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Abstract

Our purpose in the present paper is to present a brief
overview of the relatively new paradigm of self-stabilization
to provide fault tolerance in distributed systems. Stabi-
lizing algorithms are optimistic in the sense that the dis-
tributed system may temporarily behave inconsistently but a
return to correct system behavior is guranteed in finite time
while traditional robust distributed algorithms follow a pes-
simistic approach in that it protects against the worst pos-
sible scenario which demands an assumption of the upper
bound on the number of faults.

1 Introduction

Robustness is one of the most important requirements of
modern distributed systems. Different types of faults are
likely to occur at various parts of the system. These systems
go through the transient states because they are exposed to
constant change of their environment. In a distributed sys-
tem the computing elements or nodes exchange information
only by message passing. One of the goals of a distributed
system is that the system should function correctly in spite
of intermittent faults. In other words, the global state of the
system should ideally remain in the legitimate state. Often,
malfunctions or perturbations bring the system to some il-
legitimate state, and it is desirable that the system be auto-
matically brought back to the legitimate state without the
interference of an external agent. Systems that reach the
legitimate state starting from any illegitimate state in a fi-
nite number of steps are called self-stabilizing systems [1, 2].
This kind of property is highly desirable for any distributed
system, since without having a global memory global syn-
chronization is achieved in finite time and thus the system
can correct itself automatically from spurious perturbation
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or failures. Our purpose in the present paper is to present
a brief high level overview of the recently emerging area
of self-stabilizing distributed algorithm design; a somewhat
dated survey can be found in [3].

2 Distributed Systems and Algorithms

Distributed computing systems have experienced a mas-
sive growth in the last few years. Many new frontiers of ap-
plications have opened up due to the availability of these dis-
tributed and parallel systems. On site credit card validation,
integrated airline reservation system, world-wide automatic
teller machine network, Internet email system, world wide
web, national and international information superhighways
are, among many others, all examples of successful appli-
cation of distributed systems in everyday real life applica-
tions. More and more organizations with diverse objectives
are moving to employ computing as well as other systems
in newer and more effective ways and thus we are observ-
ing a growth of more and more large scale distributed ap-
plications. Today, the distributed computing systems offer
highly reliable, highly integrated computing to users who
may be physically separated and interacting through diverse
medium of communication via different hardware and soft-
ware platforms. Yet, the objective is to provide a seamless
whole and consistent service to different people by combin-
ing large number of mostly independent programs running at
places geographically scattered all over the world on a vari-
ety of heterogeneous platforms.

A distributed system essentially consists of a number of
autonomous computers (with their own hardware and soft-
ware) who are connected to each other via a communica-
tion network. Despite this interconnectivity the participating
computing site can run its applications independent of the
others while the networking software (and hardware) pro-
vides the functionalities like database, shared storage (data
and code) etc. Typically, there is no shared memory and
communication between two nodes (sites) is implemented



through explicit message passing. The most important char-
acteristics of the system is that it presents to the user (at any
of the participating sites) a view of a single highly reliable
program thus making the decentralized nature of the hard-
ware and the software transparent to the user. The challenge
of developing software, hardware and network interface be-
comes more formidable because of the need to dynamically
respond to failures and subsequent recoveries.

In the last five or so years we have seen excellent growth
of client server computing, and networked personal comput-
ing systems. The next phase of distributed computing will
probably see a growth in the area of enterprise computing
systems where a very close coupling (coordination) is nec-
essary between a large number of applications running on
different platforms across the globe connected by network
hardware and software. Mobile computing, electronic stock
and bond market, combining far away resources to develop
a complex application like weather modeling or aircraft de-
signing or nuclear explosion simulation could all be exam-
ple settings where distributed computing will be indispens-
able. To quote Birman in his forward to the book [4], “an
awesome resource has been created by the computing and
telecommunication technologies, but it is still largely un-
tapped”.

Interconnection networks are integral in designing dis-
tributed systems; there are a large variety of interconnection
networks that differ in transmission speed, topology used
(point to point or shared medium), area they serve (LAN,
WAN) data package format, switching mechanisms, net-
work architecture, the error rate etc. The performance of the
distributed systems and the applications running thereon de-
pend heavily on the implementation of the underlying net-
work architecture. For our purpose we simply assume that
the network nodes are connected by point to point links ac-
cording to some given topology (since this seems to capture
the basic requirement of node connectivity in designing dis-
tributed algorithms).

