.

Property 1 (Maximum) A class to which no method connections can be added should have maximum

cohesion.

11

Property 2 (Minimum) A class in which no method connections exist should have no cohesion.

Property 3 (Well-de�nedness) Every class should have a measure.

Property 4 (Ordering Relation) A relation \is less cohesive than" should be de�ned for any two

classes. This relation should impose a total order on the universe of classes.

Property 5 (Homomorphic Invariance) Two classes which are the same except for naming should

have the same cohesion.

The next properties should be true of a measure capturing the notion of tight cohesion.

Property 6 (Monotonicity) A class from which a connection has been removed should have less cohe-

sion than prior to the removal.

Property 7 (Tight Invariance) Tight cohesion should be invariant to rearrangement of connections.

Property 8 (Partition Invariance) A class with a given partition should have cohesion bounded in

some interval.

The following property relates tight cohesion to loose cohesion.

Property 9 (Boundedness) The loose cohesion of a given partition bounds its tight cohesion.

The last two properties should be true of a measure capturing the notion of loose cohesion.

Property 10 (Loose Invariance) For a class of a given partition, loose cohesion should be invariant

to the addition of connections.

Property 11 (Factorability) A class which has more factors should have less cohesion than one which

has fewer factors.

3.4 Numerical Relation System

Here we de�ne a useful tool called the the Method Interconnection Graph (MIG). Nodes represent
methods and edges represent directly connects relations between them. We wish to recast the numerical
relation system de�ned in Section 3.2 in graph terms for easier analysis.

De�nition 9 A Method Interconnection Graph MIG(V;E) is de�ned on a class such that V = fM�Cg

and E = f(Mi;Mj)DirectlyConnects
g.

12

De�nition 10 Tight Class Cohesion (TCC) is de�ned as the proportion of edges possible in a Method

Interconnection Graph of N nodes:

TCC =
jEj
N

2

!

De�nition 11 Loose Class Cohesion (LCC) is de�ned as the transitive closure of the Method Inter-

connection Graph of N nodes.

LCC =
jEjTransitiveClosure

N

2

!

The MIG is also a handy visual abstraction. Figure 3.1 displays some of the method connection
con�gurations possible for a 5-method class. The con�gurations range from maximally cohesive (MIG
A is complete), to minimally cohesive (MIG P has no edges). The notional \factorability" of a class is
the extent to which the class can be split (partitioned) into disconnected subclasses each with one or
more methods. Each factor maps to a subgraph of the MIG.

10/10 1/10 0/10

0/101/10

2/10

2/10

A B C D E F G H I J K

9/10 8/10 7/10 6/10 4/10 3/105/10

10/10 10/10 10/10 6/10 6/10 6/10 4/10 4/10 3/10 3/1010/10

4/10 3/10 2/10

5 factors

4 Factors

3 factors

2 factors

1 factor

ML O P

TCC

LCC

Figure 3.1: Some Method Interconnection Graphs (MIG) for a 5-node Class

De�nition 12 A subgraph is a graph de�ned over a subset of nodes in the MIG, and which has a

unique con�guration of edges. A subgraph of an MIG with N nodes can have from 1 to N nodes.

13

De�nition 13 A partition on an MIG is a mapping of its nodes to its subsets, or factors. Each factor

can have a family of subgraphs de�ned on it.

3.5 The Representation Condition for Tight Cohesion

In this section we con�rm the representation condition for tight cohesion (TCC). Each property of
the empirical relation system for TCC is veri�ed. Most are trivial to prove but the procedure is done
anyway for completeness. Several anomalies are noted but none contradict the tenets of the measure's
empirical relation system.

3.5.1 Demonstration of the Maximum and Minimum (Properties 1, 2)

The following result establishes the existence of a maximum and minimum cohesion value that is
independent of the number of nodes in the MIG.

Proposition 1 For an Method Interconnection Graph of N nodes, the maximal TCC is that de�ned

for the complete subgraph of 1 factor, or TCCmaximal = 1. The minimal TCC is that de�ned for the

singleton subgraphs of N factors, or TCCminimal = 0. LCC = TCC in both cases.

Proof With one factor in the partition, all nodes are in the single fully connected graph that makes

up the factor. In this case TCC =

N

2

!

N

2

! = 1: With N factors, there are no edges in any of the

subgraphs, so TCC = 0. LCC is computed from the transitive closure of the directly connects relation,
but in these two cases the transitive closure of the relation is itself. �

3.5.2 Demonstration of Well-De�nedness (Property 3)

Proposition 2 LCC and TCC are well-de�ned measures over the rational interval [0.0, 1.0].

Proof We need to show that LCC and TCC are total functions from the domain of MIGs with N nodes
to a co-domain that is a proper subset of the rational numbers. By Proposition 1 the maximum value
of LCC and TCC is 1.0 and the minimum value is 0 for all N � 2. Any other value falls in between
since it is a proportion. The special case of N = 1 is handled by specifying LCC = TCC = 0. �

3.5.3 Demonstration of the Ordering Relation (Property 4)

The next result shows that an ordering relation is less cohesive than exists between any two MIGs, and
that this ordering imposes a total order on a set of MIGs.

14

Proposition 3 The domain of method interconnection graphs can be ordered by a relation is less
cohesive than which is de�ned for both LCC and TCC.

Proof The relation is less cohesive than is a mapping (LCCA; LCCB) �! ftrue; falseg,
or (TCCA; TCCB) �! ftrue; falseg. LCC and TCC are well-de�ned for every MIG. Any two values
can be compared as rational numbers. The result is true or not true. �

There will always be cases where distinct MIGs have the same cohesion measure. Figure 3.2 shows a
case where N = 6. The following result states that in general it is not possible to establish a cohesion
measure based on counting graph edges which can distinguish among all possible MIGs for a given N .
Consequently, a strict total ordering of the domain of MIGs according to LCC or TCC is impossible.
The requirement that there be a strict total order was never stated in the empirical relation system,
so this is not a contradiction.

Proposition 4 For N > 3 nodes, a strict total ordering of method interconnection graphs by an edge-

counting cohesion measure is not possible.

Proof By a simple construction, a ring of N nodes can be established (hence the requirement that
N > 3). Now reconnect one edge between nodes n1 and nN such that the new edge connects nodes
n1 and nN�1. This new subgraph has the same number of edges, so TCC is invariant. The number
of subgraphs has not changed, so LCC is invariant. Node n1 still has degree 2, but node nN now
has degree 1 and nN�1 has degree 3. The sets of node degrees of each subgraph are no longer the
same. By graph theory there cannot be an isomorphism. Since there exist MIG pairs which cannot be
distinguished by either LCC or TCC, a strict total ordering of MIGs is not possible. �

1

n N

n 1

n N
n N-1

n

B

TCC = 6, LCC = 15 TCC = 6, LCC = 15

A

Figure 3.2: Two MIGs with Equal Cohesion, Equal Factors, but Non-Isomorphic Subgraphs

The previous example shows an instance where both the measure and the notion of the measure could
be improved. If the measure would take into account the minimum in-degree of a node in A is 2, and

15

the minimum in-degree in B is 1, then a node in B can be detached (ie a method factored) by removing
1 edge instead of 2. Therefore B would be less cohesive than A.

Another anomaly concerns the case in which LCC and TCC measures for two MIGs give a contradictory
ordering of MIGs. Consider Figure 3.3. Two 7-node MIGs are partitioned di�erently: A has three
factors and B has two. A has LCC of 6=21 and TCC of 6=21. B has LCC of 9=21 and TCC of 5=21.
Compared by LCC, A is \less cohesive" than B. Compared by TCC, B is \less cohesive" than A. Our
notion of cohesion suggests B is \more cohesive" than A because B has fewer factors. But whether
this fact can be derived depends on which measure is used. Once again, there is no requirement in the
empirical relation system that the measures \tell the same story," for if there were, no reason would
exist for de�ning more than one cohesion measure.

TCC = 5/21

N = 7, Factors= 3 N = 7, Factors = 2

A B

A is less cohesive than B if LCC measures are compared.

B is less cohesive than A if TCC measures are compared.

LCC = 6/21

TCC = 6/21

LCC = 9/21

Figure 3.3: Two MIGs with Contradictory Cohesion Measures

3.5.4 Demonstration of Homomorphic Invariance (Property 5)

Each subgraph of an MIG can be replaced by its homomorphisms without a�ecting the MIG's cohesion.
For instance, in Figure 3.1 MIGs L and M are the same except for relabeling. They have the same
cohesion measures.

Proposition 5 The cohesion measures TCC and LCC are invariant under graph homomorphism.

Proof Each MIG has an adjacency matrix de�ned for it. From graph theory we know that the adja-
cency matrix is homomorphic under relabeling. TCC is measured directly by the adjacency matrix.
Therefore, TCC is invariant under relabeling. LCC also includes nodes that are indirectly connected.
The transitive closure of the indirectly connects relation is a fully connected graph with an adjacency
matrix de�ned for it which is also isomorphic under relabeling. �

16

3.5.5 Demonstration of Boundedness (Property 9)

Proposition 6 For a given partition on a Method Interconnection Graph, LCC is the least upper bound

of TCC.

Proof LCC is calculated from the transitive closure of each factor. TCC is calculated from the actual
number of edges. When the set of edges of each factor each match their transitive closure, the measures
are the same. In this case LCC = TCCmaximum of the bounded interval proved in Proposition 9. So
LCC is an upper bound. LCC is a member of a set of upper bounds B which includes 1. The elements
of B are positive rational numbers which are well-ordered, and consequently have a least member. This
is LCC. So LCC is a least upper bound. �

The boundedness property also suggests the notion of \�lling out" a partition over a MIG with edges
until its \potential" cohesiveness is realized with explicit connections between methods 1 . This notion
is not at variance with the empirical relation system since it makes no attempt to combine the two
measures.

3.5.6 Demonstration of Monotonicity (Property 6)

A class which has a method connection added or removed should increase or decrease cohesion. Note
that only TCC necessarily changes from the removal of an edge in the MIG.

Proposition 7 TCC is monotonically decreasing with the deletion of a connection in the Method

Interconnection Graph.

Proof From the de�nition of TCC, a removal of a connection decreases the edge count of the graph.
The resulting proportion is less. If no edges result then TCC = 0. �

3.5.7 Demonstration of Tight Invariance (Property 7)

The following property says that tight cohesion measure is not a�ected by the change in connections
in the MIG. For a class this means that method direct connections can be changed without a�ecting
tight cohesion.

Proposition 8 For a Method Interconnection Graph TCC is invariant to the rearrangement of edges.

Proof This follows from the de�nition of TCC since the edge count is what determines the measure. �

3.5.8 Demonstration of Partition Invariance (Property 8)

The next result shows that for a given partition, tight cohesion is bounded in some interval.

1One could even think of a cohesion tuple of (LCC; TCC) where MIGs are ordered based �rst on comparing LCC

values, and if equal, then on TCC values. However, this approach does not work.

17

Proposition 9 Given a partition of P factors de�ned over of a Method Interconnection Graph of

N nodes, each factor having ni nodes, and the subgraphs ranging from the minimally to maximally

connected have TCC values in the interval2
66664TCCminimum =

�P
i=1(ni � 1)

N

2

! ;
�P
i=1(ni � 1) + 1

N

2

! ; : : :

�P
i=1

ni
2

!

N

2

! = TCCmaximum

3
77775

Moreover, TCC is a strict total order within this partition: fTCC0 < TCC1 < : : : < TCCmaximalg.

