
Computer Science
Technical Report

A Tutorial on a Sliding Window Target
Detection Algorithm Implemented in the

DARPA Image Understanding Environment �

J. Ross Beveridge and Jim Steinborn
Colorado State University

ross/steinbor@cs.colostate.edu

November 14, 1997

Technical Report CS-97-121

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic Engineering
Center under the auspices of the U.S. Army Research Office Scientific Services Program and monitored by Battelle. (Grant number
DAAL03-91-C-0034 and TCN 96188 D.O. #1958 )



A Tutorial on a Sliding Window Target Detection Algorithm

Implemented in the DARPA Image Understanding Environment �

J. Ross Beveridge and Jim Steinborn

Colorado State University

ross/steinbor@cs.colostate.edu

November 14, 1997

1 Introduction

The Image Understanding Environment (IUE) is an object-oriented system implemented in C++

with the aim of aiding research in image understanding (IU). The exchange of results amongst

research, industry and government groups will be facilitated by use of this common platform. This

system includes standard implementations of common IU algorithms as well as standard IU data

structures. By this means, progress in algorithm development may be tracked, and new concepts

in image understanding may be tested.

This technical report provides a tutorial level explanation of a Sliding Target Box Detector

(STaBD) 1. This algorithm was selected as an archetypical Automatic Target Recognition algorithm

and it is based loosely on the concepts of a sliding window detector set out by Nguyen [D. 90]. This

algorithm is also of practical interest because it is used as the �rst phase of a two phase target

detection algorithm on the Unmanned Ground Vehicle Program's Semi-Autonomous Scout Vehicles.

That detection algorithm was demonstrated on live imagery in July 1995 at the Lockheed Martin

test site outside Denver and in the Summer of 1996 at Fort Hood, Texas.

The IUE STaBD task presented here accepts Forward Looking Infrared (FLIR) images in the

TIFF format, and returns two other TIFF images: one containing the t-values indicating to the

possibility of there being a detection at that point, and the other containing the original image

with target boxes drawn around all the detections that are greater than a user-speci�ed threshold.

2 Overview

STaBD determines whether or not a detection exists at a particular point by comparing the pixel

values in a target detection box centered at that point and the pixel values in a frame that is con-

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic

Engineering Center under the auspices of the U.S. Army Research O�ce Scienti�c Services Program and monitored

by Battelle. (Grant number DAAL03-91-C-0034 and TCN 96188 D.O. #1958 )
1This report will use exact code examples when �nished. These examples are not be included now because the

code must be changed to reect the new IUE/KHOROS task protocol released in September 1996



Margin Box

Image

Deadzone
Target Box

Frame

Figure 1: Layout of the components of the sliding detection box.

centric with the detection box. Referring to �gure 1, you can see that the target box is surrounded

by the deadzone, an area of unsampled pixels. Outside of this zone is the frame. The dimensions

of the target box and the width of the deadzone are speci�ed by the user on the command line.

Means and variances are computed separately for both the target box and the frame. The t

statistic is then computed, and from this can be calculated the probability p that the pixel values

in a target detection box are from the same normal distribution as the pixel values in the frame.

The target box and associated frame are 'slid' over the entire image, and the pixel distributions of

the target box and frame are examined. These pixel areas are compared by means of the t statistic

- a measure of how likely a value belongs to a normal distribution - along with the associated

probability p that the pixels comprising the two areas are from the same distribution. The t values

and the p values are stored in separate arrays that are the same dimensions as the image. It should

be noted that the t statistic is more useful in this case, because we are more interested in the

likelihood of a detection, rather than proving that the target box is 'di�erent enough' than the

frame region.

2



3 Example

Figure 2: Sample FLIR image from the Fort Carson Dataset.

The command line for STaBD is as follows:

tbox imagefile width height deadZone hot/cold upThresh

Image�le is the input TIFF image; width and height are the pixel dimensions of the target

box; deadZone is the width (in pixels) of the unsampled space around the target box; hot/cold is a

binary variable representing the type of detection desired: hot = hot targets, cold = cold targets;

upThresh represents the top x percent of the detections that are to be considered as detections:

for example, 0.1 = the top 10% of detections.

For this example, we applied StaBD to a FLIR image, nov110000.ti� (see �gure 2), from the

Fort Carson Data Collection [BPY94]. The following command line was issued:

3



tbox nov11000.tiff 25 5 3 hot 0.1

This indicates that the target box is 25 pixels wide and 5 pixels high, with an unsampled space

of 3 pixels around it. We are looking for the top 10% of hot detections. Figure 3 shows the results

of the run: a. shows the t values, the low values are dark; b. shows the detection boxes overlaid

on the original FLIR image.

a. t value image b. FLIR image with detection boxes overlaid

Figure 3: Results of running STaBD on the sample image.