3 Fault Tolerance in Distributed Systems

There are different existing approaches towards design-
ing fault tolerant software like N-version programming, re-
covery blocks, consensus recovery blocks, etc. But design
of fault tolerant software or algorithms has been tradition-
ally investigated in the context of particular applications,
system architectures as well as specific technologies. As a
result we have different models and techniques for different
applications and there is no simple way to verify these fault
tolerant systems. Also, the basic approach in designing fault
tolerant software has traditionally been to mask or tolerate
design faults in the software itself.

The common approach to design the fault tolerant sys-
tems is to mask the effects of the fault; but, fault masking

is not free; it requires additional hardware or software and
it considerably increases the cost of the system. This addi-
tional cost may not be an economic option, especially when
most faults are transient in nature and a temporary unavail-
ability of a system service is acceptable. Self-stabilization is
a relatively new way of looking at system fault tolerance, es-
pecially it provides a “built-in-safeguard” against “transient
failures” that might corrupt the data in a distributed system.

4 Self-Stabilization – A Paradigm for Dis-
tributed Fault Tolerance

The objective of self-stabilization is (as opposed to mask
faults) to recover from failure in a reasonable time and with-
out intervention by any external agency. Self-stabilization
is based on two basic ideas: first, the code executed by
a node is re-entrant and incorruptible (as if written in a
fault resilient memory) and transient faults affect only data
locations; second, a fault free system behavior is usually
checked by evaluating some predicate of the system state
variables. Every node has a set of local variables whose con-
tents specify the local state of the node. The state of the en-
tire system, called the global state, is the union of the local
states of all the nodes in the system. Each node is allowed to
have only a partial view of the global state, and this depends
on the connectivity of the system and the propagation de-
lay of different messages. Yet, the objective in a distributed
system is to arrive at a desirable global final state (legitimate
state).

The set of all possible global states is divided into two
disjoint sets: the error free or the legitimate states, and
the erroneous states or the illegitimate states. The self-
stabilization paradigm assumes that each node computes a
predicate of its own local state and its neighbors’ states (a
predicate that would use other node states than the neigh-
bor node states requires an underlying routing protocol to
be implemented). When an inconsistent state is detected, a
common approach in centralized systems is to force the sys-
tem to a well defined state by a hardware reset or a power-
cycle. This is often not an option in distributed systems that
may cover a large geographical area. In a self-stabilizing
system, when a node detects a local inconsistency, it takes
a local action (a node can modify only its own states) in an
attempt to correct the error. This node becomes locally con-
sistent, but some of its neighbor nodes may become incon-
sistent (which were locally consistent before the action) and
this ripple effect may propagate the entire system. A system
state is globally legitimate when each node is locally legiti-
mate or consistent. An algorithm is self-stabilizing if for any
initial illegitimate state it reaches a consistent state after a fi-
nite number of node moves. A distributed system running a
self-stabilizing algorithm is called a self-stabilizing system.

In general, a node is triggered into action when a lo-



cal inconsistency is detected; hence, in a legitimate system
state no node may move. However, there are many services
(provided by distributed systems) that require the system to
change its state continually. A classical example is the token
circulation for a distributed mutual exclusion algorithm. In a
legitimate state, a node with a token selects one of its neigh-
bors to pass on the token. If the system is in a illegitimate
state, at least one node detects the error and takes corrective
action. Thus, the error recovery procedure is integrated in
the normal algorithm function. An algorithm is then self-
stabilizing if (i) for any initial illegitimate state it reaches a
legitimate state after a finite number of node moves, and (ii)
for any legitimate state and for any move allowed by that
state, the next state is a legitimate state.

A self-stabilizing system does not guarantee that the sys-
tem is able to operate properly when a node continuously in-
jects faults in the system (Byzantine fault) or when the com-
munication errors occur so frequently that the new legiti-
mate state cannot be reached until the new communication
error. While the system services are unavailable when the
self-stabilizing system is in an illegitimate state, the repair of
a self stabilizing system is simple; once the offending equip-
ment is removed or repaired the system provides its service
after a reasonable time.