Proof The minimal TCC is derived from the minimal number of edges required to connect a graph of
ni nodes, or ni � 1. These �gures are summed for all factors in the MIG. The maximal case is the
number of node pairs possible for each subgraph. These are summed for all subgraphs. The admissible
values for TCC range from that for a subgraph which is minimally connected, to that for subgraph
which is maximally connected. Each incremental value is obtained by adding an edge to the subgraph,
increasing the TCC numerator by one. Eventually, no more edges can be added because each subgraph
is fully connected: this is the maximal TCC case. The strict total ordering of the TCC interval follows
directly from the arithmetically increasing sequence of terms. �

3.6 Representation Condition for Loose Cohesion

The Bieman-Kang loose cohesion measure (LCC) does not meet its representation condition due to the
contradiction of factorability.

3.6.1 Demonstration of Loose Invariance (Property 10)

The loose cohesion of a class with a certain partition (a certain number of factors each with a certain
number of methods) should not change from the deletion of edges which do not a�ect the partition.
This is because loose cohesion is measuring the potential of cohesion of a class.

Proposition 10 For a Method Interconnection Graph of a given partition, LCC is invariant to the

deletion of an edge if the resulting partition is the same.

Proof For the partition to be the same after edge deletion, no cuts in the graph can occur. An edge
deletion under this condition implies some other edge still connects the nodes of a factor. LCC is
calculated from the transitive closure of the edges of the MIG. The closure set contains the same edge
that was deleted. Thus LCC is una�ected. �

3.6.2 Contradiction of Factorability (Property 11)

The Bieman-Kang cohesion measures do not completely distinguish factorability of classes. Counterex-
amples are numerous. Figure 3.4 shows an example of two MIGs with the same cohesion but di�erent

18

number of factors. In this case, the measure fails to discriminate between MIGs having di�erent
cohesion.

Factors = 4

TCC = 3, LCC = 3 TCC = 3, LCC = 3

Factors = 3

Figure 3.4: MIGs of Equal Cohesion but Di�erent Number of Factors

3.6.3 Analyzing Factorability

To better study the population of graph partitions, we appeal to to a classic problem in combinatorics.
The Integer Partition Problem tells us in how many ways an integer n can be represented by a multiset of
positive numbers that add up to n. For example, P (4) = jf4g; f3+1g; f2+2g; f2+1+1g; f1+1+1+1gj =
5. The following theorem gives a recurrence for generating this sum [Bogart83] [Hall86]. The proof
may be found in the references.

Theorem 1 The number of ways to put n indistinguishable objects into k indistinguishable boxes with

no box empty is

P (n; k) =
kX
i=1

P (n� k; i)

where P (n; 1) = P (k; k) = 1, and P (m; k) = 0 for m < k.

A Ferrer diagram helps visualize the decomposition process. Figure 3.5 shows the derivation of P (10; 4),
a MIG of 10 nodes and 4 factors. Each Ferrer diagram shows the con�guration of multiset counts. The
counts are derived by totaling each column in the diagram. Some counts may be duplicate, so more
than one factor may have the same number of nodes.

Theorem 1 only counts the number of partitions. Algorithm 1 generates an enumeration of the parti-
tions. The set of partitions for each K = 1::N can be obtained by varying K.

19

Algorithm 1 Generate the distinct partitions of a graph with N nodes and K factors.

inputs: N = number of nodes, K = number of factors

internal state: empty Stack[1..K][1..K] = 0

sp = 1

output: set of graph partitions of N nodes and K factors

partition(n, k)

if n = k OR k = 1 then

push(bins(n, k))

emit() // copy to the output set

else

for i = 1..k do

push bins(k, k)

partition(n-k, i)

pop

end

end

end

push(bins) // build the Ferrer diagram

Stack[sp][1..length] = bins[1..length]

Stack[sp][length+1..K] = 0

++sp

end

pop()

Stack[sp][1..K] = 0

--sp

end

emit() // form the partition from the Ferrer diagram

for c = columns in Stack

count[c] = 0;

for r = rows in Stack

if (Stack[r][c])

++count[c]

end

end

end

add count[] to output set

end

Lemma 1 Proof of Correctness of Algorithm 1

20

Proof (i) By Theorem 1, a �nite number of partitions is visited in the recurrence. Consequently the
algorithm terminates.

(ii) It is enough to demonstrate a bijection between the leaves of the recursion tree of Algorithm 1
(see Figure 3.5 for an example recursion tree) and each term of the recurrence of Theorem 1. The
relation is onto because the algorithm subsumes the recurrence, and exactly one partition is generated
for each terminal condition in the recurrence. It is one-to-one by the following argument. The partition
is generated by totaling the columns of the Ferrer diagram at each leaf of the algorithm's recursion.
The recurrence counts each distinct partition. But if the partition is not distinct, then the recurrence
has double counted and is incorrect. But it is correct by the proof of Theorem 1. By contradiction,
each leaf of the recursion tree produces a distinct partition. To show the other direction, we simply
observe that the terminals-only (leaf-only) traversal of the recursion tree gives the exact sequence of
terms produced by the recurrence. �

Does the ordering of MIGs implied by Algorithm 1 make sense? Algorithm 1 operates on a vector of
K � 1 bins each of which contains a count of a partition of N � 1 nodes. Initially, the vector is most
\orderly", with bin2::K = 1 and bin1 = N �K + 1. Terminally, the bin vector equals the \entropy"
vector for this N and K: bini = (NdivK) + d

(NmodK)
K

e; i = f1::Kg. The algorithm progresses by
introducing more bins and \spreading" the energy over a wider area. This corresponds with the notion
of factorability: MIGs with more factors should have less cohesion. In addition, with the number
of factors �xed, MIGs whose factors contain a higher maximum node count are farther away from
\entropy," and therefore should be more cohesive. These two properties indicate the partition ordering
renders the desired sequence. To see the intuition more clearly, consider Table 3.1, which gives the
sequence of integer partitions for a MIG of 10 nodes.

3.6.4 Population Study of Cohesion in a MIG with 29 Nodes

Algorithm 1 produces all 4566 distinct partitions for N = 29 (the results for other N are similar).
Figure 3.6 shows the distribution of LCC values with respect to the number of factors over which they
were measured. Surprisingly, each factor count has a high degree of overlap with its neighbors. Thus
LCC cannot be used as a predictor of factorability. However, the measure appears to retain a rank
order by range ordering LCC values for each factor count. This fact is even more striking in Figure
3.7, which shows the beautifully self-similar distribution of cohesion values with respect to partition
order (the �rst partition generated is the most cohesive). Self-similarity is perhaps not so surprising
given the recursive way the distinct partitions are generated.

Another positive indication lies in the apparent distribution of factor counts in the partition population.
Figure 3.8 shows this to be some kind of long-tailed distribution. We would expect the population of
LCC measures to behave similarly, and it does, as shown in Figure 3.9.

In general, the cohesion measure cannot distinguish factorability of a class. But there exists a de�nite,
if non-linear, relationship between the two which further research must elucidate.

21

N K Partition with Nodes per Factor LCC

10 1 [10] 1.0
10 2 [9,1] 0.8
10 2 [8,2] 0.64444447

10 2 [7,3] 0.53333336
10 2 [6,4] 0.46666667
10 2 [5,5] 0.44444445
10 3 [8,1,1] 0.62222224
10 3 [7,2,1] 0.4888889
10 3 [6,3,1] 0.4
10 3 [6,2,2] 0.37777779
10 3 [5,4,1] 0.35555556

10 3 [5,3,2] 0.31111112
10 3 [4,4,2] 0.2888889
10 3 [4,3,3] 0.26666668
10 4 [7,1,1,1] 0.46666667
10 4 [6,2,1,1] 0.35555556
10 4 [5,3,1,1] 0.2888889
10 4 [5,2,2,1] 0.26666668
10 4 [4,4,1,1] 0.26666668
10 4 [4,3,2,1] 0.22222222

10 4 [4,2,2,2] 0.2
10 4 [3,3,3,1] 0.2
10 4 [3,3,2,2] 0.17777778
10 5 [6,1,1,1,1] 0.33333334
10 5 [5,2,1,1,1] 0.24444444
10 5 [4,3,1,1,1] 0.2
10 5 [4,2,2,1,1] 0.17777778
10 5 [3,3,2,1,1] 0.15555556
10 5 [3,2,2,2,1] 0.13333334

10 5 [2,2,2,2,2] 0.11111111
10 6 [5,1,1,1,1,1] 0.22222222
10 6 [4,2,1,1,1,1] 0.15555556
10 6 [3,3,1,1,1,1] 0.13333334
10 6 [3,2,2,1,1,1] 0.11111111
10 6 [2,2,2,2,1,1] 0.08888889
10 7 [4,1,1,1,1,1,1] 0.13333334
10 7 [3,2,1,1,1,1,1] 0.08888889

10 7 [2,2,2,1,1,1,1] 0.06666667
10 8 [3,1,1,1,1,1,1,1] 0.06666667
10 8 [2,2,1,1,1,1,1,1] 0.044444446
10 9 [2,1,1,1,1,1,1,1,1] 0.022222223
10 10 [1,1,1,1,1,1,1,1,1,1] 0.0

Table 3.1: Partitions Produced by Algorithm 1 with N = 10 and K = 1::10

3.6.5 Improving LCC

One approach to improving LCC so that it can reect factorability of a class would be to linearlize
the rank of a MIG in its integer partition list. For example, in Figure 3.1 the MIG having factors
of 4,3,1,1,1 ranks 17th of 42 partitions. Its LCC would be 17=42 = 0:4048. Such an ordering would
preserve factorability and would also preserve the notion of entropy described in Section 3.6.3. Such a
measure would have ordinal scale properties because it is a percentile.

TCC could be integrated with the new LCC measure by o�setting each LCC value by enough points
to account for the possible edges of the partition. For example, the MIG of partition 4,3,1,1,1 would
have from 5 to 9 edges. TCC would be added to LCC to yield a single scalar value. For the exam-
ple, this would be 17=42 + ((E � 5)=5)=42), which gives possible cohesion values for this partition of
0.4048..0.4238. The value of the least cohesive member of the next partition is 0.4286. In this way
a much desired strict total order which distinguishes all partitions can be imposed on the universe of
MIGs for a given N .

The question arises whether MIGs of di�erent orders (N) can be compared for cohesion under this
regime. If the measure is viewed as a \potential for completeness," such a comparison might make
sense. If not, a partial order over a complete lattice would su�ce.

22

Computation of this measure would be expensive. There is no known analytic solution to the recurrence
of Theorem 1. The terms for each MIG would have to be calculated using the recurrence. The number
of possible partitions over a 100-node MIG exceeds 190 million [Hall86]. Fortunately, few classes have
that many methods.

3.7 Scale Type of the Measure

Here we wish to demonstrate that the cohesion measures are ratio scale measures. To do this we need
to show that a statement like A twice as cohesive as B remains meaningful under rescaling.

Proposition 11 The Bieman-Kang cohesion measures are ratio scale.

Proof The admissible transformation for ratio scale types is rescaling: for scale M and � > 0,

M 0 = �M

Any relationships between cohesion measures A and B must hold true under the rescaled measure.
The cohesion measure is a value in the rational interval M = [0:0::1:0]. Under rescaling, this interval
becomes M 0 = [0:0::�]. Let a meaningful 2 statement underM exist such that A = �B, ie B is � times
more cohesive than A. Under M 0, the statement is still meaningful: �A = ��B, or A = �B. �

2Meaningfulness does not imply truth: 0.9 is not twice as cohesive as 0.8, but the statement is nonetheless meaningful.

23

4 2 2 2

P(2,1) P(2,2)

3 3 2 26 2 1 1

P(4,1)

5 3 1 1

P(2,1) P(2,2)

4 4 1 1

5 3 1 1

7 1 1 1

P(6,1)

6 2 1 1 5 2 2 1 4 2 2 2

P(6,2) = P(4,1) + P(4,2) P(6,3) = (3,1) + P(3,2) + P(3,3) P(6,4) = P(2,1) + P(2,2)

of the recursion tree.

