
Computer Science
Technical Report

What Do the Software Reliability Growth Model
Parameters Represent? �

Yashwant K. Malaiya and Jason Denton
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

malaiya@cs.colostate.edu

Technical Report CS-97-115

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This research was supported by a BMDO funded project monitored by ONR

What Do the Software Reliability Growth Model

Parameters Represent? �

Yashwant K. Malaiya and Jason Denton
Computer Science Dept.
Colorado State University
Fort Collins, CO 80523
malaiya@cs.colostate.edu

ABSTRACT

Here we investigate the underlying basis connecting the the software reliability growth models
to the software testing and debugging process. This is important for several reasons. First,
if the parameters have an interpretation, then they constitute a metric for the software test
process and the software under test. Secondly, it may be possible to estimate the parameters
even before testing begins. These a priori values can serve as a check for the values computed
at the beginning of testing, when the test-data is dominated by short term noise. They can also
serve as initial estimates when iterative computations are used.

Among the two-parameter models, the exponential model is characterized by its simplicity.
Both its parameters have a simple interpretation. However, in some studies it has been found
that the logarithmic poisson model has superior predictive capability. Here we present a new
interpretation for the logarithmic model parameters. The problem of a priori parameter estima-
tion is considered using actual data available. Use of the results obtained is illustrated using
examples. Variability of the parameters with the testing process is examined.

1 Introduction

We can have two views of a software reliability growth model (SRGM). It can be regarded to
be a mathematical expression which �ts the experimental data. It may be obtained simply by
observing the overall trend of reliability growth. However some of the models can be obtained
analytically by making some assumptions about the software testing and debugging process.
Some of these assumptions are simply to keep the analysis tractable. Other are more fundamental
in nature and constitute modeling of the testing and debugging process itself.

An analytically obtained model has the advantage that its parameters have speci�c interpre-
tations in terms of the testing process. An understanding of the underlying meaning of the
parameters gives us a valuable insight into the process.

1. If we know how a parameter arises, we can estimate it even before testing begins. Such a

priori values when estimated using past experience, can be used to do preliminary planning
and resource allocation before testing begins [14].

�This research was supported by a BMDO funded project monitored by ONR

1

2. The experience with use of SRGMs suggests that in the beginning of testing, the initial test
data yields very unstable parameter values and sometimes the parameter values obtained
can be illegal in terms of the model. In such a situation, values estimated using static
information can serve as a check. They can also be used to stabilize the projections adding
to the information obtained by the dynamic defect detection data.

3. Sometimes iterative techniques are used to estimate the parameter values. The values
obtained can depend on the initial estimates that are required by numerical computation.
Use of a priori values as the initial estimate would initiate the search in a region closer to
the values sought.

4. Parameters that have an interpretation characterize the testing and debuging process quan-
titatively. Their values can give us an insignt into the process. They may help answer the
questions about how the inherent defect density can be reduced or how testing can be made
more e�cient.

This paper examines the parameters of the exponential and the logarithmicmodels. We present
a new model for estimating the software defect density. A new interpretation for the parameters
of the logarithmic model is presented. Techniques for estimation of parameters are presented.

The quantitative process characteristic values used in this paper are taken from the data
reported by researchers. The values depend on the process used and may be di�erent for di�erent
process. Thus the models presented here should be recalibrated using the prior experience in a
speci�c organization using a speci�c process. Similar methods have been in use for projecting
hardware reliability measures where they have been found to be very useful even though the
results are only approximate.

The next section analytically presents the interpretations of the parameters of the two models.
Section 3 discusses estimation of parameters. Some observations on parameter variations are
presented next followed by the conclusions.

2 Exponential and Logarithmic SRGMs

In this paper we will consider two two-parameter models. The Exponential model, in the
formulation used here is also termed Musa's basic execution model [18]. It is given by

�(t) = �
E
0 (1� e

��E1 t) (1)

where �(t) is the mean value function and �
E
0 and �

E
1 are the two model parameters.

