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Abstract

A new variant on key feature object recognition is
presented. It is applied to optimal matching prob-
lemsinvolving 2D line segment modelsand data. A
singlecriterion function ranksboth key featuresand
complete object model matches. Empirical studies
suggest that the key feature algorithm has run times
which aredramatically lessthan amoregeneral ran-
dom starts local search algorithm. However, they
also show the key feature algorithm to be brittle:
failing on some apparently simple problems, while
local search appearsto be robust.

1 Introduction

To find an object, recognition algorithmsoften first seek small
sets of featureswhich predict the object’ spresence. Thisideas
isarticulated by Roberts[Roberts, 1965] andisthe heart of lo-
cal featurefocus[Bollesand Cain, 1982]. It suggeststhevalue
of perceptual organization [Lowe, 1985] and is fundamental
to the alignment approach [Huttenlocher and Ullman, 1990].
It is also a basic component of Geometric Hashing [Lamdan
et al., 1990] and continuesto be refined [Olson, 1995].

Here we present a variant upon this general theme which
searches for an optimal match by first searching for good
matches between triples of object model and image features.
For simplicity, we call thisour key feature algorithm since the
search for a good triple may be thought of as a search for a
key feature which determines the rest of the match. The key
feature algorithm uses the same criterion function as our lo-
cal search line matching algorithms [Beveridge et al., 1990;
Beveridge, 1993; Beveridge et al., 1997] and this enables us
to report on a set of side-by-side comparisons between the
two. Since these two agorithms search the space of possi-
ble matchesin very different ways, the comparison highlights
strengths and weaknesses of each.
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The greatest difference between the two algorithmsiisin
how they initiate search. The key feature algorithm initiates
indepdent searches from each of a set of ranked key features.
Loca search starts a number of independent trials from ran-
domly selected matches. The key feature algorithm relies on
one or moreof thekey featuresbel ongingto the best match. In
contrast, local search makes no effort to find consistent initia
matchesand instead relies uponiterativeimprovement guided
by updated global aignment to move search from the random
match to onewhichisgood. Randomnessisimportant to local
search because the probability of failing to find a good solu-
tion over multipletrials drops exponentially as the number of
trialsincreases. Thissamerandom sampling methodology has
been used in the RANSAC agorithm to find consistent sub-
sets of object model and image features [Fischler and Bolles,
1987].

We begin by reviewing our formulation of 2D line segment
matching asacombinatorial optimizationtask which hasasits
goal finding matches such asthe one shown in Figure 1. Next
the random-startslocal search and key feature algorithms are
described and their performance is compared on the example
just shown as well as on a series of controlled test problems.

2 Optimal Matching

Let M be amodel of 2D line segments and D a set of seg-
ments representing image data. A match is a many-to-many
correspondence mapping ¢ where:

ceC c = 2° SCMxD (1

An objective function E defines the best match c*.

E(¢*) < E(¢) VeeC 2
The match error E has two terms [Beveridge, 1993]:
Efit(c) + Eom(c) €)

(%) Eres(¢) + Eom(c) @)

E(c) =

FEit(c) measures how well the model fits the data. Eom(c)
measures how much of the model is omitted from the match.
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Figure 1: Optimal match to fragmented data. a) aerial photograph,
b) segments [Burns et al., 1986], ¢) mode!, d) best match.

To evaluate E, a 2D similarity transformation best fitting
the model to the datais computed. The fitting criterion is a
weighted sum of integrated perpendicular distance between
infinitely extended model lines and their corresponding data
line segments: EReg(c) isanormalized function of the resid-
ual error after fitting. The best fit for any ¢, neglecting under-
constrained cases, is computed by solving aquadratic polyno-
mia. Eom(c) is computed by transforming the model to the
best-fit configuration and measuring how well the data covers
the model. The weighting term ¢ dictates how far a data seg-
ment can be from a model segment and still beincludedin an
optimal match. If, for instance, ¢ = 3, then the datamay be
up to 3 pixelsfrom the model.