7 1 1 1

P(10,4) = P(6,1) + P(6,2) + P(6,3) + P(6,4)

List of Partitions

7 1 1 1

6 2 1 1

5 3 1 1

4 4 1 1

5 2 2 1

4 3 2 1

3 3 3 1

4 2 2 2

3 3 2 2

P(3,2)

4 3 2 1

4 3 2 1

P(1,1)

P(3,1) P(3,3)

5 2 2 1 3 3 3 1

number of ways N can be divided into K parts. Note that P(N,1) = 1 and P(K,K) = 1 in which case the
recursion stops. The partition is derived by adding the columns of the Ferrer Diagram.

P(4,2) = P(2,1) + P(2,2)

Shaded boxes denote those parts under manipulation in the recursion step.

(b) List of distinct partitions obtained by performing a terminals-only (leaf-only) traversal

(a) Derivation of integer partitions using Ferrer Diagrams. P(N,K) is the partition term to determine the

Figure 3.5: Derivation of the Partitions of P (10; 4) Using Ferrer Diagrams

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30
Population of Cohesion Values for Partitions of a 29−Node MIG

N
um

be
r

of
 F

ac
to

rs

LCC

This graph shows all LCC values
possible for a 29−Node MIG.
For 1 factor LCC is maximum at 1.
For 29 factors LCC is minimum at 0.

Figure 3.6: The Relationship between Number of Factors and Cohesion

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sequence Number

LC
C

Cohesion Values Sequenced by Graph Partition

The first partition has LCC of 1.

The last partition has LCC of 0.

There are 4566 distinct partitions of a 29−Node MIG

Figure 3.7: Sequence of Cohesion Values by Graph Partition

25

0 5 10 15 20 25 30
0

100

200

300

400

500

600
Population Distribution of Factor Counts for a 29−Node MIG

F
re

qu
en

cy

Number of Factors

Figure 3.8: Population of Factor Counts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250
Population Distribution of Cohesion Values of a 29−Node MIG

F
re

qu
en

cy

LCC Value

Figure 3.9: Population of Cohesion Values

26

Chapter 4

Java Models

This section de�nes the language-speci�c issues concerning cohesion measurement in Java.

4.1 Java Language Model

4.1.1 Syntactic Organization and Language Features

The top level syntactic organization of Java programs is the package [Arnold96]. A package consists
of an optional name, which may qualify it with respect to enclosing super packages. In addition, any
number of import declarations and type (class and interface) declarations may exist. If a source �le
does not possess a package declaration, the classes and interfaces declared in the \current environment"
are assigned to the unnamed package. There is at least one unnamed package for each Java program,
but the rule for selecting the current unnamed package from which type references may be resolved is
compiler-dependent. In most implementations it is the current working directory.

The package construct serves as a way of organizing code for use by clients and to control its visibility.
Type declarations (classes and interfaces) which are public are visible to all clients of a package. Type
declarations which are not public are package-wide.

The interface construct declares �elds and methods available to a client from an object implementing
the interface.

In Java, the basic language construct is a class, which consists of methods and instance variables.
Unlike C++, there exist no free functions or �elds. [Pohl93]. The only way to implement functionality
is within a class. Consequently, the subject of measurement is the Java class construct.

Figure 4.1 gives a schematic representation of Java syntactic organization using OMT [Rumbaugh91].

There are two Java language de�nitions currently in use. Version 1.1 of the Java Development System
(JDK) supports inner classes, a construct useful for implementing helper classes. Because this language
feature is experimental [Javasoft97], the Java language corresponding to Version 1.0 of the JDK was
used by this research.

27

4.1.2 Method Quali�cation and Overloading

A quali�ed method name consists of a base name, an ordered set of types corresponding to the formal
parameter list, and a return type. The Java Virtual Machine speci�cation de�nes a canonical represen-
tation (mangling) of the fully quali�ed method name [Lindholm96]. Use of the canonical quali�cation
in naming makes overloaded methods distinct in the name space of the Java program. In the work
of Bieman and Kang [Bieman95], no distinction was made among overloaded methods. This vastly
simpli�es matters. Unfortunately, method overloading is very common in the Java idiom and must be
tackled if any meaningful cohesion results are to be obtained.

4.1.3 Dynamic Method Dispatch

Method dispatch is dynamic in Java. This means the type of the reference is bound at the time of
assignment (run-time), and the method lookup depends on the current type of the reference. In this
way polymorphism of objects is realized.

Static analysis cannot completely resolve method lookups. If the choice lies between a method in the
class being measured, and a method of the same quali�ed name in a super class, then we consider the
type of the sending object to be its declared type at the call site.

The problem with this simplifying approach is that any occurrence of a locally de�ned, quali�ed method
name in an expression will be resolved in favor of the locally de�ned method (no polymorphism).
Connections between methods in a class may be counted when in fact the relation does not exist. The
omission of dynamic method dispatch analysis therefore may result in higher cohesion measurements
than are warranted.

It is possible through static analysis to determine the domain of possible method calls and thereby
eliminate the local reference [Dean96] [Chambers96].

4.1.4 Type Resolution in Expressions

Another di�culty in resolving quali�ed method names arises from the fact that an argument to a
method call must be evaluated as to its type so that the method quali�cation and lookup can take
place. The argument may itself be an expression. Moreover, an identi�er may be an object reference,
and its type is determined by its last assignment, rather than its declared type. Data ow is normally
used to resolve types in this case.

4.2 Class Size

Another measure of importance to this research is the size of the class being measured. Size is an
internal software attribute known to correlate with a number of structure measures [Fenton91]. If a
relationship between cohesion and size can be shown, then other relationships may follow.

Historically, program size has been measured in lines of non-comment source code (LOC) [Fenton94].

28

While LOC is an absolute measure (because it is a bijection to the natural numbers), it su�ers from a
general failure to meet its representation condition. LOC is highly sensitive to programming style, and
without reference to the style of the code's author, the measure is not entirely meaningful. Programming
style is an attribute that is little understood, and is unlikely to be measured successfully.

The Java compiler provides an alternative size measure which eliminates programming style as an
attribute. The output of the javac compiler produces a class �le. The tool javap decompiles the class
�le into the byte codes (intermediate instructions) that make up the portable code of the class. The
measure is the number of lines of byte code. Only the byte codes for which source code was written
appear in the class �le. All external references are denoted as such. Unlike other measures of binary
code size, this measure is platform independent.

4.3 Applying Cohesion Measures to Java

4.3.1 Cohesion Established Through Class Fields and Methods

A client accesses a class through its class variables (�elds), class methods, instance variables (�elds),
and instance methods. Class �elds and methods exist for the loadtime of the class. Instance �elds and
methods exist only for the lifetime of the object, which is an instance of the class. More precisely, the
values of the class �elds and the current state of the class methods depend on the history of accesses
to the class. By contrast, instance �elds and methods have their value and state a�ected solely by the
history of accesses to that particular instance.

One of the principal issues regarding cohesion measurement in Java is whether instance methods may
connect through class �elds or class methods. (Class methods are prevented from using instance �elds
by the compiler.) For example, consider the following code:

class ClassA

{

private static int maxSize;

private static void changeLimit(int newSize) { maxSize += newSize; }

public void increaseLimit(int amount) { changeLimit(amount); }

public void decreaseLimit(int amount) { changeLimit(-amount); }

}

In class ClassA methods increaseLimit and decreaseLimit are connected through their common use
of the class method changeLimit, which in turn directly uses the class �eld maxSize.

There are two approaches for treating this kind of cohesion.

� Regard the class �eld maxSize and the class method changeLimit as instances of an object
created at the loadtime of the class. This object contains the state of the class, but no state
of any instances of the class. There is some justi�cation of this view in Java because a class

29

possesses some properties of an object: its type can be obtained during runtime, and its �elds
and methods can be dereferenced with respect to the class name. Thus, class �elds and methods
extend the state of the putative class object.

� Regard the class �elds and methods as added state of each instance of the class. Moreover, the
class �elds and methods have the power to change the state of all live instances of the class. This
introduces coupling between objects that is contrary to the notion of objects having discrete state
and independent history.

For the purposes of this research we exclude class �elds and methods from analysis. This means we
also exclude the class method main. The main method is the entry point for a java program. It may
appear in any class. Excluding the main method does not detract from cohesion analysis because main
acts more like a client to the class.

4.3.2 Cohesion Established Through Inheritance

Another key question concerns the treatment of cohesion through methods and �elds de�ned in an
ancestor class. Consider the following fragment:

class Point

{

private int x, y;

Point(int a, int b) { a = x; b = y; }

void translate(int a, int b) { x += a; y += b; }

int getX() { return x; }

int getY() { return y; }

}

class ColorPoint extends Point

{

private int color;

ColorPoint(int a, int b, int c) { super(a, b); color = c; }

void reflectXAxis() { translate(0, -2*getY()); }

void reflectYAxis() { translate(-2*getX(), 0); }

}

The class ColorPoint exhibits high cohesion through the connection of the methods reflectXAxis
and reflectYAxis to the instance variables x and y in the super class Point (the super keyword is
implicit).

In Java, all classes are inherited from a root class called Object. The subclass ColorPoint inherits
some functionality from Point, but gets the rest from Object. To what degree do we look at inheritance
to resolve questions of cohesiveness? There are three approaches:

� Notionally, the two methods reflectXAxis and reflectYAxis are not connected in the class
ColorPoint because ColorPoint can be split between them. In fact, a better design would be
to push the two methods upstairs to Point.

30

� If we were to look at the immediate superclass for connections, then why not the super-superclass
and so on right up to Object? This approach gives a specious view of instance variable usage in
Java, since all �elds and methods not hidden or overridden are available to the subclass. In fact,
such methods as java.lang.Object.hashCode and java.lang.Object.equals are frequently
used in their pure form, and their presence in expressions could give arbitrarily high values for
cohesion of subclasses.

� We could construct a vector measure giving cohesion through inherited �elds and methods arising
from each of N levels of inheritance.

This research addresses only Local Cohesion, or cohesion arising from de�nitions available within a
class. This approach diverges from that of [Bieman95], which admits to optional measurement of
connections through super class instance variables.

4.3.3 Cohesion Established Through Composition

Consider the following container class which is composed of a vector of complex values and performs
certain vector operations on it.

package ComplexNumber;

import java.util.Vector;

public class ComplexVector

{

private Vector v = new Vector(0);

public ComplexVector() {}

public void addElement(Complex a) { v.addElement(a); }

public int size() { return v.size(); }

public void add(ComplexVector u)

{

for (int i = 0; i < v.size(); ++i)

{

((Complex)v.elementAt(i)).add((Complex)v.elementAt(i));

}

}

}

The class ComplexVector has a component of class Vector. It also has an ComplexVector.add

method which calls Vector.size. The ComplexVector.size method also calls Vector.size. Do
ComplexVector.size and ComplexVector.add not connect because they share no common instance
variables but share only calls to an object outside of this class? Or do the methods directly connect

31

through their common use of the instance variable v? Our model treats this case as a use rather than
a call. Consequently, ComplexVector.size and ComplexVector.add directly connect.

4.3.4 Cohesion and Helper Classes

Although we have made the decision not to measure cohesion across class boundaries, strict adherence
can lead to anomalies.

Helper classes are classes whose instances are paired with instances of a principal class. They are not
used by any other class. These kinds of classes are nevertheless ignored for the purposes of analyzing
cohesion, but they tend to add to the cohesiveness of a principal class. Consider the following class
TreeIterator, which is a package-only iterator object associated strictly with class Tree and its
subclasses, and modeled after the iterator design pattern of [Gamma95].

package Tree;

import java.util.Enumeration;

import java.util.Vector;

class TreeIterator implements Enumeration

{

private Tree tree;

private Vector vector;

private Enumeration iterator;

TreeIterator(Tree t)

{

tree = t;

vector = new Vector(tree.size());

if (!tree.isEmpty())

{

tree.setRoot(); // set the current pointer to the root

tree.preorder(vector); // fill up vector with the elements in preorder

}

iterator = vector.elements();

}

public boolean hasMoreElements() { return iterator.hasMoreElements(); }

public Object nextElement() { return iterator.nextElement(); }

public Enumeration elements() { return iterator; }

public String toString()

{

String s = new String("");

while(hasMoreElements()) { s += ((nextElement()).toString() + "\n"); }

return s;

32

}

}

In the principal class Tree there is a method called toString which dumps the tree, and a method
called elements which returns an iterator object. The text for this code is :

public class Tree

{

...

public String toString() { return (new TreeIterator(this)).toString(); }

public Enumeration elements() { return (new TreeIterator(this)).elements(); }

...