Farr mentions that this model has had the widest distribution among the software reliability
models [4]. Musa [18] states that the basic execution model generally appears to be superior in
capability and applicability to other published models. Some of the other models are similar to
this model.

The Logarithmic model is other model considered here. It is also termed Musa-Okumoto

logarithmic poisson Model. It is given by

�(t) = �
L
0 ln(1 + �

L
1 t) (2)

2

where �L0 and �
L
1 are the two model parameters.

Farr states that the logarithmic model is one of the model that has been extensively applied
[4]. This is one of the selected models in the AIAA Recommended Practice Standard. Musa [18]
writes that the logarithmic model is superior in predictive validity compared with the exponential
model. In a study using 18 data sets from diverse projects, Malaiya et al. evaluated the prediction
accuracy of �ve two-parameter models [15]. They found that the logarithmic model has the best
overall prediction capability. Using ANOVA, they found that this superiority is statistically
signi�cant.

All software reliability growth models (SRGMs) are approximations of the real testing process,
thus none of the models can be regarded to be perfect. However these two models possess
simplicity and have been found to be applicable for a variety of software projects. Thus these
two models have been chosen for this study.

2.1 Derivation of the Exponential model

Here we give a derivation of the exponential model that gives its relationship with the test
process. Let N(t) be the expected number of defects present in the system at time t. Let Ts be
the average time needed for a single execution, which is very small compared with the overall
testing duration. Let ks be the fraction of existing faults exposed during a single execution.
Then

dN(t)

dt
Ts = �ksN(t)

It would be convenient to replace Ts with something which can be easily estimated. Let TL be
the linear execution time [18] which is de�ned as the total time needed if each instruction in the
program was executed once and only once. It is given by

TL = I:Qx

1

r

where Is is the number of source statements, Qx is the number of object (machine level)
instructions per source instructions and r is the object instruction execution rate of the computer
being used.

Let us de�ne a new parameter

K = ks
TL

Ts

where the ratio TL
Ts

will depend on the program structure.

Using this, equation 2.1 can be rewritten as

dN(t)

dt
= �

K

TL
N(t)

The per-fault hazard rate as given in equation 2.1 is K=TL. Thus K, termed fault exposure

ratio [18] directly controls the e�ciency of the testing process. If we assume that K is time

3

invariant, then the above equation has the following solution:

N(t) = N0e
�

K
TL

t

Where N0 is the initial number of defects. This may be expressed in a more familiar form as
follows:

N0 �N(t) = N0(1� e
�t K

TL)

The left side of this equation corresponds to �(t), as given by equation 2. Thus the parameters
�0 and �1 have the following interpretations:

�
E
0 = N0; and �

E
1 =

K

TL
(3)

Experimental data suggests that K actually varies during testing [16]. We will denote the

constant equivalent as determined by the application of the exponential model by K̂.

2.2 Implications of the Logarithmic model

The logarithmic model has been found to have very good predictive capability in many cases.
However to derive it from basic considerations would require one to make some assumptions as
done in references [18], [17] and [16]. If the logarithmic model does describe the test process,
that would imply that the fault exposure ratio is variable. We can assume that this variation
depends on the test process phase which is given by the density of defect present at a time during
testing [12].

Rearranging equation 2 for the mean value function �(t), we can write,

e

�(t)

�L
0 = (1 + �

L
1 t) (4)

Also,

�(t) =
�
L
0 �

L
1

1 + �L1 t

Substituting for (1 + �
L
1 t) from equation 4

�(t) = �
L
0 �

L
1 e
�
�(t)

�L
0 = �

L
0 �

L
1 e
�
N0�IsD(t)

�L
0 (5)

Where D(t) is the defect density at time t. The fault exposure ratio is given by

K(t) = TL
�(t)

N(t)

Using equation 5 to substitute for �(t), we get

4

K(t) =
TL

IsD
�
L
0 �

L
1 e
�
N0�IsD(t)

�L
0 (6)

=

TL

IsD
�
L
0 �

L
1 e
�
N0

�L
0

!
e
�
IsD(T)

�L
0

We can rewrite this as

K =
�0

D
e
�1D (7)

where the parameters �0 and �1 are given by,

�0 =
�
L
0 �

L
1Qx

r
e
�
N0

�L
0 (8)

�1 =
Is

�
L
0

(9)

The equations 8 and 9 are used in the next section to present a new interpretation for the
logarithmic model.