4.1 Requirements of Self-Stabilization

There exist several models for self-stabilization; we
present here only the basic common concepts of these mod-
els. The state of a node is specified by its local variables.
The system state is a vector of all local states of the partici-
pating nodes. We use T to denote the set of all possible sys-
tem states. A system state is either legitimate or illegitimate.
The precise specification of a legitimate state depends on the
algorithm, but as a general rule, when the system is in a le-
gitimate it has the property required by that application. To
allow system recovery after transient faults, each node exe-
cutes repeatedly a piece of code. This code consists of a set
of rules:

begin
rule
...
rule

end

Each rule has the form:
(label) [guard]: <program>;

A guard is a boolean expression of the variables that the
processor can read: its own variables and the variables of
its neighbors. The program part of a rule is the description
of the algorithm used to compute the new values for local
variables. If the guard of a rule is true, that rule is called
enabled. When at least one rule is enabled the node is priv-

ileged. An execution of a enabled rule is the determination
of the new node state value using the algorithm described
by the program part of the rule. A move of a node is the
execution of a nondeterministically chosen enabled rule.

In other words, there is a relation R � T � T such that
if (si; sf ) 2 R, then (i) the states si, sf differ by a single
node x value, and (ii) if the system is in state si there is a
enabled rule of node x such that after execution of the corre-
sponding code, the system is in state sf . A system evolution
E = (si)i2I , is a finite or infinite sequence of moves such
that (i) if (si; si+1) is a consecutive pair of states in E then
(si; si+1) 2 R, and (ii) if the system evolution has a finite
number of states, sf being the last one, then there is no state
s 2 T such that (sf ; s) 2 R.

To prove the correctness of a self-stabilizing algorithm,
the conditions of closure and the convergence must be
shown. The closure property means that when the system
is in a legitimate state the next state is always a legitimate
state. The convergence property means that for any state and
for any sequence of possible moves, after a finite number of
moves the system is in a legitimate state. As Gouda observes
in his paper [5], self-stabilization can be in principle defined
by a set, T , a relationR � T �T and a specification of the
legitimate state set L. Different classes of closure and con-
vergence can be defined and general methods of proving the
self-stabilization can be sketched.

One useful and elegant strategy to prove the correctness
of self stabilizing algorithms is to use bounded monotoni-
cally decreasing functions defined on global system states
[6]; some existing self-stabilizing algorithms are proved to
be correct by defining a bounded function that is shown
to decrease monotonically at every step [7]. Many self-
stabilizing algorithms do not use this bounded function
method since it is usually very very difficult to design such a
function. In stead, they develop a different proof technique
using induction on the number of nodes in the tree [8, 9].

4.2 Implementation Issues

The stabilizing algorithms achieve fault tolerance in a
manner that is radically different from traditional fault tol-
erance in distributed systems. The paradigm allows us to
abandon failure models and a bound on the number of fail-
ures. The theory is elegant, but how practical is the concept
for implementation with present day technology? Here are
some issues:

� The concept of the global state of the system requires a
common time for all nodes. The physical time may be
used as a common time but it may not be explicitly used
by the component processes (drifts in local clocks, rel-
ativity etc.) The partial order relation (among events)
generated by message exchange can not be uniquely
extended to a total order relation. If there is no global



clock, global states can not be defined and legitimate
states must defined locally, i.e. based on the local state
of a node and the states of its neighboring nodes and
on the partial order relation associated to sending and
receiving messages. This greatly complicates the cor-
rectness proof of any stabilizing algorithm.

� A move is a complex operation; the state of the neigh-
bors must be read, the guards must be evaluated and
the associated code segment must be executed. Some
models assume that a new move may not start until the
previous move is completed, i.e. the moves are atomic.
In a real distributed system the reading of a neighbor’s
state can be implemented in two ways: one option is to
request every node to send its state to his neighbors pe-
riodically or whenever it changes its state. Each node
caches the state received from its neighbors and moves
according to the state cached in its memory. The other
option is to use a query message: when a node needs to
read its neighbor’s state, it sends a query message and
waits for reply. In both cases, when a node moves, it
uses the cached states of the neighbors instead the real
states of its neighbors. Since the states of the neighbors
may have already been changed, the moves are not re-
ally atomic.

� To enforce the atomicity and the serializability of the
moves Dijkstra, [1], has introduced the concept of cen-
tral daemon. When multiple nodes are privileged, the
central daemon arbitrarily selects one node to be ac-
tive next. The concept of a central daemon is very
much against the concept of a distributed system in
that it serializes the moves and does not allow concur-
rent node executions. Proving correctness is easier for
a serial execution, but there are many parallel execu-
tions that might be “equivalent” with a serial execution
[10]. These executions should be allowed by an effi-
cient move scheduler.