}

As can be seen from the code for the TreeIterator constructor, any method in Tree which cre-
ates an iterator object will indirectly use the method Tree.size and therefore the instance variable
Tree.count. Thus, the methods Tree.toString and Tree.elements are indirectly connected without
being measured as such.

Incidentally, the inner classes feature of Java 1.1 lends itself very well to the inclusion of helper classes
such as iterators and exceptions.

4.3.5 Cohesion Established Through Constants

A cohesion measure should not try to connect methods which use common constants but otherwise
have no connection. Constants have no state and are immutable for the lifetime of an object. If a
class were factored, any shared constants can be duplicated. (In Java constants can be moved to an
interface so that a single copy in the source code is maintained.)

33

Class

visibility
subclassable
virtual
extendsName
implementsNameList

fullyQualifiedName

ClassMethod

fullyQualifiedName
visibility
subclassable
throwsList

fullyQualifiedName
visibility
subclassable

ClassField

Constructor

fullyQualifiedName
visibility
subclassable
throwsList

fullyQualifiedName
visibility
subclassable

Field

Method

fullyQualifiedName
visibility
subclassable
throwsList

NamedPackage

fullyQualifiedName

Expression

Statement

Block

Extends
NamedInterface

UnnamedInterface

UnnamedPackage

Constant

fullyQualifiedName

Protocol

Implements

LocalVariableDecl

MethodInvokes

LocalVariable

FieldUses

Hides

UsesField

Figure 4.1: OMT Diagram of Java Object Model Used for Cohesion Measurement

34

Chapter 5

Celebes, a Java Metrics Platform

The research produced a static analysis tool called Celebes 1. This chapter presents a brief overview of
the tool's implementation and a tutorial covering a simple example.

5.1 Overview

Celebes is a static analysis tool which takes as input Java source �les and compiled byte code �les,
and generates method call and �eld information. This information is used to compute the cohesion
measures. The tool leverages the compiler in order to fully distinguish overloaded method names,
resolve superclass and self references, resolve actual parameter types for method protocols, and to
resolve actual type of the calling object at a call site.

Figure 5.1 shows a block diagram of Celebes components. The inputs to the tool consist of compilable
Java source codes. These �les are run through the javacc parser generator and jjtree abstract syntax tree
(AST) builder. These tools along with a Java 1.0 language grammar are supplied by Sun Microsystems,
Inc [Javacc97]. javacc is an LL(k) parser.

Celebes uses AST output by jjtree as the starting point for a tree transformation that changes syntactic
entities into semantic ones. For instance, a branch of the AST de�ning a method declaration is
changed into an object of type MethodNode which embeds its quali�ed name, constituent local variable
declarations, and the top level statement block (which itself is composed of statements and embedded
blocks). The closure of this recursive process is a decorated syntax tree (DST).

The DST retains the structure of the class being analyzed, but also propagates information through
the tree. Among the results pushed down the tree are:

� Quali�ed package, class names.

� Instance variable declarations.

� Visible method declarations.
1
Celebes is named after a co�ee rich island in the Java Sea. Its modern name is Sulawesi, now part of Indonesia.

35

� Enclosing local variables which may kill references to instance variables.

Among the results pushed back up the tree are:

� Quali�ed method names.

� Instance variable uses by quali�ed method.

� Visible quali�ed method uses by quali�ed method.

Cohesion measures depend on method call and �eld use data propagated up the structure tree to the
class level. These are assembled into graphs, from which the measures are computed. Metrics are
extracted from each class and reported in a metrics �le.

Size is obtained by counting the number of lines of java byte code in the associated class �le de-
compilation as produced by javap. The decompiled �les could be parsed within Celebes by building
another (much simpler) parser generator.

5.2 Tutorial

This section shows the process of cohesion analysis and measurement of an example class using Celebes.
The source code for the test class is found in ClassO.java:

class ClassO

{

int field0, field1, field2, field3, field4, field5;

static int mode;

void m0() { field0 = field1 = 1; }

void m1() { field2 = 2; }

void m2() { field3 = field4 = field5 = 2; }

void m3() { field2 = 4; }

void m4() { m0(); }

void m5() { m4(); }

void m6() { m5(); m2(); }

void m7() { m1(); }

void m8(int a) { m3(); }

void m8(boolean a) { m3(); }

public static void main(String[] args) {}

}

First, compile the source �le:

36

Java Byte
Code

generator
parserCelebesSource

Java

Codes

javap

Images

javac

- replace AST with structure nodes
- qualify field and method names
- match uses with definitions
- resolve name hiding

abstract syntax tree (AST)
 builder

produced by javacc and jjtree

AST decorator

- possible method pairs
- number of field interactions
- method interactions

- push information through graph

- lines of byte code
- reuse data

- prepare cohesion metrics
- prepare code size metrics
- prepare reuse output
- prepare source code output

AST analyzer

Measurement Reporter

Java 1.0 Language grammar

Figure 5.1: Block Diagram of Major Components, Inputs, and Outputs to Celebes

javac ClassO.java

Celebes runs on the Java source code �le. If the �le contains multiple class declarations, these will be
analyzed separately. However, you must generate a byte code �le for each class �le produced by the
compiler.

javap -c -p ClassO > ClassO.bc

Now run Celebes.

scruggs> java Celebes -do -dir=$CELEBES/examples ClassO.java

37

Celebes Java Metrics Platform v0.1a

(c) 1997 Colorado State University.

Run ``celebes -about'' for information and usage restrictions.

Reading from /s/bach/h/proj/reuse/celebes/examples/ClassO.java

Opening /s/bach/h/proj/reuse/celebes/examples/ClassO.parse for output.

Decorating syntax tree...

Found 1 classes.

Processing byte codes for ...ClassO

Did not find : ClassO.main([Ljava.lang.String;)V

Requalifying ClassO.main([LString;)V with ClassO.main([Ljava.lang.String;)V

Found 1 classes.

Writing parse tree...

Generating cohesion information for ClassO

Writing parse time information...

Parse time was 5 seconds.

scruggs>

The �rst output �le is the source code parse �le ClassO.parse. This gives the overall structure of the
program. A portion of the �le is shown below, including the class information, �eld information, and
information for one method. The method consists of its source code body (under the Block subtree),
and its byte code body (under the MethodBody subtree). The method body subtree incorporates �eld
use and method call information, which is passed up the tree to the class level. Field use and method
call data are used to generate cohesion metrics.

The cohesion computation excludes from consideration static (class) �elds, constants, static (class)
methods, and private methods.

...

Class: "ClassO"

public ClassO extends java.lang.Object

implements []

Fields: [ClassO.field0, ClassO.field1, ClassO.field2, ClassO.field3,

ClassO.field4, ClassO.field5, ClassO.mode]

Methods: [ClassO.m0()V, ClassO.m1()V, ClassO.m2()V, ClassO.m3()V,

ClassO.m4()V, ClassO.m5()V, ClassO.m6()V, ClassO.m7()V,

ClassO.m8(I)V, ClassO.m8(Z)V, ClassO.main([Ljava.lang.String;)V,

ClassO.<init>()V, ClassO.<clinit>()V]

Non-Class Non-Constant Fields: [ClassO.field0, ClassO.field1,

ClassO.field2, ClassO.field3, ClassO.field4,

ClassO.field5]

Visible Non-Class Methods: [ClassO.m0()V, ClassO.m1()V, ClassO.m2()V,

ClassO.m3()V, ClassO.m4()V, ClassO.m5()V,

ClassO.m6()V, ClassO.m7()V, ClassO.m8(I)V,

ClassO.m8(Z)V]

Aggregate size (byte code statements) = 45

38

Field: "ClassO.field0"

Field: "ClassO.field1"

Field: "ClassO.field2"

Field: "ClassO.field3"

Field: "ClassO.field4"

Field: "ClassO.field5"

Field: "ClassO.mode"

Method: "ClassO.m0()V"

Calls: []

Uses: [ClassO.field1, ClassO.field0]

Size = 7

Block: "Block0"

Statement: "Stmt1" Empty

Expression: "Expr2"

MethodBody: "ClassO.m0()VBody"

Calls: []

Uses: [ClassO.field1, ClassO.field0]

Size = 7

...

Celebes also produces a parse tree for the byte code �le. Portions of the �le ClassO.p are shown below.
Notice the call and use information embedded within this tree. Method and �eld names are quali�ed
with the enclosing class and package names throughout the Celebes data structures. Method names
are also mangled with their calling protocol and return type. In this way, overloaded method names
are unique. The mangling scheme is the same as that used by the Java compiler.

...

MethodBody

ResultType

voidKeyword

Name

m3

FormalParameters

Statement

Instruction

Statement

Instruction

Statement

Instruction

UseStatement

<Field ClassO.field2 I>

Statement

Instruction

StatementCount

39

MethodBody

ResultType

voidKeyword

Name

m4

FormalParameters

Statement

Instruction

Statement

Instruction

CallStatement

<Method ClassO.m0()V>

Statement

Instruction

StatementCount

You may now examine the metrics output �le ClassO.metrics produced by Celebes. The �rst part of
report gives the summary of the class cohesion and class size measures.

Cohesion Measures for Class: ClassO

nLinks = 45

nDirectLinks = 17

nIndirectLinks = 3

mTCC = 0.37777779

mLCC = 0.44444445

nSize = 45

nMethods = 10

mMethodSize = 4.5

The All Uses Graph shows the direct and indirect usage of �elds by visible non-static methods. The
indirect usage relations are obtained by taking the transitive closure of the graph of direct uses. \T"
means that a usage relation exists. This graph is made anti-reexive.

All Uses Graph =

DiGraph:

C C C C C C C C C C C C C C C C

l l l l l l l l l l l l l l l l

a a a a a a a a a a a a a a a a

s s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s

O O O O O O O O O O O O O O O O

.

f f f f f f m m m m m m m m m m

40

i i i i i i 0 1 2 3 4 5 6 7 8 8

e e e e e e ((((((((((

l l l l l l)))))))) I Z

d d d d d d V V V V V V V V))

0 1 2 3 4 5 V V

ClassO.field0 F F F F F F T F F F T T T F F F

ClassO.field1 F F F F F F T F F F T T T F F F

ClassO.field2 F F F F F F F T F T F F F T T T

ClassO.field3 F F F F F F F F T F F F T F F F

ClassO.field4 F F F F F F F F T F F F T F F F

ClassO.field5 F F F F F F F F T F F F T F F F

ClassO.m0()V T T F F F F F F F F T T T F F F

ClassO.m1()V F F T F F F F F F F F F F T F F

ClassO.m2()V F F F T T T F F F F F F T F F F

ClassO.m3()V F F T F F F F F F F F F F F T T

ClassO.m4()V T T F F F F T F F F F T T F F F

ClassO.m5()V T T F F F F T F F F T F T F F F

ClassO.m6()V T T F T T T T F T F T T F F F F

ClassO.m7()V F F T F F F F T F F F F F F F F

ClassO.m8(I)V F F T F F F F F F T F F F F F F

ClassO.m8(Z)V F F T F F F F F F T F F F F F F

Next, each method abstraction is produced by forming the set of �elds used by the method as obtained
from the All Uses Graph.