3 Physical Interpretation of the Parameters

An interpretation of the parameters for the exponential model is quite straightforward. As
t!1, according to equation 1, �(t)! �

E
0 . Musa states that during debugging only about 5%

new faults are introduced. Thus �E0 is slightly greater than the initial number of faults, and can
be taken to represent the total number of faults that will be encountered. The parameter �E1 is
the time scale factor, or the per fault hazard rate, as given by equation 3.

A greater challenge is posed by the logarithmic model parameters. Here we present a new
interpretation based on the analysis presented in sec 2.2. From equation 8 we can write

�
L
0 =

Is

�1

Substituting this in (16) and solving for �L1 , we get

�
L
1 =

�0r�1

QrIs
e
N0�1
Is

Let us now determine the meaning of �0 and �1; in terms of the test process. Fig. 1 gives the
variation of the fault exposure ratio K in terms of defect density. Let us denote by Dmin the
density at which Kmin, the minimum value of K, occurs. Taking a derivative of K with respect
to D using equation 7 and equating it to zero, we get

5

0

Kmin

5

10

0 Dmin 5 10

K
(�10�7)

Defect density D

logarithmic model

exponential model

�

?

Figure 1: Variation of Fault Exposure Ratio with defect density

�

�0

D2
e
�1D +

�0

D
e
�1D�1 = 0

which yields

Dmin =
1

�1

and the corresponding value of K is given by

Kmin =
�0e

Dmin

Thus both �0 and �1 depend on the test process,

�0 =
KminDmin

e
; and �1 =

1

Dmin

(10)

Using equation 10, we obtain this interpretation of the logarithmic model parameters.

�
L
0 = IsDmin (11)

�
L
1 =

Kminr

QxIse
e

D0
Dmin (12)

Equation 11 states that �L0 is proportional to the software size and is controlled by how test
e�ectiveness varies with defect density. The parameter �1 depends on Kmin, the minimum value
of the fault exposure ratio. It is also dependent on the ratio D0

Dmin

It should be noted that �E0 and �
L
0 , and �

E
1 and �

L
1 have the same dimensions. The Table 1

below compares the interpretations of the parameters of the two models compared here.

6

Parameter Dimension Exponential Logarithmic

Value Scale Defects �E
0
� N0 = D0Is �L

0
= DminIs

Time Scale Per unit time �E
1
= K̂

TL
�L
1
= Kmin

TL
e
D0�Dmin

D
min

Table 1: Comparison of model parameter interpretations

3.1 Exponential Model Parameters:

Because the exponential model parameters are explained in a simpler way, the problem of a
priori estimation of its parameters is also easier. Assuming the number of new faults introduced
during the debugging process is small, �E0 can be taken to be approximately equal to the initial
number of defects, N0. It has been observed that for a speci�c development environment for the
same software development team, the defect density encountered is about the same, for the same
development/testing phase. This allows the initial defect density to be estimated with reasonable
con�dence.

Here we present a factor multiplicative model to estimate the initial defect density and hence
N0. A factor multiplicative model assumes that the quantity to be estimated is inuenced by
several independent causes and the e�ect of each cause can be suitably modeled by a multiplica-
tive factor. Such models have also been used to estimate the hardware failure rates. Several
linear additive models for estimating the number of defects have also been proposed, they have
the disadvantage that they can project zero or negative number of defects.