3 Random Starts L ocal Search

Perhaps the simplest algorithm is steepest-descent on a
“Hamming-distance-1' neighborhood. This is so named be-
cause any correspondence mapping ¢ may be represented by
abitstring of length n, wheren € |S|. A ‘1" in position j
of the bitstring indicates that the jth pair in the set S is part
of thematch ¢. Then neighborsof ¢ are generated by succes-
sively toggling each bit. Hence, the neighborhood containsall
matches created by either 1) addingasinglepair of model-data
features not already in the match or 2) removing asingle pair
currently in the match.

Steepest-descent |ocal search using thisneighborhoodcom-
putes E for all n neighbors of the current match ¢, and moves
to the neighbor yielding the greatest improvement: the great-
est drop in E. Search terminates at alocal optimum when no

neighbor is better than the current match.

Becauselocal search often becomesstuck at undesirablelo-
cal optima, it is common practice to run multiple trials. Each
trial is started from a randomly chosen initial match ¢;. The
random selection of ¢; is biased to choose, on average, A data
segmentsfor each model segment. Specificaly, let h,,, bethe
number of pairsin S which contain amodel segment m. Each
of these pairsisincludedin ¢; with independent probability %
Our experience suggests A = 4 isagood choice, thus binding
on average 4 data segments to each model segment.

Over ¢ trials, the probability of failing to find a good match
dropsasan exponential function of ¢. Let P, betheprobability
of finding agood solution on asingletrial. The probability of
failing to find agood match in ¢ triasis:

Qr = (1-Py) ©)

For geometric models, thereis often awell defined and known
best solution and we can characterize algorithm performance
in terms of the probability P, of finding the best match in a
giventrial. From Py, the required number of trials ¢, needed
to solve a particular problem to a preset level of confidence
Qs may be derived from equation 5:

ts:(IOngQf] szl_Qs szl_Ps (6)

4 Key Feature Matching

Theloca search algorithm just presented can beturnedinto a
key feature matching algorithm by initializing search from &
carefully selected key feature matches. Let F' bethe set of key
features, and et aspecific key feature f; be defined asfollows:

fi € F fi = {sa, s, si3} sij € 8 (7)
The local search neighborhood is modified to consider only
the addition of pairs. To understand this simplification, con-
sider local search initiated from a key feature f; fully con-
tained within the optimal match:

fi = {si1,80,853} s;; € ¢ (8)

Simply by adding pairslocal search will typically arriveat the
best match ¢*. Searchisfurther simplified by noting that each
match to akey feature f; € F' constrains where the model is
placed relative to the data. Thus, search can be carried out in
a constrained search space which includes only pairs s € S
consistent with the specific model placement defined by f;.
Asafinal step, the top 5 matches found by searching from
each of the k key features are used to initialize asingle tria
of random startslocal search. Thisfinal step can both add and
remove pairs of segments and provesto beimportant in some
cases. Without this step, key feature matching can be closeto
the optimal match and still missit. In principle, thisfinal pass
of local search could alow the key feature algorithm to find



the best match even when no key feature satisfies equation 8.
However, as arule of thumb, the key feature algorithm will
fail to find the optimal match when this condition is not met,
i.e. no key featureis a subset of the optimal match c*.

4.1 Choosing Key Features

A variety of strategies has been suggested for defining sets
of key features. [Lowe, 1985] strongly advocated broad and
general perceptual invariants derived from the basic rules of
physics and imaging. [Huttenlocher and Ullman, 1990] took
amore model-based approach: predicting which features are
key in part upon specific object geometry.

However, both Lowe and Huttenlocher separated the task
of selecting possible key features from that of matching com-
plete models to image data. In contrast, we use the same cri-
terion function, E, to both rank our selection of possible key
features and to evaluate the optimality of final matches.

As in past work, the ability of a key feature to constrain
the pose of the object iscritical. For 2D line matching, where
models can be rotated, trandated and scaled, the two obvious
choices are pairs of matched segments and triples of matched
segments. Triples are more reliable predictors of pose.