Method Abstractions =

ClassO.m0()V: [ClassO.field0, ClassO.field1]

ClassO.m1()V: [ClassO.field2]

ClassO.m2()V: [ClassO.field3, ClassO.field4, ClassO.field5]

ClassO.m3()V: [ClassO.field2]

ClassO.m4()V: [ClassO.field0, ClassO.field1]

ClassO.m5()V: [ClassO.field0, ClassO.field1]

ClassO.m6()V: [ClassO.field0, ClassO.field1, ClassO.field3,

ClassO.field4, ClassO.field5]

ClassO.m7()V: [ClassO.field2]

ClassO.m8(I)V: [ClassO.field2]

ClassO.m8(Z)V: [ClassO.field2]

The Directly Connects Graph is computed by �nding which method abstractions have pair-wise non-
empty intersections. The number of such connections (after accounting for symmetry) is the \direct
links" number in the class metrics summary above.

41

Directly Connects Graph =

DiGraph:

C C C C C C C C C C

l l l l l l l l l l

a a a a a a a a a a

s s s s s s s s s s

s s s s s s s s s s

O O O O O O O O O O

.

m m m m m m m m m m

0 1 2 3 4 5 6 7 8 8

((((((((((

)))))))) I Z

V V V V V V V V))

V V

ClassO.m0()V F F F F T T T F F F

ClassO.m1()V F F F T F F F T T T

ClassO.m2()V F F F F F F T F F F

ClassO.m3()V F T F F F F F T T T

ClassO.m4()V T F F F F T T F F F

ClassO.m5()V T F F F T F T F F F

ClassO.m6()V T F T F T T F F F F

ClassO.m7()V F T F T F F F F T T

ClassO.m8(I)V F T F T F F F T F T

ClassO.m8(Z)V F T F T F F F T T F

The Indirectly Connects Graph is computed by obtaining the transitive closure of the Directly Connects
Graph and subtracting from this result the Directly Connects Graph. Also, the graph is made anti-
reexive. The \indirect links" value reported in the summary is computed by counting the number of
non-empty method abstraction intersections (after accounting for symmetry) .

42

Indirectly Connects Graph =

DiGraph:

C C C C C C C C C C

l l l l l l l l l l

a a a a a a a a a a

s s s s s s s s s s

s s s s s s s s s s

O O O O O O O O O O

.

m m m m m m m m m m

0 1 2 3 4 5 6 7 8 8

((((((((((

)))))))) I Z

V V V V V V V V))

V V

ClassO.m0()V F F T F F F F F F F

ClassO.m1()V F F F F F F F F F F

ClassO.m2()V T F F F T T F F F F

ClassO.m3()V F F F F F F F F F F

ClassO.m4()V F F T F F F F F F F

ClassO.m5()V F F T F F F F F F F

ClassO.m6()V F F F F F F F F F F

ClassO.m7()V F F F F F F F F F F

ClassO.m8(I)V F F F F F F F F F F

ClassO.m8(Z)V F F F F F F F F F F

Finally the cohesion numbers are computed by dividing the number of actual links (direct for TCC
and direct+indirect for LCC) by the number of possible links.

5.3 Extending Celebes

5.3.1 Extension Hooks

Celebes is designed to serve as a Java metrics platform onto which further measures can be added.
The tool maintains a parse tree integrating source code and byte code. A parse tree consisting of the
byte code of each method is attached to the method's structure node. Measurements are computed by
traversing the structure nodes of the parse tree and gathering or depositing information. An iterator-
visitor object is de�ned for each measurement task.

Celebes implements several families of iterator-visitors. The basic pattern is inspired by the iterator
and visitor patterns of object-oriented design [Gamma95]. These can be extended or subclassed to add
additional metrics capabilities.

� The Counter iterator-visitor counts the number of structure nodes of a certain type. One appli-

43

cation is a counter class which counts the visible instance methods of each class.

� The Identi�er iterator-visitor builds a list of names of structure nodes of a certain type. An
application is the list of visible instance methods in a class.

� The Collector pushes information around the parse tree. An example application is the consoli-
dation of call and use information from the method body into the method node. The collector
works by visiting �rst the child node (the method body), followed by the parent node (the method
structure node). The iterator-visitor object holds the information in its internal state between
visits. A code scrap from the class CallCollector illustrates the concept:

public void apply(Object t)

{

try

{

BodyNode node = (BodyNode)t;

// apply the server function, set the buffer contents.

buffer = node.offerCallData();

return;

}

catch (ClassCastException error2) { } // visit does not apply

try

{

MethodNode node = (MethodNode)t;

// apply the client function, read the buffer contents.

node.acceptCallData(buffer);

reinit();

return;

}

catch (ClassCastException error0) { }// visit does not apply

}

The parse tree object launches the collector according to a post-order tree traversal. The post-
order traversal guarantees that the child node will be visited �rst, collecting the relevant call and
use data. The parent node will be visited after each child visit, and the call and use data are
deposited with it. The algorithm is correct because every method node has exactly one method
body child node.

CallCollector callCollector = new CallCollector();

this.visitInPostorder(callCollector);

� The Reporter iterator-visitor builds an output string representation of the measurements collected
at the speci�ed level (package, class, method). The result is then sent to the output stream once
the parse tree traversal is complete.

Additional measurement services can be de�ned by subclassing one of the above families.

44

5.3.2 Example Extension

We add a measurement capability which distinguishes vacuous visible instance methods (methods with
no body). It is simplest to subclass the closest Collector iterator-visitor type, which is
VisibleInstanceMethodCollector, and replace its apply method. The code for
VisibleNonEmptyInstanceMethodCollector now looks like this:

public class VisibleNonEmptyInstanceMethodCollector

extends VisibleInstanceMethodCollector

{

public void apply(Object t)

{

... // same as superclass

try

{

MethodNode node = (MethodNode)t;

// apply the client function, set the buffer contents.

if (!node.isPrivate() && !node.isStatic() &&

node.getSize() > 0 // this part is new

)

{

buffer.union((Set)node.offerMethodDecl());

}

return;

}

catch (ClassCastException error1) { }// visit does not apply

catch(IncompatibleTypeException e) { e.report(); } // bad

}

}

The structure node which contains the summary information of the method is called the MethodNode.
In MethodNode.java we add a new method to report the number of byte code statements:

public int getSize() { return statementCount; }

Now we add a new �eld in the class object to hold the set containing the names of all visible, non-empty,
instance methods. In ClassNode.java we add :

private Set visibleNonEmptyInstanceMethodList;

To ClassNode.java we also add the accepting service for the collector object:

public void acceptVisibleNonEmptyInstanceMethodDecl(Object buffer)

45

{

try

{

// merge propagating info

visibleNonEmptyInstanceMethodList.union((Set)buffer);

}

catch(IncompatibleTypeException error) {} // always String elements

}

At the top level in Celebes.java, we create the collector object and perform the visitation on the parse
tree in post-order:

VisibleNonEmptyInstanceMethodCollector

visibleNonEmptyInstanceMethodCollector

= new VisibleNonEmptyInstanceMethodCollector();

dst.visitInPostorder(visibleNonEmptyInstanceMethodCollector);

After the program runs this code over the complete parse tree, we have collected the set of visible non-
empty instance methods of each class at the class level. To modify the cohesion measurement calcula-
tions, the internals of ClassNode can be updated, replacing occurrences of visibleInstanceMethodList
with visibleNonEmptyInstanceMethodList. Alternately, with more e�ort one can augment the mea-
surement functions by adding code to separately calculate cohesion measures for non-empty methods.
To do this, duplicate the occurrences of code concerning visibleInstanceMethodList with similar
code using visibleNonEmptyInstanceMethodList. Be sure to keep a separate count of the number of
methods.

46

Chapter 6

An Experiment to Investigate the

Relationship between Class Cohesion

and Class Size

A new measure should undergo a process of empirical validation [Fenton94] [Kitchenham95]. This kind
of validation does not require that the measure be shown to correlate with some external attribute it
is thought to a�ect. Rather, we wish to see whether cohesion values obtained through measurement of
real programs are consistent with the values predicted by our model of cohesion. To this end we design
an experiment which tests the relationship between cohesion of a class and another internal attribute:
class size.

6.1 Experimental Design

Chapter 4 de�nes a cohesion model speci�c to Java. Section 4.2 formulates a model of class size that is
speci�c to Java. The subjects of the study are two publicly available Java software packages. The classes
in these packages are of non-trivial size. Together they constitute a large and representative sample of
well-designed classes. These properties should give the experiment reasonable external validity.

The null hypotheses we seek to disprove state that there exists a relationship between class size (the
independent variable) and TCC or LCC (the dependent variables). The alternate hypotheses state
that there exists no relationship.

H0 : TCC = �0 + �1(Size) =) �1 6= 0:

H0 : LCC = �0 + �1(Size) =) �1 6= 0:

We reason as follows. Assume that the number of methods in a class and class size are strongly corre-
lated (anecdotal evidence strongly suggests such a relationship, but this was not examined empirically).
The Bieman-Kang cohesion measures react di�erently to various scenarios under which the number of

47

methods is increased. Four are listed below. In all, the e�ect on cohesion in the change in the number
of methods should be minimal.

� If there is a uniform probability of coincidental components (say 1=3 of the methods in the
class are connectionless), then cohesion rises slightly: For N = 6, E[LCC] = 0:4, for N = 12,
E[LCC] = 0:55.

� If there is a uniform probability of an edge being a connection edge, say 3=4, then for N = 4,
E[LCC] = 0:75, for N = 8, E[LCC] = 0:75. In other words, cohesion is invariant.

� If there is uniform probability of a node being in one of two factors, say 1=2, then for N = 4,
E[LCC] = 0:33, for N = 12, E[LCC] = 0:42. Cohesion in this case is higher.

� If there is a constant number of method interactions, say 2 (ie, through a ring of connections),
then for N = 6, E[LCC] = 1 and E[TCC] = 0:4, for N = 12, E[LCC] = 1, TCC = 0:18. In this
case cohesion is lower.

6.2 Experimental Results

Celebes produced automatic Bieman-Kang cohesion measures on two data sets. Certain source �les of
these data sets could not be analyzed due to use of obsolete or experimental language features.

6.2.1 JDK Demonstration Suite

The demonstration suite in the JDK 1.1 [Javasoft97] is a collection of programs (actually so-called
applets) which are fairly short. Each performs a distinct function. The classes in this suite are
generally small and much code is to be found in the main method. The main method is static so it is
not used for cohesion measurement.

Of the 61 classes in this data set, 43 have two or more methods, according to Table 6.1. The remainder
are not further analyzed because classes with fewer than two methods necessarily have zero cohesion.

The measurable classes have mean LCC of 0.55 and median of 0.50. The TCC mean is 0.48 and median
is 0.33. The series have a standard deviation of 0.39 and 0.37, respectively. The distribution of cohesion
values is uniform except at the end points (lots of 1.0 and 0.0 cohesion outcomes).

The distribution of size measures for the remaining data set is clearly non-Gaussian, is concentrated
around smaller values, and is highly variable, according to Figure 6.1.

A regression was performed to determine the e�ect on cohesion of class size, as measured by the
aggregate number of byte code statements to be found in the visible instance methods of the class.
Figure 6.2 shows a scatter plot for the LCC measures (asterisk) and TCC measures (circle), and size.
Our null hypothesis states that the regression line (parameter �1) is non-zero.

The F-statistic for the regression (F0:05;1;41) gives values of 0:6057 and 0:0308 for LCC and TCC,
respectively. These results are far too weak conclude the null hypotheses that the slope parameter

48

�1 6= 0. Consequently, we conclude the alternate hypothesis that there is no relationship between class
cohesion and class size.