The models by Agresti and Evanco [2], Rome Lab [21] and THAAD [6] are factor multiplicative
like our model. A preliminary version of our model [13] is being implemented in the ROBUST
software reliability tool [10]. Our model, presented below, has the following advantages:

1. It can be used when only incomplete or partial information is available. The default value
of a multiplicative factor is one, which corresponds to the average case.

2. It takes into account the phase dependence as suggested by Ga�ney [5]

3. It can be recalibrated by choosing a suitable constant of proportionality and be re�ned by
using a better model for each factor, when additional data is available.

The model is given by

D = C:Fph:Fpt:Fm:Fs (13)

where the four factors are the phase factor Fph, modeling dependence on software test phase,
the programming team factor Fpt taking in to account the capabilities and experience of program-
mers in the team, the maturity factor Fm depending on the maturity of the software development
process and the structure factor Fs, depending on the structure of the software under develop-
ment. The constant of proportionality C represents the defect density per thousand source lines
of code (KSLOC). Here are the preliminary sub-models for each factor.

7

3.1.1 Phase Factor (Fph)

The number of defects at the beginning of di�erent test phases is di�erent. Ga�ney [5] has
proposed a phase based model that uses the Rayleigh curve. Here we present a simpler model
using actual data reported by Musa et al. [18] and the error pro�le presented by Piwowarski et
al. [20]. In Table 2 we take the default value of one to represent the beginning of the system test
phase. With respect to this, the �rst two columns of Table 2 represent the multipliers suggested
by the numbers given by Musa et al. and Piwowarski et al.. The third column presents the
multipliers assumed by our model.

At the Multiplier

beginning of phase Musa et al. Piwowarski et al. Our Model

Unit Testing 3.28 5 4

Subsystem Testing Insu�cient data 2.5 2.5

System testing 1 1 1 (default)

Operation Testing 0.25 0.45 0.35

Table 2: Phase Factor (Fph)

3.1.2 The Programming Team Factor (Fpt)

The defect density varies signi�cantly due to the coding and debugging capabilities of the individ-
uals involved [22] [23]. The only available quantitative characterization is in terms of program-
mers average experience in years, given by Takahashi and Kamayachi [22]. Their model can take
into account programming experience of up to 7 years, each year reducing the number of defects
by about 14%. The data in the study reported by Takada et al [23] suggests that programmers
can vary in debugging e�ciency by a factor of 3. In a study about the PSP process [19], the
defect densities in a program separately written by 104 programmers were evaluated. For about
90% of the programmers, the defect density ranged from about 50 to 250 defects/KSLOC. This
suggests that defect densities due to di�erent programming skills can di�er by a factor of 5 or
even higher.

Thus we propose the model in in Table 3. The skill level may depend on factors other than
just the experience. The PSP data suggests while there may be some dependence on experience,
programmers with the same experience can have signi�cantly di�erent defect densities.

Team's Average Skill level Multiplier

High 0.4

Average 1 (default)

Low 2.5

Table 3: The Programming Team Factor (Fpt)

8

3.1.3 The Process Maturity Factor (Fm)

This takes into account the rigor of software development process at a speci�c organization.
This level, as measured by the SEI Capability Maturity Model, can be used to quantify it. Here
we assume level II as the default level, since a level I organization is not likely to be using
software reliability engineering. Kolkhurst [9] assumes that for delivered software, change from
level II to level V will reduce defect density by a factor of 500. However, Keene [3] suggests a
reduction in the inherent defect density by a factor of 20 for the same change. Jones [7] suggests
an improvement by a factor of 4 in potential defects and a factor of 9 in delivered defects for
changing from level II to level V. Here we use the numbers suggested by Keene to propose the
model given in Table 4.

