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Abstract

A primary objective in the SUIF compiler design has been to develop an infrastructure
for research in a variety of compiler topics including optimizations on object-oriented
languages. However, the task of optimizing object-oriented languages requires that high-
level object constructs be visible in SUIF. Java is a statically-typed, object-oriented and
interpreted language that has the same requirements of high-performance as procedural
languages. We have developed a Java front-end to SUIF, j2s, for the purpose of carrying
out optimizations. This paper discusses the compilation issues in translating Java to
SUIF and draws upon those experiences in proposing the solutions to incorporating
object-oriented support in SUIF as well as the extensions that need to be made to
support exceptions and threads.

1 Introduction

Object-oriented languages with their features of inheritance and abstraction equip programmers
with the tools to write reusable programs quickly and easily. However, the use of these features
results in code that is quite di�erent in structure from procedural code. Object-oriented programs
tend to have smaller method sizes, data-dependent control 
ow due to dynamic dispatch and a large
number of potential aliases [ZCG94]. Heavy use of the feature of dynamic dispatch and the fact that

methods tend to be small in size impose performance penalties when the programs are compiled
using traditional intraprocedural techniques [ASU86].

Optimization techniques [Dea96, DDG+96, Ple96, Cha92] have been proposed which have a direct
bene�t of eliminating the overhead of dynamic dispatch by statically determining the receiver of a
method call. Moreover greater indirect bene�ts are obtained by enabling inlining and hence further
intraprocedural optimizations. However, in order to evaluate the relative costs and bene�ts of these
optimization techniques, it is necessary to have a common framework on which these optimizations
are performed. Also, the framework needs to be language-independent so that programs of di�erent
object-oriented languages can get comparable treatment. An intermediate representation can act as
the interface between di�erent language front-ends and the optimizing back-end.

SUIF [Gro94] is a compiler infrastructure that allows easy experimentation and incremental opti-
mization through multiple passes. The feature of extensibility [Smi96] makes it possible for SUIF
to support many user-de�ned constructs. Also, SUIF has built in support for interprocedural op-
timizations [Pan96] and parallelization. We propose to implement an optimizer for object-oriented
languages on the SUIF representation of the program.

�This project is supported by Faculty Grant #168597 from Colorado State University
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A necessary requirement of the intermediate representation is that it must allow the di�erent front-
ends to describe the structure of the source program in such a way that optimizations may be
performed. Object-oriented languages use constructs like method calls, �eld accesses, object instan-
tiations etc., which are not found in procedural languages. To perform static binding of dynamically-
dispatched calls, it is necessary that these constructs be easily identi�able in the intermediate rep-
resentation. However, the current version of SUIF (1.x) does not have any front-ends for object-
oriented languages and does not support object-oriented constructs. Therefore, a major endeavor
of this project has been to identify the extensions, if any, that need to be made to SUIF to support
these features.

This paper deals with the issues in compiling Java, a statically-typed and object-oriented language,
to SUIF. As Java is an interpreted and dynamic language we have had to make some changes to the
compilation model. Java programs are compiled to bytecode before being translated to the SUIF
representation. We draw upon our experiences in building the translator, j2s, to show how SUIF
can be used to support object-oriented features. We also propose solutions for supporting exceptions
and threads in SUIF.

The rest of this paper is organized as follows. Section 2 deals with the issues in translating bytecode
to SUIF in detail. It describes the instruction format, data-types and object-oriented constructs
that are supported by the Java Virtual Machine.

In translating Java to SUIF we have had to deal with the issue of supporting object-oriented features
in SUIF. Section 3 outlines the features that can be supported in the existing version of SUIF as
also the extensions that need to be made. The issues of exception handling and thread libraries are
also discussed because they are present in most object-oriented languages.

The conclusions and future work are described in section 4.

2 Translating Bytecode to SUIF

Translating bytecode to SUIF involves handling the di�erent data types and bytecode instructions
without any alteration in the semantics of the program. The bytecode is to be �nally compiled to
native code. Currently, the compilation model requires that all the bytecode �les be available at
compile time as it does not support dynamic linking.