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

7

8

9

10
Frequency Chart for Class Size in Byte Code Statements, JDK Demo Suite

Aggregate Number of Byte Code Statements

F
re

qu
en

cy

N = 43
mean = 288 statements
standard deviation = 395 statements

Figure 6.1: Class Size Histogram, JDK Demo Suite

6.2.2 JGL Class Library

The JGL version 1.1 class library [ObjectSpace97] consists of reusable data structures. Most classes
are small. Table 6.2 shows that of 116 classes, 73 have fewer than two methods and are trivially
non-cohesive. These are not used for measurement. There are 43 classes with two or more methods.

The measurable classes exhibit a mean LCC of 0.65 and median of 0.77. TCC mean is 0.62 and median
is 0.72. TCC is much closer than in the JDK data set because many classes in this data set have
no indirect links, and TCC is the same as LCC. Both series have a standard deviation of 0.25. The
distribution of cohesion values is unclear but possibly Gaussian.

Size measures for the remaining classes are non-Gaussian, are concentrated near zero, and are highly
variable, according to Figure 6.3.

A regression was performed to determine the relationship on cohesion of class size, as measured by the
aggregate number of byte code statements to be found in the visible instance methods of the class.
Figure 6.4 shows a scatter plot for the LCC measures (asterisk) and TCC measures (circle).

49

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cohesion with respect to Aggregate Class Size, JDK v1.1 Demo

Aggregate Size of Class in Byte Code Statements

LC
C

 (
as

te
ris

k)
, T

C
C

 (
ci

rc
le

)

LCC = 0.51 + 0.0001(Size), r−squared = 0.015
 F−stat = 0.6057, p−stat = 0.4409
TCC = 0.47 + 0.0000(Size), r−squared = 0.008
 F−stat = 0.0308, p−stat = 0.8615

LCC

TCC

Figure 6.2: Cohesion as a Function of Class Size, JDK Demo Suite

As before, the F-statistic for the regression (F0:05;1;41) gives values of 2:1191 and 3:8181 for LCC and
TCC, respectively. These results are not as extreme as with the JDK data set, but they are nevertheless
too weak to conclude the null hypotheses that the slope parameter �1 6= 0. Once again we conclude
the alternate hypotheses that there is no relationship between class cohesion and class size.

6.3 Analysis of General Results

The experimental results con�rm the hypotheses proposed for this research: that class size and class
cohesion are unrelated. Clearly, factors other than size a�ect cohesion.

Another question is whether the choice in data sets a�ects cohesion. We expect the cohesion sample
means of the two data sets to be similar. The cohesion distributions both appear to be random but
not necessarily Gaussian. Assuming this is an artifact of sampling and the populations are in fact
Gaussian, a one-way ANOVA test concludes that the LCC means are alike only at the 85% con�dence
level. TCC means are alike at the 95% con�dence level. This weakly supports the conclusion that
cohesion is independent of the data sets from which it is measured.

The lack of a Gaussian sample distribution in the independent variable Class Size amounts to a failure
to ensure the properties required of the linear regression model. Indeed, the size histograms suggest a

50

0 200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

5

6

7

8
Frequency Chart for Class Size in Byte Code Statements, JGL Class Library

Aggregate Number of Byte Code Statements

F
re

qu
en

cy
n = 43
mean = 311 statements
standard deviation = 413 statements

Figure 6.3: Class Size Histogram, JGL Class Library

negative exponential distribution. It is possible that a sample including only classes above a certain
threshold size may yield proper Gaussian properties. On the other hand, the population of class sizes
may not be Gaussian at all.

The high variance of size measures in the data sets makes any statistical determination of linear
relationships between size and cohesion di�cult if not impossible. It may be that a much larger sample
is needed to reduce size variance.

There are many cases in which a class is stripped of all constructors and static methods (including
main), leaving nothing left to measure. One class with no instantiable state is ArcTest in the JDK
test suite. Fully 48% of the 177 classes measured failed to yield instantiable methods that could be
measured for cohesion. Any class cohesion measure which excludes the static state of a class from
consideration excludes from measurement a large proportion of the available classes.

An anomaly arises from the presence of a solitary instantiable method in the class. In the case of
ShapeTest, two constructors and one visible method share access to two instance variables. The class
is clearly not factorable. However, due to the anti-reexive property of the cohesion measure, there are
no method links and the cohesion is zero.

The presence of vacuous methods (methods lacking any body) can greatly a�ect cohesion measurements.
For example, consider the class TicTacToe. Four mouse call backs are declared which do nothing

51

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cohesion with respect to Aggregate Class Size, JGL v1.1 Library

Aggregate Class Size in Byte Code Statements

LC
C

 (
as

te
ris

k)
, T

C
C

 (
ci

rc
le

)

LCC = 0.687 − 0.0001(size), r−squared = 0.05
 F−stat = 2.1191, p−stat = 0.1531
TCC = 0.678 − 0.0002(size), r−squared = 0.09
 F−stat = 3.8181, p−stat = 0.0575

LCC

TCC

Figure 6.4: Cohesion as a Function of Class Size, JGL Class Library

except provide an implementation for the MouseListener interface. This increases the number of
visible instantiable methods from 8 to 12. Since the number of links is proportional to the square of
the number of methods, this increases the number of links from 28 to 66! Were it not for these vacuous
methods, the LCC measure of 0:22 would be 0:68, and the TCC measure of 0:17 would be 0:39. In
Java, cohesion is clearly sensitive to language and design requirements that impose vacuous methods
on a class implementation. In our view, such methods should be excluded from analysis.

One question that arises in cohesion measurement is whether highly cohesive modules are more readily
reused. This question was studied in [Bieman95], which hypothesized that high cohesion leads to high
reuse. The study, which examined private reuse through inheritance, found the opposite: the most
reused modules were of those having low cohesion. Table 6.4 shows a statistically insigni�cant sample of
those classes in the JDK data set which subclass other classes within the data set. These data suggest
the same conclusion. Further work on this topic would require a data set exhibiting more inheritance
than this one. Incidentally, there was no private reuse in the JGL data set.

52

Class name LCC TCC direct indirect links number of instance average
links links visible size method

instance (byte codes) size
methods (byte codes)

AniArea 0.5 0.33333334 2 1 6 4 142 35.5
Animator 0.32859176 0.10953058 77 154 703 38 2137 56.236843
AppletFrame 0.0 0.0 0 0 0 1 12 12.0
ArcCanvas 1.0 1.0 1 0 1 2 186 93.0
ArcCard 0.0 0.0 0 0 0 0 0 0.0
ArcControls 0.0 0.0 0 0 0 1 20 20.0
ArcDegreePanel 1.0 1.0 1 0 1 2 147 73.5
ArcPanel 0.0 0.0 0 0 0 1 220 220.0
ArcTest 0.5 0.5 3 0 6 4 44 11.0

BidirBubbleSortAlgorithm 0.0 0.0 0 0 0 1 110 110.0
Blink 0.4 0.3 3 1 10 5 171 34.2
BubbleSortAlgorithm 0.0 0.0 0 0 0 1 57 57.0
ButtonFilter 0.35714287 0.2857143 8 2 28 8 640 80.0
CardPanel 0.0 0.0 0 0 1 2 87 43.5
CardTest 1.0 1.0 1 0 1 2 71 35.5
Chart 1.0 1.0 1 0 1 2 855 427.5
ClickArea 1.0 0.8333333 5 1 6 4 83 20.75
Clock2 0.21428572 0.21428572 6 0 28 8 608 76.0

ColorUtils 0.0 0.0 0 0 0 0 0 0.0
DelayedSoundArea 1.0 0.6666667 4 2 6 4 91 22.75
DescriptionFrame 0.33333334 0.33333334 1 0 3 3 17 5.6666665
DitherCanvas 0.3 0.3 3 0 10 5 70 14.0
DitherControls 0.0 0.0 0 0 3 3 40 13.333333
DitherTest 0.53571427 0.5 14 1 28 8 538 67.25
Edge 0.0 0.0 0 0 0 0 0 0.0
FileFormatException 0.0 0.0 0 0 0 0 0 0.0

Graph 1.0 1.0 6 0 6 4 288 72.0
GraphApplet 0.0 0.0 0 0 1 2 47 23.5
GraphPanel 0.6969697 0.46969697 31 15 66 12 891 74.25
GraphicsCards 0.0 0.0 0 0 0 0 0 0.0
GraphicsTest 1.0 1.0 1 0 1 2 113 56.5
HighlightArea 0.1 0.1 1 0 10 5 81 16.2
HighlightFilter 0.0 0.0 0 0 0 1 127 127.0
HrefButtonArea 0.5833333 0.33333334 12 9 36 9 203 22.555555
ImageMap 0.7509881 0.3320158 84 106 253 23 784 34.086956

ImageMapArea 0.123333335 0.07666667 23 14 300 25 215 8.6
LinkArea 0.3 0.3 3 0 10 5 53 10.6
Matrix3D 1.0 1.0 45 0 45 10 1063 106.3
Model3D 1.0 0.8 12 3 15 6 471 78.5
MouseTrack 0.47619048 0.33333334 7 3 21 7 252 36.0
NameArea 0.33333334 0.33333334 1 0 3 3 13 4.3333335
NervousText 0.46666667 0.46666667 7 0 15 6 146 24.333334
Node 0.0 0.0 0 0 0 0 0 0.0
OvalShape 0.0 0.0 0 0 1 2 14 7.0

ParseException 0.0 0.0 0 0 0 0 0 0.0
PolygonShape 1.0 1.0 3 0 3 3 80 26.666666
QSortAlgorithm 0.0 0.0 0 0 1 2 84 42.0
RectShape 0.0 0.0 0 0 1 2 14 7.0
RoundButtonFilter 1.0 1.0 3 0 3 3 380 126.666664
RoundHrefButtonArea 1.0 1.0 1 0 1 2 69 34.5
RoundRectShape 0.0 0.0 0 0 1 2 18 9.0
ShapeTest 0.0 0.0 0 0 0 1 131 131.0

SortAlgorithm 0.71428573 0.61904764 13 2 21 7 61 8.714286
SoundArea 1.0 0.8333333 5 1 6 4 94 23.5
ThreeD 0.22727273 0.121212125 8 7 66 12 361 30.083334
TicTacToe 0.22727273 0.16666667 11 4 66 12 450 37.5
TickerArea 1.0 0.8333333 5 1 6 4 198 49.5

Table 6.1: Cohesion Results for JDK version 1.1 Demo Suite

53

Class name LCC TCC direct indirect links number of instance average
links links visible size method

instance (byte codes) size
methods (byte codes)

Allocator 0.0 0.0 0 0 0 0 0 0.0
Applying 0.0 0.0 0 0 0 0 0 0.0
Array 0.4680851 0.46187943 521 7 1128 48 1033 21.520834
ArrayIterator 0.8947368 0.8479532 145 8 171 19 150 7.894737

BinaryCompose 0.0 0.0 0 0 0 1 12 12.0
BinaryComposePredicate 0.0 0.0 0 0 0 1 12 12.0
BinaryNot 0.0 0.0 0 0 0 1 10 10.0
BinaryPredicateFunction 0.0 0.0 0 0 0 1 10 10.0
BindFirst 0.0 0.0 0 0 0 1 7 7.0
BindFirstPredicate 0.0 0.0 0 0 0 1 7 7.0
BindSecond 0.0 0.0 0 0 0 1 7 7.0
BindSecondPredicate 0.0 0.0 0 0 0 1 7 7.0
BooleanArray 0.46666667 0.46666667 21 0 45 10 53 5.3

BooleanIterator 0.79532164 0.79532164 136 0 171 19 164 8.631579
ByteArray 0.46666667 0.46666667 21 0 45 10 54 5.4
ByteIterator 0.79532164 0.79532164 136 0 171 19 165 8.684211
CharArray 0.46666667 0.46666667 21 0 45 10 53 5.3
CharIterator 0.79532164 0.79532164 136 0 171 19 163 8.578947
Comparing 0.0 0.0 0 0 0 0 0 0.0
Copying 0.0 0.0 0 0 0 0 0 0.0
Counting 0.0 0.0 0 0 0 0 0 0.0
DList 0.26363635 0.2051948 316 90 1540 56 1060 18.928572