SEI CMM Level Multiplier

Level 1 1.5

Level 2 1 (default)

Level 3 0.4

Level 4 0.1

Level 5 0.05

Table 4: The Process Maturity Factor (Fm)

3.1.4 The Software Structure Factor (Fs)

This factor takes into account the dependence of defect density on language type (the fractions
of code in assembly and high level languages), program complexity, modularity and the extent of
reuse. It can be reasonably assumed that assembly language code is harder to write and thus will
have a higher defect density. The inuence of program complexity has been extensively debated
in the literature [8]. Many complexity measures are strongly correlated to software size. Since
we are constructing a model for defect density, software size has already been taken into account.
There is some evidence that for the same size, modules with signi�cantly higher complexity are
likely to have a higher number of defects. However, further studies are needed to propose a
model. It is known that module size inuences defect density with a module [2]. However in a
software system consisting of modules, the variability due to di�erent block sizes may cancel out
if we are considering the average defect density. The inuence due to reuse will depend on its
extent, the defect-contents of reused modules and how well the reused modules implement the
intended functionality. As this time, we propose a model for Fs depending on language use, and
allow other factors to be taken in to account by calibrating the model.

Fs = 1 + 0:4a (14)

where a is the fraction of the code in assembly language. Here we are assuming that assembly
code has 40% more defects [1].

9

3.1.5 Calibrating and using the defect density model

The model given in equation 13 provides an initial estimate. It should be calibrated using past
data from the same organization. Calibration requires application of the models using available
data in the organization and determining the appropriate values of the subparameters. Since we
are using the beginning of the subsystem test phase as the default, Musa et al.'s data suggests
that the constant of proportionality C can range from about 6 to 20 defects per KSLOC. For
best accuracy, the past data used for calibration should come from projects as similar to the one
for which the projection needs to be made. Some of indeterminacy inherent in such models can
be taken into account by using a high estimate and a low estimate and using both of them to
make projections.

Example 1: For an organization, the value of C has been found to be between 12 to 16. A
project is being developed by an average team and the SEI maturiy level is II. About 20% of the
code is in assembly language. Other factors are assumed to be average.

Then the defect density at the beginning of the subsystem test phase can range between
12� 2:5� 1� 1� (1 + 0:4� 0:2) = 32:4 /KSLOC and 16� 2:5� 1� 1� (1 + 0:4� 0:2) = 43:2
/KSLOC.

3.1.6 Estimation of �E
0
and �E

1

Since �E0 represents the total number of faults that will be detected, it can be estimated using
the estimate for the initial defect density, D0. As suggested by Musa et al., we can assume that
about 5% new defects would be created during debugging. Thus we can use this model for �E0 .

�
E
0 = 1:05�D0Is (15)

The estimator of �E1 requires the use of the equation �
E
1 = K̂

TL
where K̂ is the overall value of

the fault exposure ratio during the testing period. The value of K̂ is some times approximated
by 4:2�10�7 failures per fault, the average value determined by Musa et al. [18]. Li and Malaiya

[11] have suggested that K̂ varies with the initial defect density and have given this expression

to estimate K̂. K̂ = 1:2�10�6

D0
e
0:05D0 where D0 is the defect density per KSLOC. The parameter

values have been computed here by �tting the values for fault exposure ratio for several projects
reported by Musa et al. [18].

Example 2: Let us assume that the initial defect density for a project has been estimated to be
25 faults/KSLOC and the software size is 5400 lines. The program is tested on a CPU that runs
at 4 MIPS and each source instruction compiles into 4 objects instructions. Then the estimated
values are

�
E
0 = 1:05� 25� 5:4 = 141:7 (16)

K̂ =
1:2� 10�6

25
e
0:05�25 = 1:675� 10�7 (17)

�
E
1 =

1:675� 10�7

5400�4
4;000;000

= 3:10� 10�5 (18)

10

3.2 Estimation of Logarithmic Model Parameters

Estimating the parameter values for the logarithmic model is a signi�cant challenge. We can
take one of two possible approaches. In the �rst approach we can �rst estimate the parameters
of the exponential model and then compute �L0 and �L1 . In the second approach we can calculate
�
L
0 and �

L
1 from the interpretation introduced in section 3.1.