Different models of self-stabilization offer different
prospects of cost effective implementation of the concept
and it is not clear at this point which would win.

5 Classifications of Self-Stabilizing Systems

A model can be viewed as an interface definition and a
set of assumptions (the algorithm designer can make) that
define the behavior of the system. Unfortunately, there is no
unifying model for the distributed system concept [11]. If
some specific features of a system are not introduced in the
model, the algorithms may be less efficient than they could
possibly be; on the other hand, those features may not gen-
eral enough to be present in all systems.

Self-stabilizing algorithms have been designed for two
interprocess communications paradigms: shared memory
and message passing. Since we are interested in self-
stabilizing algorithms for distributed systems, we assume
the message passing paradigm. It should be observed that a
lower level protocol that sends and receives messages may
transform a message passing model into a shared memory
one.

5.1 Anonymous vs Id-based Networks

The concept of node identity is important in designing
distributed algorithms. If each node has a unique hardwired
id, the network is id-based; otherwise the network is anony-
mous. The anonymous network is a weaker model than an
id-based network. For some problems there are no deter-
ministic algorithms in anonymous networks [12]. The im-
possibility stems from the lack of deterministic symmetry
breaking mechanisms without unique ids. In general, it is
far more difficult to design algorithms for anonymous net-
works than for id-based networks. The id-based network is
a more realistic model to design self-stabilizing algorithms,
but a database of the used id’s is necessary to be maintained
by a central authority; the addition of a new node requires
a database search and the assignment of a new distinct id.
This concept has been used in practice for a while (Ethernet
addresses and IP addresses) and it has proved to be conve-
nient. In principle, each node in an id-based network may
have a global information of the topology and the state of all
other nodes. Hence a local algorithm may be used to solve
the problem. This scheme may be unacceptable since the in-
formation needed to update each node state is large and takes
a considerable bandwidth. Besides, the system may respond
too slowly to dynamic configuration changing.

5.2 Deterministic vs Probabilistic Algorithms

The self-stabilizing algorithms can also be divided into
two classes: deterministic and probabilistic (randomized)
algorithms. This criterion has nothing to do with the under-
lying distributed system but concerns with the algorithm de-
sign strategy. Randomization is normally used to break the
symmetry in anonymous networks. Many randomized al-
gorithms succeed with probability 1 � �, � > 0 (the suc-
cess is not certain). Besides, the random number genera-
tors used are actually pseudo random number generators and
some undesirable correlations may appear between neigh-
boring nodes.

5.3 Atomicity of the Operations

The first model proposed by Dijkstra assumes the exis-
tence of a central daemon that serializes the moves. A move



is an atomic action composed of two steps, reading the states
of neighbors and modifying the local state. We also have the
restricted parallelism model, where we have specific restric-
tions on the set of processors that may execute at each step,
and maximal parallelism model, where all enabled processes
may execute at each step. However, the moves are still as-
sumed to be atomic. The execution models usually fall into
into four categories: serial model, synchronous model, syn-
chronized distributed model and distributed model. In serial
model, only one node executes an atomic step at a time and
the atomic step consists of reading the states of the neigh-
bors and modifying its state if necessary. In the synchronous
model, all nodes simultaneously execute an atomic step and
each node in this model also sees the current state of its
neighbors. The synchronized distributed model is like the
synchronous model except that only a subset of all nodes
synchronously execute the two sub-steps of a move. The
distributed model is closest to a real life distributed system.
In this model each atomic step is either a reading or a writ-
ing operation. That is, each node may read and record a
state of one of its neighbors at a time and when all states are
recorded, it can modify its state if necessary. By that time,
some neighbor states may have already been changed.

To correct this problem two approaches have been fol-
lowed. One approach, taken for example in [13] is to de-
sign algorithms assuming only read/write atomicity. The pa-
per shows that mutual exclusion in nonuniform networks is
possible using only read/write atomicity (tree construction
algorithm is also presented). However, the proof of correct-
ness is difficult for this kind of approach. Since it’s easier to
prove correctness for a serial model, some others [14] use
the following strategy. Each process at a node is split into
several processes: one of them is called central process, and
the others are called peripheral processes. Each peripheral
process corresponds to a neighbor and maintains a recorded
state of the neighbor via atomic read operations. The central
process maintains the state of the node and modifies the state
by atomic write operation that depends on the states of the
peripheral processes. We can show that the computation in
the extended DAG formed by all processes corresponds to a
computation in the serial model. Although this transforma-
tion works for some protocols, it does not guarantee that the
transformed protocol performs what the original serial pro-
tocol does. To implement a self-stabilizing algorithm devel-
oped for a serial model, a runtime support environment may
be introduced. The original algorithm is transformed using
functions provided by the runtime environment such that the
algorithm can be run in a distributed environment.