DListIterator 0.6862745 0.62091506 95 10 153 18 133 7.388889
DListNode 0.0 0.0 0 0 0 0 0 0.0
Deque 0.62896407 0.56131077 531 64 946 44 1622 36.863636
DequeIterator 0.9 0.8578947 163 8 190 20 315 15.75
DividesInteger 0.0 0.0 0 0 0 1 11 11.0
DoubleArray 0.46666667 0.46666667 21 0 45 10 53 5.3
DoubleIterator 0.79532164 0.79532164 136 0 171 19 163 8.578947
EqualTo 0.0 0.0 0 0 0 1 4 4.0

Filling 0.0 0.0 0 0 0 0 0 0.0
Filtering 0.0 0.0 0 0 0 0 0 0.0
Finding 0.0 0.0 0 0 0 0 0 0.0
FloatArray 0.46666667 0.46666667 21 0 45 10 53 5.3
FloatIterator 0.79532164 0.79532164 136 0 171 19 163 8.578947
GreaterEqualInteger 0.0 0.0 0 0 0 1 11 11.0
GreaterEqualString 0.0 0.0 0 0 0 1 10 10.0
GreaterInteger 0.0 0.0 0 0 0 1 11 11.0
GreaterString 0.0 0.0 0 0 0 1 10 10.0

Hash 0.0 0.0 0 0 0 1 10 10.0
HashComparator 0.0 0.0 0 0 0 1 9 9.0
HashMap 0.3598485 0.23484848 124 66 528 33 1057 32.030304
HashMapIterator 0.875 0.76666665 92 13 120 16 234 14.625
HashMapNode 0.0 0.0 0 0 0 0 0 0.0
HashSet 0.53475934 0.41354725 232 68 561 34 1099 32.32353
HashSetIterator 0.84615386 0.71794873 56 10 78 13 162 12.461538
HashSetNode 0.0 0.0 0 0 0 0 0 0.0
Hashing 0.0 0.0 0 0 0 0 0 0.0

Heap 0.0 0.0 0 0 0 0 0 0.0
IdenticalTo 0.0 0.0 0 0 0 1 7 7.0
InsertIterator 0.0 0.0 0 0 6 4 13 3.25
InsertResult 0.0 0.0 0 0 0 0 0 0.0
IntArray 0.46666667 0.46666667 21 0 45 10 53 5.3
IntIterator 0.79532164 0.79532164 136 0 171 19 163 8.578947
InvalidOperationException 0.0 0.0 0 0 0 0 0 0.0
LengthString 0.0 0.0 0 0 0 1 7 7.0

LessEqualInteger 0.0 0.0 0 0 0 1 11 11.0
LessEqualString 0.0 0.0 0 0 0 1 10 10.0
LessInteger 0.0 0.0 0 0 0 1 11 11.0
LessString 0.0 0.0 0 0 0 1 10 10.0
LogicalAnd 0.0 0.0 0 0 0 1 12 12.0
LogicalNot 0.0 0.0 0 0 0 1 8 8.0
LogicalOr 0.0 0.0 0 0 0 1 12 12.0
LongArray 0.46666667 0.46666667 21 0 45 10 53 5.3
LongIterator 0.79532164 0.79532164 136 0 171 19 163 8.578947

MinMax 0.0 0.0 0 0 0 0 0 0.0
MinusInteger 0.0 0.0 0 0 0 1 11 11.0
ModulusInteger 0.0 0.0 0 0 0 1 11 11.0

Table 6.2: Cohesion Results for JGL version 1.1 Class Library, 1 of 2

54

Class name LCC TCC direct indirect links number of instance average
links links visible size method

instance (byte codes) size
methods (byte codes)

NegateInteger 0.0 0.0 0 0 0 1 8 8.0
NegativeInteger 0.0 0.0 0 0 0 1 8 8.0

NotEqualTo 0.0 0.0 0 0 0 1 8 8.0
NotIdenticalTo 0.0 0.0 0 0 0 1 7 7.0
ObjectArray 0.46666667 0.46666667 21 0 45 10 48 4.8
ObjectIterator 0.79532164 0.79532164 136 0 171 19 150 7.894737
OrderedMap 0.6737968 0.6737968 378 0 561 34 365 10.735294
OrderedMapIterator 0.80526316 0.80526316 153 0 190 20 218 10.9
OrderedSet 0.68235296 0.68235296 406 0 595 35 447 12.771428
OrderedSetIterator 0.77205884 0.77205884 105 0 136 17 156 9.176471
OrderedSetOperations 0.0 0.0 0 0 0 0 0 0.0

OutputStreamIterator 0.0 0.0 0 0 6 4 47 11.75
Pair 1.0 1.0 3 0 3 3 44 14.666667
Permuting 0.0 0.0 0 0 0 0 0 0.0
PlusInteger 0.0 0.0 0 0 0 1 11 11.0
PlusString 0.0 0.0 0 0 0 1 11 11.0
PositiveInteger 0.0 0.0 0 0 0 1 8 8.0
Print 0.0 0.0 0 0 0 1 6 6.0
Printing 0.0 0.0 0 0 0 0 0 0.0

Randomizer 0.0 0.0 0 0 0 0 0 0.0
Range 1.0 1.0 3 0 3 3 44 14.666667
Removing 0.0 0.0 0 0 0 0 0 0.0
Replacing 0.0 0.0 0 0 0 0 0 0.0
ReverseIterator 0.77205884 0.77205884 105 0 136 17 112 6.5882354
Reversing 0.0 0.0 0 0 0 0 0 0.0
Rotating 0.0 0.0 0 0 0 0 0 0.0
SList 0.17679945 0.1516422 217 36 1431 54 987 18.277779
SListIterator 0.85714287 0.74725276 68 10 91 14 105 7.5

SListNode 0.0 0.0 0 0 0 0 0 0.0
SelectFirst 0.0 0.0 0 0 0 1 4 4.0
SelectSecond 0.0 0.0 0 0 0 1 4 4.0
SetOperations 0.0 0.0 0 0 0 0 0 0.0
ShortArray 0.46666667 0.46666667 21 0 45 10 54 5.4
ShortIterator 0.79532164 0.79532164 136 0 171 19 165 8.684211
Shu�ing 0.0 0.0 0 0 0 0 0 0.0
Sorting 1.0 1.0 6 0 6 4 270 67.5
Swapping 0.0 0.0 0 0 0 0 0 0.0

TimesInteger 0.0 0.0 0 0 0 1 11 11.0
ToString 0.0 0.0 0 0 0 1 7 7.0
Transforming 0.0 0.0 0 0 0 0 0 0.0
Tree 0.61742425 0.58522725 309 17 528 33 1474 44.666668
TreeNode 0.0 0.0 0 0 0 0 0 0.0
UnaryCompose 0.0 0.0 0 0 0 1 8 8.0
UnaryComposePredicate 0.0 0.0 0 0 0 1 8 8.0
UnaryNot 0.0 0.0 0 0 0 1 9 9.0

UnaryPredicateFunction 0.0 0.0 0 0 0 1 9 9.0
VectorArray 0.78431374 0.78431374 120 0 153 18 145 8.055555
VectorIterator 0.79532164 0.79532164 136 0 171 19 150 7.894737

Table 6.3: Cohesion Results for JGL version 1.1 Class Library, 2 of 2

Class name LCC Super class name LCC

AniArea 0.50 ImageMapArea 0.12
ClickArea 1.00 ImageMapArea 0.12
DelayedSoundArea 1.00 ImageMapArea 0.12
HighlightArea 0.10 ImageMapArea 0.12
HrefButtonArea 0.58 ImageMapArea 0.12

LinkArea 0.30 ImageMapArea 0.12
NameArea 0.33 ImageMapArea 0.12
SoundArea 1.00 ImageMapArea 0.12
TickerArea 1.00 ImageMapArea 0.12
RoundButtonFilter 1.00 ButtonFilter 1.00
RoundHrefButtonArea 1.00 HrefButtonArea 0.58
BidirBubbleSortAlgorithm 0.00 SortAlgorithm 0.71
BubbleSortAlgorithm 0.00 SortAlgorithm 0.71

QSortAlgorithm 0.00 SortAlgorithm 0.71

Table 6.4: Cohesion of Classes Involved in Private Reuse, JDK Demo Suite

55

Chapter 7

Conclusions and Discussion

7.1 Results from the Research

7.1.1 Formal Validation of the Bieman-Kang Cohesion Measures

The research attempted to con�rm the representation condition for the Bieman-Kang cohesion mea-
sures. This was done by observing a number of properties in the empirical relation system of each
measure, and proving their validity in the corresponding numerical relation system. An analytical tool
called the Method Interconnection Graph (MIG) was developed to aid in this task. Finally, the ratio
scale type of the cohesion measures was demonstrated.

Two anomalies of the measures were observed which did not contradict the empirical relation systems
established for the measures.

� There exist cases where one class is less cohesive than another by LCC, but the converse is true
by TCC.

� The measures cannot distinguish between graphs which have nodes that are easier to remove than
others, but otherwise have equal cohesion measures. A result was presented which says that in
general it is not possible to distinguish these cases with a cohesion measure based only on graph
edges.

A more serious issue concerns the ability of the loose cohesion measure to recognize factorability of
classes. There exist many cases where a class of more factors has higher LCC than one with fewer
factors. This situation runs counter to the empirical notion that a class with more factors is more
splitable, and therefore less cohesive.

To better analyze the population of class factors, an algorithm was presented which generates the
distinct partitions of a graph with N nodes into K factors. Loose cohesion (LCC) was computed for
each of these partitions for a certain N . A large amount of overlap was observed in the ranges of LCC
values with respect to the factor count of the partition. The contradiction of factorability diminishes
the usefulness of LCC in predicting factorability. However, the fractal-like patterns of the plots strongly

56

suggest a deeper relationship between LCC and factorability. Moreover, the population distribution of
the cohesion measures tracks closely with that of factorability.

7.1.2 De�nition of a Java Object Model Suitable for Measurement

An object model appropriate for measurement of Java programs was proposed.

� Static �elds, static methods, constructors, �nalizers, and initializers are omitted from the Java
model.

� Only local cohesion is considered. Cohesion through inheritance is problematic in Java since all
objects subclass the top level object Object.

� An object composed within another is considered to be an instance variable use rather than call
for the purposes of measurement.

� Helper classes and inner classes are considered to be outside class boundaries.

� Overloaded methods are considered distinct.

� Only the declared type of the call site is considered in determining the method call relation under
dynamic method dispatch.

7.1.3 Celebes, a General-Purpose Java Measurement Tool

A general-purpose Java static analysis and measurement tool called Celebes was produced. Celebes

parses Java source code and byte code �les. From the source code it draws names and overall program
structure. From the byte codes are derived method call and �eld use information. A structure tree is
used to store and propagate this information throughout the class representation so that measurement
can take place.

Some advantages to using byte code for static analysis are:

� Leverage the compiler to determine the type signature of a method calling protocol.

� Use the compiler to resolve self and superclass references.

7.1.4 Empirical Investigation into the Relationship between Class Cohesion and
Class Size

Two publicly available Java software packages were measured. Both are of medium size (43 usable
classes). One is a collection of Java applets. The other is a reusable class library. Neither exhibited
any relationship between cohesion and size as measured in number of byte code statements. This
conclusion con�rms the hypothesis that class cohesion and class size are independent. Clearly, class
cohesion is not just another size measure.

57

Some observations were made about the cohesion measurement task. First, there appear to be a large
proportion of static methods and �elds in real applications. Since the research model does not consider
them, cohesion measurements were not possible in nearly half the classes considered.

Second, cohesion measures tend to be greatly lowered by the presence of vacuous methods (methods
with no body). Only one class was found exhibiting such methods. However, the sensitivity of the
cohesion measures to the presence of vacuous methods strongly suggests that they be excluded from
the Java object model.