3.2.1 Estimation through �E
0
and �E

1

Here we use the observation that for a given data set, there is some relationship between �
E
0 and

�
L
0 , and �

E
1 and �L1 . To obtain this relationship, let us assume that both models project the same

�(tf) where tf is the end of the testing period. Let the number of defects remaining at time tf
be N0

�
; � > 1. Then

�(tf) = N0 �
N0

�
= N0(1�

1

�
) (19)

For the exponential model the equation 19 will give,

�
E
0 (1� e

��E1 tf) = N0(1�
1

�
)

since N0 � �
E
0 , we can rewrite this equation as

tf =
ln(�)

�E1

(20)

using the logarithmic model we can write equation 19 as

�
L
0 ln(1 + �

L
1 tf) = N0(1�

1

�
)

which can be rearranged as

tf =
1

�L1

2
4e�

E
0

�L
0

(1� 1
�
)

� 1

3
5 (21)

Equating the right hand side of equations 20 and 21, and rearranging we get

�
E
0

�L0

=
1

1� 1
�

ln

"
�
L
1

�E1

ln(�) + 1

#
(22)

Let us now assume that in time tf the failure intensity also declines by factor �. Thus according
to the exponential model,

�
E
0 �

E
1 e
��E1 tf =

�
E
0 �

E
1

�

which can be solved for to give

�
E
1 =

1

tf
ln(�) (23)

11

Similarly the logarithmic model gives

�
L
0 �

L
1

1 + �
L
1 tf

=
�
L
0 �

L
1

�

which can be written as

�
L
1 =

1

tf
(�� 1) (24)

From equation 23 and 24 we obtain
�
L
1

�
E
1

=
�� 1

ln(�)
(25)

Thus is we know � and the values for �E0 and �
E
1 , we can calculate �L1 using equation 25 and

then �
L
0 using equation 22.

Example 3: For a software system under test, the parameters �E0 and �
E
1 have been estimated

to be 142 and 0:35 � 10�4 respectively. Testing will be continued until about 92% of all faults
have been found. That gives

� =
100

100� 92
= 12:5 (26)

The equation 25 gives

�
L
1

�E1

= 4:55 i:e: �
L
1 = 4:55� 0:35� 10�4 = 1:59� 10�4 (27)

and equation 22 gives
�
E
0

�L0

= 2:75 i:e: �
L
0 =

142

2:75
= 51:6 (28)

3.3 Direct Estimation of �L0 and �L1

An alternative to the above method is to use the interpretation of �L0 and �L1 in terms of Dmin

and Kmin as given by equation [5]. A reasonable estimate for Kmin is 1:5 � 10�7 as suggested
by the data given by Musa et al. [18]. As estimation of Dmin, the defect density at which the
minimum value of K occurs is harder to estimate. First the curve for K, as shown in �gure
1 has a very at minimum. That can make exact determination of Dmin hard in the presence
of normal statistical uctuations. Secondly, the variation in K depends on the testing strategy
used.

Available data suggest the following.

1. If the initial defect density D0 is less than 10 per KSLOC, the value of Dmin is in the
neighborhood of 2 defects/KSLOC.

2. However if D0 is higher, the resulting value of Dmin is also higher. in many cases, taking
Dmin = D0=3 yields a suitable �rst estimate.

Example 4: For the T2 data [18], the initial defect density is 8.23 defects/KSLOC and the size
is approximately 6.92 KSLOC (27.7K object lines). The instruction execution rate is not given

12

in [18], however we can obtain the value of TL using available information. Since Musa et al.

have given the value of K̂ as 2:15� 10�7 and the value of �E1 can be caluated to be 1:42� 10�5,
the value of TL is 2:15 � 10�7=1:42 � 10�5 = 1:51 � 10�2. We will estimate the values of the
logarithmic model parameters assuming Dmin = 2 and Kmin = 1:5� 10�7.