4.2 Spatially Proximate Triples

If there are n possible pairings between model and data fea-
turesin the set S, then there are n3 possible triples. For typ-
ical problems presented below, n ~ 1,000. Itisimpractical
to enumerate and rank 1,000, 000, 000 triples; clearly, some
filter must be used. We use avery general heuristic: proximal
linesinamodel arelikelyto be proximal inthe data. Thisidea
isby no meansnew, [Lowe, 1985] suggeststhis approach and
then dismissesit as too unfocused for his purposes.

Filtering by spatial proximity will generate on the order of
n ranked triples. Model and data segments are analyzed in-
dependently to find the nearest neighbors of each. For each
model linem; € M, determinetheclosest two neighborsm ;;
and m;» as defined by Euclidean distance é:

5(mi,mi1) < 5(mi,mk) Vm, € M —{ml}
8 (mi,ms) < 6(my,my) Ymy € M —{m;,m;}

Analogous nearest neighbors d;; and d;» for each data line
segment d; € D arefound.

When matching segments M to D, each pair of segments
(m;,d;) € S formtwo spatially proximatetriples f; and f:

fi = ((mi,dj), (ma, dji), (a2, dj2))
f2 = ((mi,dj), (ma, dj2), (M2, dj1))

Since each of the n pairs of model and data segmentsin S
leads to 2 triples, there are 2n spatially proximate triplesin
theinitial set of key features F'.

In keeping with the assumption that some key features are
better than others, order the set F' from lowest to highest
match error;

F = {f17f27"'f271} (9)

E(fe) < E(fi) iff k<l (10)

The question arises, ‘ How deep into the ranked set F' should
we search? . Past work has typically assumed that it is not
necessary to govery deepinto theset F. Our experimentstake
a conservative approach and use the best n triples.

5 Comparing Approaches

We present comparative performance data on two test prob-
lems suites produced by a Monte Carlo problem generator.
The advantage of thisdataisthat it allowsfor controlled test-
ing under well specified conditions. We also consider perfor-
mance on the real world problem shown in Figure 1.

The first set of tests uses the six models shown in Fig-
ure 2a. To create datasets D, model segments are ran-
domly scaled and placed in the data images. In addi-
tion, the moddl line segments are fragmented, skewed and
potentially omitted.  Finaly, random clutter and struc-
tured clutter are added to the data. Structured clutter con-
sists of more highly degraded copies of the same object
model. Examples are shown in Figures 2b and 2c. This
dataset and results for it are available through our website
(htt p: // ww. cs. col ost at e. edu/ " vi si on/).

A second set of tests use data images with 50 randomly
placed segments. Models are created by randomly drawing 5,
10, 15 or 20 of these segments. This dataset tests the reliabil-
ity of the proximity heuristic as the ratio of model to clutter
lines varies.

5.1 Six Corrupted Models

The models shown in Figure 2aexhibit characteristics known
to make matching difficult. For example, the Poleis an inter-
esting case for the key feature algorithm because of its sim-
plicity: thereexists only one possible model triplefor the key
feature algorithmto exploit. The Dandelion exhibitsa 16 fold
near symmetry; model symmetry complicates matching for
many well established techniques[Grimson, 1990]. The L eaf
presents an example where model and data line segments ap-
proximate a curved contour. For this model, a many-to-many
mapping between model and image features is needed to ac-
count for breakpoints at different positions along the curve.

A Monte Carlo simulator produces corrupted image data.
The simulator rotates, trandlates and scales the model so
placement and size are unknown. Model segments are also
fragmented and skewed. In 24 of the problems, 0, 10, 20 and
30 additional clutter segments are randomly placed about the
image. A sampling of this datais shown in Figure 2b. In the
other 24 problems, 0, 1, 2 and 3 additional corrupted model
instances are added. A sampling of thisdatais shown in Fig-
ure 2c.