5.4 Self Stabilizing Data Link Protocols

Self-stabilizing systems relies on message passing to read
the states of the neighbors. Though the error rate for some

communication media may be very low [15], there are no er-
ror free communication links. A data packet sent on a com-
munication link may be changed due to a communication
error or may be dropped due to a buffer overflow. For the
first case, error detecting codes may be used to recognize
and eliminate the erroneous packets; we assume the arrived
packets are error free and in order but some packets may
have been dropped by the communication link. The purpose
of a self-stabilizing data link protocol is to enable a node
to send a sequence of messages without duplication, loss or
miss-ordering. The alternating bit protocol is a fundamental
data link protocol for data communication across error prone
transmission media; but, this protocol is not self-stabilizing.

Authors in [16] describe a window sliding protocol where
message sequence numbers are taken from a finite domain
and where both message disorder and loss can be toler-
ated. Most existing window protocols achieve only one of
these two goals. The protocol is based on a new method
of acknowledgment, called block acknowledgment, where
each acknowledgment message has two numbers m and n
to acknowledge the reception of all data messages with se-
quence numbers ranging from m to n. Using this method
of acknowledgment, the proposed protocol achieves the two
goals while maintaining the same data transmission capabil-
ity of the traditional window protocol.

It is worth mentioning that without time-out or periodic
re-sending it is impossible to design a self-stabilizing algo-
rithm. A self-stabilizing system must tolerate a transient
error that modifies one of its variables at any time. If a
transient fault modifies a state variable such that a process
“think” that it sent a message but in fact the message was
not sent, the process might wait for an acknowledgment that
will never come.

6 Limitations of Self-Stabilizing Algorithms

One important limitation of the self-stabilizing protocols
is that the system can not provide the required service during
the time when it is not in a legitimate state. Many applica-
tions can tolerate short periods of unavailable service but if
uninterrupted service is critical the self-stabilization can not
be used. Besides, the time needed for the system to correct
itself when started in an illegal state or after an error may be
too long for some applications.

Other difficulties lie in the model used for the distributed
system. Non-uniform self-stabilizing algorithms relies on a
special machine which is a major drawback both from the-
oretical and practical point of view. Many self-stabilizing
algorithms uses the central daemon concept. This is only
a theoretical concept that needs a run environment system
to be implemented. The runtime environment may trade the
degree of parallelism of the algorithm execution for a sim-
pler implementation.



Perhaps the most critical disadvantage of a self stabiliz-
ing system especially from implementation poit of view is
that it is not possible from within the system to observe
that a legitimate configuration has been reached; hence the
processes are never aware of when their behavior has be-
come reliable. Another area is complexity analysis; time-
complexity analysis for self-stabilizing distributed algo-
rithms is much more difficult than for sequential algorithms.
Formally verification of a distributed algorithm is in gen-
eral more difficult; the self-stabilizing algorithms are not an
exception from this rule and though some work have been
done, there is still much more to do in this area. Some of
the stabilizing algorithms known to date seem simpler than
their classical counterparts; this is at least partly due to the
fact that the stabilizing algorithms are not “optimized” with
respect to their complexity; the so called “advantage” may
vanish when the stabilizing algorithms are made efficient.

Another weakness of the self-stabilization is that it is a
global property. A transient fault in a legitimate state at one
node may lead to a long corrective action that spans the en-
tire system. It is more natural and desirable that an error at
a one node remains confined to a small number of nodes.
Some work in this area has been done [17] but there is not
yet a “stability” definition of a self-stabilizing algorithm and
no systematic procedure to achieve it.

7 Conclusion

The concept of stabilization was known in mathematics
for quite a while; an iterative method to solve a linear system
can start from any value and converges to the unique solu-
tion of the system (of course, certain conditions must be met,
but though the initial guess can increase the numbers of steps
for the desired accuracy, the final solution will be the same).
In computer science the concept was introduced by Dijkstra
in 1974; but only since late 80’s its connection to fault toler-
ance has been apparent and researchers have started working
in this area.
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