Finally, a few data were obtained regarding the cohesion of those classes most reused in the data set.
Con�rming earlier work on the subject, the most reused classes exhibited lower cohesion.

7.2 Discussion

7.2.1 What Are Cohesion Measures Supposed to Do?

The Bieman-Kang cohesion measures seem best suited to conveying information about the completeness
of method connectivity in a class: the more connectivity the higher the measure. The empirical relation
system of Hitz and Montazeri, by contrast, relates the ease of separating a method in a class with the
removal of its connections to other methods. It does not relate the completeness of connectivity because
a class can have many connections and still be considered minimally cohesive.

The Hitz and Montazeri measure captures a notion of connection strength: the more connections that
bind the methods in a class, the higher its cohesion. This relation is also present in the Bieman-Kang
measures.

Neither empirical relation system completely captures the degree to which a class can be decomposed
without changing any code (factorability).

The question remains, \Why are we doing this?" Fenton speaks of the need to apply Basili's Goal-
Question-Metric (GQM) paradigm prior to measurement de�nition [Fenton94]. Clearly the term class

cohesion means di�erent and possibly conicting things. One task for the research community is to
discern these di�erences and de�ne more directed measures. For example, if the goal is to identify
coincidental cohesion (presence of unrelated components in a class), then the measure's empirical
relation system must include a notion of factorability. If, on the other hand, the goal is to identify
components which can be removed from a class with minimal changes to the class, then the measure's
empirical relation system should reect the notion of cost of breaking connections. If the goal is
to evaluate the potential of connectivity for prediction of external attributes like reusability, then the
measure's empirical relation system needs to consider the degree of completeness of the possible method
connections in the class. Assessing the attribute in terms of a more limited set of goals might diminish
its utility. But it would be a better measure.

The general problem of quantizing structures of graphs deserves closer attention by cohesion researchers.
For instance, the Integer Partition Problem was found to be most useful in analyzing the problem of
factorability. However, the literature on cohesion is singularly lacking in application of this and other
problems from combinatorics. Workers in software engineering should do more to tap into this rich

58

subject.

A special challenge presents itself in the measurement of factorability. The enumeration of the set of
distinct partitions on a graph is a useful tool for analyzing the requirements of such a measure. This
tool suggests an approach for a strict total ordering of classes according to their method interconnection
graphs. But this de�nes a new measure which must undergo the same scrutiny as the one currently
under study.

7.2.2 The Importance of Experimentation

Many assertions have been made over the years regarding the importance of having high cohesion
in software modules if external properties such as quality, reliability, and maintainability are to be
assured. Few experiments have been run to verify even the simplest of relationships; for example, those
postulated between cohesion and size, and between cohesion and reuse. This research presented some
results along these lines which are counter-intuitive. Admittedly, the experiments performed by this
research su�ered from certain aws, most notably the lack of gaussian distribution of the independent
variable Class Size. Software experimentation is certainly di�cult, but all too often results are accepted
as mantra without proper empirical work done to con�rm them. This research took some care in
designing repeatable experiments performed on publicly available software of non-trivial size. The
experimental model should be reusable.

7.2.3 Cohesion and the Software Designer

Does high class cohesion imply better object-oriented software design? Class cohesion measures are in
their infancy, but we may begin to think about designing suitable experiments. The next step for this
research would be to �nd a data set in which reuse is high. Then a proper experiment could be set
up to test the conventional wisdom that highly cohesive components (those with a single function) are
the most reused.

The advent of automatic code generation by integrated development environments (IDEs) and pattern
writing of code from recipe books [Gamma95] has caused classes to acquire more coupling, subclass
deeper inheritance hierarchies, and implement more varied interfaces than would be manageable with
hand-written code. It would be interesting to see whether cohesion is higher in these cases (the
hypothesis being that classes are much more speci�c in their purpose).

One result of cohesion research in general is that the concept of cohesion is not a simple one. Cohesion
measures need to be highly goal-directed. It is unlikely a single scalar measure can capture all the
attributes we wish to distinguish under the rubric of cohesion.

7.3 Future Work

Here is a summary of future work that would be of interest.

� Reformulate the empirical relation system to eliminate the relation between factorability and

59

cohesion, and de�ne a new measure which captures the notion of factorability.

� Obtain a data set in which reuse is high to investigate the relationship between reuse and cohesion.

� Obtain a data set with larger size classes to repeat the experiments relating class size and cohesion.

� Adapt the cohesion measures to selectively account for method connectivity established through
static �elds, static methods, and constructors.

� Adapt Celebes to capture connection strength information through counting of graph node in-
degrees.

� Extend Celebes to perform source code transformations which separate coincidental class compo-
nents.

60

Bibliography

[Arnold96] Ken Arnold, James Gosling. The Java Programming Language . New York: AddisonWesley,
1996.

[Baker90] A Baker, J Bieman, N Fenton, D Gustafson, A Melton, R Whitty, \A Philosophy for software
Measurement," Journal of Systems Software, vol 12, July 1990.

[Basili96] Victor Basili, Lionel Briand, Walcelio Melo. \Validation of Object-Oriented Design Metrics
as Quality Indicators." IEEE Transactions on Software Engineering, vol 22 no 10, October 1996.

[Bieman93] James Bieman and Byung-Kyoo Kang. \Measuring Functional Cohesion." Computer Sci-

ence Technical Report CS-93-109. Colorado State University, 1993.

[Bieman94] James Bieman and Linda Ott. \Measuring Functional Cohesion." IEEE Transactions on

Software Engineering, vol 20 no 8, August 1994.

[Bieman95] James Bieman, Byung-Kyoo Kang. \Cohesion and Reuse in an Object-Oriented System."
Proceedings of the ACM Symposium Software Reusability (SSR'95), pp. 259-262, April 1995.

[Bogart83] Kenneth Bogart. Introductory Combinatorics. Marsh�eld MA: Pitman Publishing, 1983.

[Booch94] Grady Booch. Object-Oriented Analysis and Design with Applications, 2nd Edition. Ben-
jamin Cummings Publishing Co., Inc. (Addison-Wesley) 1994.

[Briand94] L Briand, S Morasca, V Basili. \De�ning and Validating High-Level Design Metrics," Com-

puter Science Technical Report CS-TR 3301, University of Maryland at College Park, 1994.

[Briand96] Lionel Briand, Sandro Moasca, Victor Basili. \Property-Based Software Engineering Mea-
surement." IEEE Transactions on Software Engineering, vol 22 no 1, January 1996.

[Briand97a] Lionel Briand, John Daly, J�urgen W�ust. \A Uni�ed Framework for Cohesion Mea-
surement in Object-Oriented Systems." Technical Report ISERN-97-05. Kaiserlautern: Ger-
many: Fraunhofer Institute for Experimental Software Engineering, 1997. Also available at
http://www.iese.fhg.de/ISERN/pub/isern.biblio.html.

[Briand97b] Lionel Briand, John Daly, J�urgen W�ust. \A Uni�ed Framework for Cohesion Measure-
ment in Object-Oriented Systems." Proceedings of the International Software Metrics Symposium

(upcoming).

61

[Budd91] Timothy Budd, An Introduction to Object Oriented Programming New York: Addison-Wesley
Publishing, 1991.

[Chambers96] Craig Chambers, Je�rey Dean, David Grove. \Whole-Program Optimization of Object-
Oriented Languages." Technical Report 96-06-02, University of Washington, June 1996.

[Chidamber94] Shyman Chidamber and Chris Kemerer. \A Metrics Suite for Object Oriented Design."
IEEE Transactions on Software Engineering, vol 20 no 6, June 1994.

[Churcher95] Neville Churcher, Martin Shepperd. \Comments on a Metrics Suite for Object -Oriented
Design," IEEE Transactions on Software Engineering, vol 21 no 3, March 1995.

[Dean96] Je�rey Dean, Greg DeFouw, David Grove, Vassily Litvinov, Craig Chambers. \Vortex: An
Optimizing Compiler for Object-Oriented Languages." Proceedings of OOPSLA'96, San Jose, CA,
October, 1996.

[Fenton91] Norman Fenton. Software Metrics, A Rigorous Approach. London: Chapman and Hall,
1991.

[Fenton94] Norman Fenton. \Software Measurement: A Necessary Basis." IEEE Transactions on Soft-

ware Engineering, vol 20 no 3, March 1994.

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns. Reading
MA: Addison-Wesley, 1995.

[Graybill94] Franklin Graybill and Hariharan Iyer. Regression Analysis. Belmont CA: Duxbury Press,
1994.

[Gosling96] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation. New York:
Addison Wesley, 1996.

[Hall86] Marshall Hall Jr. Combinatorial Theory, Second Edition. New York: John Wiley, 1986.

[Hitz95] Martin Hitz, Behzad Montazeri. \Measuring Coupling and Cohesion in Object Oriented Sys-
tems." Proceedings of the International Symposium on Applied Corporate Computing, Oct 25 - 27,

1995. Monterrey Mexico, 1995

[Hitz96] Martin Hitz, Behzad Montazeri. \Chidamber and Kemerer's Metrics Suite: A Measurement
Theory Perspective." IEEE Transactions on Software Engineering, vol 22 no 4, April 1996.

[Kruglinksi96] David Kruglinksi, Inside Visual C++. Redmond WA: Microsoft Press, 1996.

[Javacc97] \Javacc, The Java Compiler Compiler." version 0.6.
http://www.suntest.com/JavaCC/

Sun Microsystems Inc, 19 Feb 1997.

[Javasoft97] \Inner Classes Speci�cation."
http://java.sun.com/products/jdk/1.1/docs/guide/innerclasses/spec/innerclasses.doc.html

Sun Microsystems, Inc. 4 Feb, 1997.

62

[Kang96a] Byung-Kyoo Kang, James Bieman. \Design-level Cohesion Measures: Derivation, Compari-
son, and Applications." Computer Science Technical Report CS-96-104. Colorado State University,
1996.

[Kang96b] Byung-Kyoo Kang, James Bieman. \Using Design Cohesion to Visualize, Quantify, and
Restructure Software." Computer Science Technical Report CS-96-103. Colorado State University,
1996.

[Kitchenham95] Barbara Kitchenham, Shari Lawrence Peeger, Norman Fenton. \Towards a Frame-
work for Software Measurement Validation," IEEE Transactions on Software Engineering, vol 21
no 12, December 1995.

[Lindholm96] Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. New York:
Addison Wesley, 1996.

[Melton90] A Melton, D Gustafson, J Bieman, A Baker, \Mathematical Perspective of Software Mea-
sures Research," IEE Software Engineering Journal, vol 5 no 5, 1990.

[ObjectSpace97] \Java Generic Library (JGL version 1.1.
http://www.objectspace.com/jgl/

Object Space Inc. Jan 1997.

[Ott95] Linda Ott, James Bieman, Byung-Kyoo Kang, Bindu Mehra. \Developing Measures of Class
Cohesion for Object-Oriented Software." Proceedings of the Annual Oregon Workshop on Software

Metrics (AOWSM95), 1995.

[Pohl93] Ira Pohl. C++ for C Programmers, Second Edition. Redwood City, CA: Benjamin Cummings,
1993.

[Ross85] Kenneth Ross, Charles Wright. Discrete Mathematics. Englewood Cli�s NJ: Prentice Hall,
1985.

[Rumbaugh91] James Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[Stevens74] W Stevens, G Myers, L Constantine. \Structured Design," IBM Systems Journal, vol 13,
pp 115-139, 1974.

[Yourdon79] E Yourdon and L Constantine. Structured Design. Fundamentals of a Discipline of Com-

puter Program and System Design. Englewood Cli�s, NJ:Prentice Hall, 1979.

[Zuse91] Horst Zuse. Software Complexity, Measures and Methods New York: Walter de Gruyter, 1991.

63