The steepest-descent local search algorithm has been run
for 1,000 trialson al 48 problems. Thekey feature algorithm
has been run using the best n triples. The resulting run times
and quality of results are indicated in Figure 3a. Problem in-
stances are grouped along the « axis by model type, with run
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Figure 3: Relative algorithm performance. a) The 48 problems using the six models shown in Figure 23, b) 40 problems using randomly

selected models.

time plotted onthey axis. Those problemswherekey features
failed to find the optimal match are indicated in the separated
band at the top of the plot.

Two critical typesof information are conveyed by thisplot.
First, over 1,000 trials, the random starts algorithm never
failed to find the optimal match at least once. Conversely, the
key feature algorithm failed in 7 out of the 48 cases. Sec-
ond, the key feature algorithm is dramatically more efficient
in terms of run time, typically taking less than 1/10th of the
time required by the random starts local search algorithm.

The key feature algorithm fails on the simpler object mod-
els: the pole and rectangle 1. Two factors may explain these
failures. First, simulator fragments model line segmentswith
a fixed probability per unit length. Hence, longer segments
fragment more. The rectangle and pole have the longest indi-

1On symmetric models such asthe rectangle and building in Fig-
ure 1, symmetric matches are treated as equivalent.

vidual segments, and thereforethe highest degree of fragmen-
tation. Too much fragmentation preventsthe proximal triples
algorithm from finding triples which participate in the best
match. The second factor isthat there are fewer total features
on the simpler models, further reducing the opportunities for
the algorithm to find a good key feature.

The statement that the local search algorithm did not fail
requires some elaboration. Based upon the 1,000 trias, the
probability of success P, has been estimated for eachindivid-
ual problem. Using these estimates, it is more proper to say
that the required number of trials to find the best match with
95% confidence, t, from equation 6, never exceeds 1, 000.

Actualy, far fewer than 1,000 trials are required for most
of the problemsin the test suite. Lessthan 100 trials are re-
quired for 33 out of the 48 problems, and only 3 problemsre-
quire more than 500 trials. Likewise for the key feature al-
gorithm, it istypically not necessary to consider all n triples.




The run times shown in Figure 3a are intentionally conserva-
tive, making no assumption that there isa priori knowledge
of how hard a specific problem isto solve.

L ooking at the actual work needed per problem, thekey fea-
ture algorithm finds the best match from thefirst ranked triple
in 26 out of the 48 cases. There are 7 cases where a triple
in the top 50 leads directly to the best match. Finally, in the
8 remaining cases, simply running the steepest-descent algo-
rithm where only pairsare added missesthe best match. How-
ever, inthese cases, thefinal application of random startslocal
search locks onto the globally best match. Thisis counted as
asuccess for the key feature algorithm.

(@ E = 0.023 (b) E = 0.099

(©) E = 0.059 (d) E = 0.100

Figure 4: Examples of the key feature agorithm missing the best
match. a) best match, b) best found by key feature, ¢) best match, d)
best found by key feature.

It isinteresting to observe how the key feature algorithmis
lead astray. Figure 4a showsthe optimal match found by ran-
dom starts local search for the three rectangles problem. Fig-
ure 4b shows the best match found by the key feature algo-
rithm. Thisis the 2nd best match found by the local search
algorithm. Figure 4c shows the optimal match found by ran-
dom startslocal search for the case of 20 random clutter lines.
Figure 4d shows the best match found by the key feature al-
gorithm: again, it isthe 2nd best match found by local search.
This case is interesting because the coincidently placed long
clutter line createsa‘false’ rectangle which trapsthe key fea-
ture algorithm.

5.2 Randomly Placed Lines

The probability that the key feature algorithm will succeed
depends upon the likelihood that a triple f in F' belongs to

the best match ¢*. Thislikelihood, in turn, depends upon the
probability that thetwo segments closest to adata segment co-
incide with the two closest segmentsin the model. Asthere-
sults above suggest, thisis a good but not perfect heuristic.