From equation 11 we have these estimates,

�
L
0 = IsDmin = 6:92� 2 = 13:84 (29)

and

�
L
1 =

Kmin

e

r

QxIs
e

D0
Dmin (30)

=
1:5� 10�7

2:72

1

1:5� 10�2
e
8:23
2

= 2:24� 10�4

Fitting of actual test data yields the two values as 17.26 and 2:01� 10�4. Considering the fact
that the few early points in the test data can often yield values that can be easily o� by an order
of magnitude or can be illegal (negative), the estimates are quite good.

3.4 Variability of the parameter values

For a give data set, if we use the partial data set from beginning to some intermediate point in
testing, the parameter values are found to be di�erent from the �nal values. We have investigated
the incremental variation of the values determined as testing continues. In the beginning the
values can change rapidly but later they start settling towards the �nal value. For practically all
data sets, the values of �E0 and �

L
0 rise with testing time whereas for �E1 and �

L
1 the values fall.

The typical behavior is illustrated by the plots for the T1 data. Figure 2 shows that while
the value of �E0 keeps rising, �L0 appears to stabilize in the later phases of testing. This suggests
that the logarithmic model describes the underlying process better. Figure 3 shows how �

E
1 and

�
L
1 vary as testing progreses. Both show a downward trend, however the curve for �L1 appears

to be stabilizing. Figure 4 show the peaks in �
L
0 and �

L
1 which are largely due to changes in

the reliability growth behavior. They are often caused by changes in the testing strategy or by
switching to a di�erent test suite. Fortunately often the two parameters are perturbed in the
opposite directions, thus minimizing the e�ect.

The presence of a signi�cant trend in the plots for the exponential model seems to suggest that
it does not model the testing process as well as the logarithmic model. All SRGMs are simpli�ed
models and hence describe the reliability growth approximately.

The a priori estimates of these models can be better than the values obtained in the early
phases of testing, but can not be expected to be as accurate as the �nal values obtained using
actual test data.

13

20

40

60

80

100

120

140

160

40 50 60 70 80 90 100 110 120 130 140
Defects found

�L0
b

b b

b

b

b

b
b

b

b
b b

�E0
r

r r

r

r

r r

r

r

r

r

r

Figure 2: Variation of �E
0
and �L

0

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

40 50 60 70 80 90 100 110 120 130 140
Defects found

�L1
b

b
b

b

b

b

b

b

b

b

b
b

�E1
r

r r

r

r
r r

r

r
r r r

Figure 3: Variation of �E
1
and �L

1

14

20

25

30

35

40

45

50

55

60

40 50 60 70 80 90 100 110 120 130 140
Defects found

�L0
b

b b

b

b

b

b

b

b

b

b

b

�L1
r

r

r

r

r

r

r

r

r

r

r

r

Figure 4: Variation of �L0 and �L1 (rescaled)

4 Concluding Remarks

In this study we have presented methods to estimate the parameters of the exponential and
the logarithmic models. We have proposed an empirical model for estimating the defect density.
A new interpretation for the parameters of the logarithmic model has been proposed and we have
shown how it can be used to estimate the values. An alternative approach is to �rst estimate
the parameters for the exponential model and them use them to estimate the logarithmic model
parameters.

The methods presented here can signi�cantly improve the accuracy of the projections during
the early phases of testing. The accuracy of the results will depend on careful calibration of the
models using data from projects that have used a similar process.

Future work includes a detailed analysis of the speci�c results for the data sets available. We
also need to investigate the sensitivity of the projections due to variation in the parameters
values.

References

[1] J.R. Adam, \Software Reliability Predictions are Practical Today", Proc. IEEE Ann. Symp.
on Software Reliability, Colorado Springs, May 1989.

[2] W. W. Agresti and W. M. Evanco, \Projecting Software Defects from Analyzing Ada De-
signs," IEEE Trans. Software Engineering, Nov. 1992, pp. 288-297.