The current version of the translator compiles each bytecode (.class) �le into a SUIF �le. There-
fore, programs with multiple (.class) �les will have a corresponding number of SUIF �les. Each of
the SUIF �les have one file set entry per fileset. In a later pass the multiple file set entries

are linked and placed in a single fileset for the purposes of interprocedural analysis.

2.1 Compilation Model

The Java to SUIF translator, j2s, is one step in the compilation framework for Java programs
which is outlined in Figure 1 .

Java source code is �rst compiled to bytecode before it is translated into SUIF. The reasons for
choosing bytecode as the source language are many. As bytecodes do not have to be parsed, unlike
source code, a simple reader is su�cient to read in the information from a bytecode �le. Further,
bytecodes provide a su�ciently high level of representation of the constructs used in the language.
This is important for the purposes of optimization where all the object-oriented constructs from the
source program need to be retained.

We are currently considering three alternatives for the execution strategy. The approaches can be
classi�ed as those interfacing with the Java Virtual Machine Interface and those that take a stand
alone approach. In either case all the component bytecode �les are required to be available at compile
time. Dynamic loading is not currently supported. There are two ways of interfacing compiled code
with Sun's Java Virtual Machine - using the Native Method Interface or the JIT (Just-In-Time)
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Figure 1: Compilation Framework.

API [Yel96]. The stand alone approach would require a run-time environment that duplicates many
of the services that are provided by the Virtual Machine.

2.2 Converting Stack-Based Instructions to Three Address Code

A Java Virtual Machine instruction [LY97] consists of a one-byte opcode specifying the operation
followed by zero or more operands supplying the arguments. The bytecode instructions are stack-
based instructions. The translation procedure converts it to three-address code (SUIF expression
tree). The inner loop of the translation procedure is given in Figure 2.

read the arguments from stack and bytecode array

create appropriate SUIF objects for arguments

create appropriate SUIF instruction object

if (no more instructions in expression tree)

  emit instruction

else

  place address of instruction on SUIF stack

do {

} while

read the opcode

(more instructions available)

Figure 2: Converting Stack-Based Instructions to Tree Expressions

Each expression tree is labeled with the number of the instruction in the Java bytecode using
annotations to the mrk instructions. These are used in determining the targets of jump instructions.

3



The bytecode instructions for jumps represent the target as an o�set within the given method.
(We do not currently support jumps for exception handling using the catch and finally clauses).
Patching the right SUIF instruction to jump to requires two passes. The �rst pass annotates the
branch instructions with the number of the Java bytecode instruction. The second pass will patch
in the destination operand of the SUIF jump instructions.

long a,b;

a = 2;

b = a * 3;

0 ldc2_w #4 <Long 2>
3 lstore_1
4 lload_1
5 ldc2_w #6 <Long 3>

9 lstore_3
10 return

8 mul

1: mrk
["line’: 0 "ClassA.bc"]
2: str main.lv1 = e1

3:   e1: ldc t:g5 (i.64) 2
4: mrk
["line": 8 "ClassA.bc"]

6:   e1: mul t:g5 (i.64) e2, e3
7:     e2: lod t:g5 (i.64) main.lv1
8:     e3: ldc t:g5 (i.64) 3
9: mrk
["line": 10 "ClassA.bc"]
10: ret <nullop>

SUIF representationJava BytecodeJava Source

5: str main.lv2 = e1

Figure 3: Example of a Simple Expression Tree

Figure 3 lists an example output from the translation procedure that converts stack-based code to
an expression tree. The Java expression b = a * 3 is translated to bytecode. The store instructions
in the bytecode generally denote the end of an expression tree. Instructions 4-9 in the bytecode are
translated to instructions 5-8 in SUIF.

2.3 Annotations for Object-Oriented Features

Annotations are used to provide 
exibility and extensibility to the intermediate representation
[Gro94]. We use annotations to record information that is speci�c to object-oriented languages
extensively.