One way to think about this likelihood is to consider how
the ratio of clutter to model features varies as more or fewer
segmentsare drawn from afixed size set of datasegments. To
illustrate, a set of 40 test problems has been generated, each
with 50 randomly placed non-intersecting line segments. Ten
distinct sets of 50 random segments are used, and models are
created by randomly selecting 5, 10, 15 or 20 from each set.

The results for these 40 problems are shown in Figure 3b.
They support the hypothesis that a higher clutter ratio causes
the key feature algorithm to become unreliable. The key fea
ture algorithm fails on 8 out of 10 of the 5-segment models,
while only failing on 1 out of 10 for the 20-segment models.

Because the local search algorithm does not depend upon
key features, we do not expect it to have difficulty with these
problems. Figure 3b showsthat thisisin fact the case, with lo-
cal search solving all 40 problemsreliably inlessthan 1,000
trials. Moreover, it may surprise some readers to know that
the average t; for 95% confidence decreases as these models
get larger. For the problem instances with models of 5 seg-
ments, £, = 122.3, while for the models of 20 segments
ity = T4.2. A t-test on this data indicates that the drop is
statistically significant: ¢ = 5.03and p < 0.001. While
far fewer than 1, 000 trials are actually needed, for the sake of
consistency, thetimesreportedin Figure 3b areall based upon
1,000 trias.

5.3 A Real World Example

It should now be apparent that the key feature algorithm has
profound computational advantages over random starts local
search. When it succeeds, it requires one to two orders of
magnitude less computation. Real world examples can be
found where it workswell, including many of the fairly clean
2D line matching problems common in the literature.

Let us now consider avery difficult problem, the building
shown in Figure 1. There are 4 model line segments and 443
data segments, generating 1, 772 possible pairs of segments.
Moreimportant in termsof problem difficulty, thereare multi-
pleinstancesof buildingsinteracting with other buildingsand
roads, creating a combinatorial explosion of possible partial
matches. Also, the globally best match 2 is highly fragmented
and must be pieced together by a search algorithm before it
appears more attractive than many of the other more obvious
partial rectangles.

To fully test random starts local search on this problem,
10, 000 trials have been run. The best match isfound in only
12 of these trials: the estimated probability of success P, =

2Strictly speaking, we do not know the match shown in Figure 1d
to be the globa optimum. However, through extensive study of this
problem and our ability to eye-ball the results, we are relatively cer-
tainitisbest.



0.0012 istiny. Required trialst, = 2,494 and averagetime
to run atrial is 24 seconds. Consequently, local search re-
quires nearly 18 hoursto reliably solve this problem.

o
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(b) E = 0.133
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(d) E = 0.149

Figure 5: Second through fifth ranked matches for aerial image.
a) second best and match found using key features, b) third best, c)
fourth best, d) fifth best.

Whilerandom startslocal search hasallowed usto find this
best match, 18 hoursisfar too much timefor any practical on-
line system to spend looking for one building. In contrast, the
key feature algorithm is very fast, completing in a matter of
minutes. However, it fails to find the best match. Instead, it
findsthematch shownin Figure5a. Thisisnot totally uninter-
esting, sinceaccordingto thelocal search algorithm, thisisthe
second best match in the image. However, it has a markedly
larger match error: 0.125 as opposed to 0.101 for the global
optimum. Local search also, in some sense, finds two other
buildings: Figures5¢ and 5d show the fourth and fifth ranked
matches. FigureSh showsthat thethird ranked matchisavari-
ant on the global optimum, sharing many of the samefeatures.

6 Conclusion

We have presented a variant upon key feature matching. It
operates within an optimal matching framework and uses the
same criterion function to rank both key features and final ob-
ject model matches. On controlled problem sets, it has been
shown that the underlying proximity heuristic yields key fea-
tures which allow an algorithm to quickly find many but not
all optimal matches. In an example of the cost versus gener-
ality trade-off typical in Artificial Intelligence, random starts
local search is shown to be both more robust and more com-
putationally demanding.
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