[3] G.F. Cole and S.N. Keene, \Reliability and Growth of Fielded Software," Reliability Review,
March 1994, pp. 5-26.

15

[4] W. Farr, Software Reliability Modeling Survey, in Handbook of Software Reliability Engi-

neering, Ed. M. R. Lyu, McGraw-Hill, 1996, pp. 71-117.

[5] J. Ga�ney and J. Pietrolewicz, \An Automated Model for Early Error Prediction in Software
Development Process," Proc. IEEE Software Reliability Symposium Colorado Spring, June
1990.

[6] M. Gechman and K. Kao, \Tracking Software Reliability and Reliability with Metrics,"
Proc. ISSRE Industry Reports, 1994.

[7] C. Jones, \Software Benchmarking" Web Document, IEEE Computer, Oct. 1995.
http://www.computer.org/pubs/computer/software/10/software.htm.

[8] T. M. Khoshgoftar and J. C. Munson, The Line of Code Metric as a Predictor of Program
Faults: a Critical Analysis, Proc. COMPSAC'90, pp. 408-413.

[9] B.A. Kolkhurst, \Perspectives on Software Reliability Engineering Approaches found in
Industry" Proc. ISSRE Industry Reports, 1994.

[10] N. Li and Y.K. Malaiya \ROBUST: A Next Generation Software Reliability Engineering
Tool" Proc. IEEE Int. Symp. on Software Reliability Engineering, pp. 375-380, Oct. 1995.

[11] N. Li and Y.K. Malaiya, ROBUST: A Next Generation Software Reliability Engineering
Tool, Proc. IEEE Int. Symp. on Software Reliability Engineering, pp. 375-380, Oct. 1995.

[12] N. Li and Y.K. Malaiya, \Fault Exposure Ratio: Estimation and Applications" Proc. IEEE
Int. Symp. Software Reliability Engineering 1996 pp. 372-381.

[13] N. Li, \Measurement and Enhancement of Software Reliability Through Testing," Ph.D.
dissertation, Colorado State University, 1997.

[14] Y. K. Malaiya, Early Characterization of the Defect Removal Process, Proc. 9th Annual
Software Reliability Symposium, May 1991, pp. 6.1-6.4.

[15] Y. K. Malaiya, N. Karunanithi and P. Verma, Predictability of Software Reliability Models,
IEEE Trans. Reliability, December 1992, pp. 539-546.

[16] Y. K. Malaiya, A. von Mayrhauser and P. K. Srimani, An Examination of Fault Exposure
Ratio, IEEE Trans. Software Engineering, Nov. 1993, pp. 1087-1094.

[17] J. D. Musa and K. Okumoto, A Logarithmic Poisson Execution Time Model for Software
Reliability Measurement, Proc. 7th Int. Conf. on Software Engineering, 1984, pp. 230-238.

[18] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability - Measurement, Prediction, Ap-

plications, McGraw-Hill, 1987.

[19] \Personal Software Process" Web Document, Carnegie Mellon University,
http://www.sei.cmu.edu/technology/psp/Results.htm, Rev. 5 Sept. 1997

[20] P. Piwowarski. M. Ohba and J. Caruso, \Coverage measurement Experience during Function
Test," Proc. ICSE, 1993, pp. 287-301.

16

[21] Rome Lab, \Methodology for Software Reliability Prediction and Assessment," Tech Report
RL-TR-95-52, Vol. 1 and 2, 1992.

[22] M. Takahashi and Y. Kamayachi, An Empirical Study of a Model for Program Error Pre-
diction, in Software Reliability Models, IEEE Computer Society, 1991. pp. 71-77.

[23] Y. Tokada, K. Matsumoto and K. Torii, \A programmer Performance Measure based on
Programmer State Transitions in Testing and Debugging Process," Proc. International Con-
ference of Software Engineering, 1994, pp. 123-132.

17