Figure 4 shows the structure of the SUIF �le and the annotations to the symbol tables as well as the
tree instructions. The various elements of the Java program that are represented or enhanced
by annotations are:

� Class Hierarchy: The superclass of each class is represented by an annotation to the file

symbol table. When the file set entries are linked and merged under a single fileset ,
the program's class hierarchy is constructed from the superclass information and stored as an
annotation in the global symbol table.

� Meta-data: The per-class data (section 3.5) is initially stored as annotations to the file

symbol table. In a later SUIF pass the annotations are compiled to static data structures
that are accessible to the run-time system.

� Object Manipulation Instructions: Method and �eld access instructions are implemented
as procedure calls and are annotated as such. In object-oriented languages like Java this may
not be necessary but other hybrid languages like C++ will require that regular procedure calls
be di�erent from method calls. Object creation instructions are implemented as procedure
calls and need to be similarly annotated.

� Line Numbers: Each SUIF expression is annotated with the line number of the bytecode
instruction. This is to help identify the target of branch instructions.
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Figure 4: Annotations for object-oriented features

2.4 Handling Data Types

The Java language operates on two kinds of types: primitive types and reference types. All type
checking is done at compile time and not by the Java Virtual Machine therefore data need not be
tagged. Instead, the type of the data can be identi�ed from the instruction that acts on it. The Java
Virtual Machine has instructions intended to operate on values of speci�c types. All data values in
the constant pool are in big-endian format.

When translating to SUIF it is necessary to �nd a corresponding SUIF data type. The remainder
of this section discusses these issues.

2.4.1 Primitive Types

The primitive data types in Java are the numeric types, which include the char type, and the

oating point type. These types are mapped to C data types in a straight forward manner.

2.4.2 Reference Types

All reference types are addresses (32-bit values). Java has three di�erent kinds of reference data
types:

� Objects: Object manipulation instructions are translated into operations that are supported
by SUIF. Object references are pointers to a handle. However, the object layout is an imple-
mentation issue. This translator uses the C++ object model [WM95]. All �eld and method
accesses to objects are handled via a process of constant pool resolution which is detailed
later in this section.

� Arrays: Unlike in C, Java arrays are objects. All array operations are performed through
method dispatch. Though direct referencing of array elements is not allowed, Java does allow
fake array referencing instructions in the manner of C++. These source instructions translate
to the aload and astore series of bytecode instructions. They are further translated to generic
method calls in SUIF.
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� Strings: Strings in Java are instances of class String and are not arrays of characters as in
C++. Strings in Java are non-mutable (have a constant value) and string variables that are
created with the same contents point to the same object. The process of loading a string literal
from the constant pool requires the creation of a new String object.

2.5 Handling Object-Oriented Constructs

In the interpreted version, Java classes and interfaces are dynamically loaded, linked and initialized
[LY97]. During the process of loading the class, the meta-data or Class object (see section 3.6) for
the class is created from the binary �le. The loaded binary class �les are then linked to the Virtual
Machine. Initialization of a class consists of executing the static initializers and initializers for static
�elds.

References to object-oriented constructs in the constant pool are initially symbolic. At run-time
the symbolic reference is used to determine the actual reference of the entity. This process is known
as constant pool resolution and it may involve loading, linking and initializing several types.

In a statically compiled environment all the classes in the program are loaded and linked prior to
runtime. Therefore, the load and link components of constant pool resolution are absent. However,
for the purposes of optimization the references to the constant pool are resolved and the names of
references are made available in the SUIF code.

The instructions below are initially implemented as generic function calls. If the JIT API is used
for execution the function will call the appropriate function in the Java Virtual Machine. In other
cases, the implementation of this function is to be worked out.

The instructions for manipulating objects include:

� Object creation : The instructions for object creation include new, newarray, anewarray

and multianewarray. They are implemented as function calls to the function new java object

which takes the meta-class object (section 3.6) as the argument.

� Method invocation : The instructions invokeinterface, invokespecial, invokestatic

and invokevirtual are used to invoke methods. As the index of the method may not
be known statically the method invocation is maintained as a call to the generic function
call java method x which takes a pointer to the meta-class (section 3.6), method name and
method parameters as arguments (void pointers). The x is a number between 1 and 64 and
it stands for the number of arguments. This eliminates the overhead involved in using vari-
able number of arguments. The exact type of the arguments is constructed from the method

signature. There is a separate class of generic function calls for static methods.

� Field Access : The �eld access instructions include getfield and putfield. They are
implemented as calls to the function put java field x or get java field x. The x stands
for the type of the �eld. The arguments to the function are the meta-class of the object (section
3.6), the name of the �eld, the object pointer and the value (in case of pufield).

� Other Object Manipulation: The instructions include instanceof and checkcast. These
are implemented by function calls that lookup the information in the meta-class object.

3 SUIF Support for Object-Oriented Features

Current versions of SUIF do not support object-oriented constructs. The intermediate representation
is a mixed-level representation [Gro94] for procedural languages. The only high-level constructs
supported are loops, conditional statements and array accesses. This section deals with the various
object-oriented constructs and other features that are present in Java that need to be supported for
the purposes of optimization. Many of the constructs can be emulated by using the existing SUIF
instructions while others may require extensions to SUIF.
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3.1 Object Layout

The Java Virtual Machine Speci�cation maintains a separation between the public design and private
implementation of the Virtual Machine. A virtual machine implementation should be able to read
.class �les and to exactly implement the semantics of the code therein. The implementor is free
to optimize the implementation within the constraints of the implementation. Therefore, the object
layout can be tailored to the requirements of the particular implementation.

3.2 Creating New Objects

Type propagation of objects in a statically-typed language requires that the declared type of each
object be available. This is the starting point for most optimizations based on static type analysis
and propagation [DMM96]. Therefore object creation instructions need to be represented as a high-
level construct in the intermediate code.

3.3 Method Invocation

Method invocation constructs are necessary as they are the primary targets of optimization in object-
oriented languages. In case of execution using the JIT API they are implemented as calls to the
virtual machine. In the stand alone case they are implemented as a method-table lookup. After
optimization, these calls may be optimized to a single statically-bound procedure call if the type of
the receiver object can be narrowed down to one choice. In the case where receiver class cannot be
predicted it may be compiled as a case statement (if the choices are few).

3.4 Field Access

Field accesses are implemented as structure accesses at the low-level. Due to polymorphism the class
of the object may not be known at compile time. Therefore in the case of JIT implementation these
instructions will be translated to virtual machine calls. In the stand alone implementation these
instructions are translated to a type check followed by a structure access. They can be optimized to
direct �eld accesses if the object's type and layout is known.

3.5 Class Meta-Data

The dynamic nature of the language and the fact that object introspection is allowed in Java requires

that the run-time environment maintain a detailed description of the classes de�ned in the program.
This is also needed to ensure that appropriate data-structures can be created when the class is
instantiated. In the normal interpretive version of Java the VM knows where the class meta-data
is stored (constant pool). In compiled code it is necessary to create a representation of the meta-
data where it is accessible to the VM (in case of JIT implementation). In a stand alone system the
compiler has to make it possible for the run-time system to correctly initialize the data-structures
before being used.

An object reference is implemented as a pointer to some data in the heap. The data structure could
contain a pointer to a static data structure containing the meta-data for the class of that object.
Some of the meta-data that are necessary are :

� Class Initialization Status

� Method Table

� Field Table

� Interfaces Table

7



� Access 
ags for class, methods and �elds.

All the information for the class meta-data is available in the constant pool. This is implemented
in the form of annotations to the �le symbol table in the SUIF representation. The SUIF compiler
pass would have to collect this information and statically allocate and initialize these internal data
structures [Bot97].

3.6 Static/Class Methods and Fields

One of way of maintaining static or per-class information is by creating static data structures and
having an appropriate naming scheme to identify the di�erent structures.

Static or class methods and �elds can also be supported by the presence of a meta-class. The meta-
class is a per-class object. All instances of a class have a pointer to the meta-class information. This
makes for a elegant design to store static �elds and pointers to static methods. Meta-data can also
be stored in the meta-class.

3.7 Support for Concurrency and Exceptions

SUIF does not support exceptions or threads which are a part of the standard Java library. This
section presents proposed solutions to these issues.

3.7.1 Exception Handling

Exceptions are not required for object oriented programming but they are commonly used in several
object oriented languages like Java, Ada and C++. In the implementation of these languages it is
possible to create \zero-cost" exception handling systems, that is systems which have no runtime cost
until an exception is raised. However, it is not possible to implement this type of exception handling
without compiler support since it is necessary to know the addresses in the machine code spanned
by the various exception blocks. This support is not present in the SUIF compiler, furthermore, it is
not possible to support zero-cost exception handling and generate portable C code as an intermediate
form.

Exception handling can be performed in other ways which are amenable to compilation to C, but
these techniques incur a runtime cost. The simplest technique is to maintain an exception handler
stack, when the computation enters a new exception block a continuation for the exception handler
is pushed onto this stack using C's setjump function. When the computation reaches the end of the
exception block this stack is popped. This is the method which we have elected to use in the next
implementation of j2s since it is the simplest to implement in SUIF.

Another issue which has complicated the addition of exception handling into the SUIF compilation
process is the need to preserve the integrity of exception blocks. Many optimizations which are
routinely applied in a compiler need to be handled di�erently in the presence of exceptions. For
instance, a statement which could raise an exception can not be moved out of an exception block
which has a handler for that type of exception since such a transformation would alter the \meaning"
of the program. This presents a problem since the current optimizations performed by SUIF do not
recognize exception blocks. The expedient solution that we have adopted is to simply not to use
any of the built in optimizations. This does not currently pose a problem but it will be necessary to
investigate the interactions between the new optimizations and the standard optimizations performed
by SUIF in the future.

3.7.2 Multithreading

Each Java Virtual Machine can support many threads of execution at the same time. The threads
independently execute code that operates on objects and other values residing in a shared memory.
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The operations on threads are implemented as a library, therefore the only compiler support required
is in synchronization of these threads.

The virtual machine supports the synchronization construct which helps to synchronize the con-
current activity of threads. Associated with each object is a lock. The lock is manipulated by the
monitorenter and monitorexit bytecode instructions. These instructions can be handled by trans-
lating them in system calls or function calls into thread libraries that are speci�c to the platform.

4 Conclusions

We have described the process of translating a limited version of Java to SUIF. In the present
version, j2s acts as a Java front-end for SUIF by translating bytecode to SUIF representation. We
are able to add compilation support for object-oriented features without having to implement any
extensions to SUIF. However, all object-oriented constructs are translated into procedure calls. On
optimization, these procedure calls can be inlined. We describe the issues involved in supporting
object-oriented languages in SUIF based our experience with the j2s translation tool. We propose
a solution to supporting exceptions by using a run-time exception stack to maintain the try blocks.
We also outline the issues in supporting threads in Java and propose a solution to handling the lock
instructions.

The development of the j2s tool is part of a larger project to implement a new optimization scheme
for object-oriented languages. There are other e�orts at extending SUIF to support object-oriented
languages. A notable project is the OSUIF project being undertaken at the University of California,
Santa Barbara [OSU]. They are developing a scheme to add support for class representation, dynamic
dispatch and exceptions to SUIF.

The following bytecode instructions are currently not supported:

� Exception Handling :athrow, ret, jsr, jsr w

� Synchronization :monitorenter, monitorexit

We are currently in the �nal phase of implementing the �rst version of the j2s translator. In the
next version we plan to implement extensions to SUIF to handle exceptions and threads.
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