4 The Class

We de�ne a new class of object for e�ciently computing the statistics over axis-aligned boxes of

pixels within images. This specialized mechanism uses the accumulated sum and sum of squared

image values of all pixels down and to the left of the current pixel. See section 5.3 for more details.

The class is called WinTStat (for Window T Statistic). Table 1 lists the private members

(variables) of this class, and table 2 lists its public members.

4



IUE array 2d<IUE INT>

sum array in which to store sums

sumSq array in which to store squared sums

IUE scalar image 2d of<IUE UINT8>

img pointer to the image array

imgDetPixels array (same dimensions as img) in which to store detection results

imgDetBoxes array (same dimensions as img) in which to store detection boxes

IUE scalar image 2d of<IUE DOUBLE>

imgTValue array (same dimensions as img) in which to store t values

imgPValue array (same dimensions as img) in which to store p values

imgTScratch array (same dimensions as img) in which to store intermediate results

Table 1: The class WinTStat private members.

5 Initialization

Section 4 described the class WinTStat; this section describes the operation of the class constructor

during initialization of a new WinTStat object. The dimensions of the frame around the target

box and the margin box are computed. The aforementioned accumulation arrays containing sum

and sum of squared image pixel values are also calculated.

5.1 Widths and O�sets

For e�ciency, the various target boxes are frames that are stored as integer o�sets to their corners

from the current pixel. The widths and o�sets of the target box and frame (see �gure 1) are

computed from the user-speci�ed values on the command line. In order to compare the contents in

the target box to the contents in the frame, both of these areas need to contain a similar number

of pixels. The width of the frame is computed via the quadratic formula using the dimensions of

the target box and the width of the dead zone. Since all of these dimensions are integer values,

there may be an inequality between the number of pixels in the frame and the target box. If this

occurs, the frame area will be made larger than the target box area.

5.2 Margin

The margin box (see �gure 1) allows us to easily test whether the current pixel is at the cen-

ter of a target box wholly contained within the image itself. One of the methods of the class

IUE discrete axis aligned box 2d is called is in. This enables an easy call to determine if a pixel

location exists within this margin box. The margin is computed from the dimensions of the outer

5



IUE discrete axis aligned box 2d

margin box used to determine if frame falls o� the edge of the image

IUE DOUBLE

upThresh threshold of the top percentage of t values which will be considered

IUE BOOL

hotCold a ag signaling whether the user is interested in hot or cold detections

IUE INT

widthTarget width of the sliding target box

heightTarget height of the sliding target box

widthFrame width of the outside of the frame

heightFrame height of the outside of the frame

deadZone width of the area of unsampled pixels between the target box and the frame

frameZone width of the frame

nTarget number of pixels contained within the target box

nFrame number of pixels contained within the frame

xMax x dimension of image array

yMax y dimension of image array

xMinA A is the target box

xMaxA these are the o�sets from the current

yMinA pixel to its corners

yMaxA

xMinB B is the outside of the frame

xMaxB these are the o�sets from the current

yMinB pixel to its corners

yMaxB

xMinC C is the inside of the frame

xMaxC these are the o�sets from the current

yMinC pixel to its corners

yMaxC

Table 2: The class WinTStat public members.

border of the frame surrounding the target box. As a result of this, you will note in the t value

image (see �gure 3a.) has a dark border of pixels where it was impossible to perform any statistical

evaluation.

6



472717100

0

0

0 0 0 0 00

0

0

38

7 13 22 39

5

4

1

10 17 23

31

29

8

4 6 7 9

13 2016

1 3 2 21

3 1 3 2 2

1 1 2 3 2

2 1 2 3 2

3 3 1 2 1

Figure 4: Comparison of the lower left portion of an image (left) and its sum array (right).

5.3 Sum and SumSq arrays

These arrays accumulate the sum and squared sum image values for all of the pixels below and

to the left of the current pixel. By this means, the mean and variance over rectangular windows

within the image may be computed e�ciently, needing to access only the values at the four corners

of the rectangle. These two sum arrays have dimensions similar to the image array, except that

they have an extra row added to the bottom and an extra column appended to the left. This '-1'

row and column contain zeros: these values are useful when computing the statistics by means of

this accumulated-sum technique (see �gure 4).

Using this type of array, the sum of all the image values in the dashed rectangle (see �gure 6) is

the value stored in the upper-right corner (23) minus the value to the left of the upper-left corner (5)

and the value below the lower-right corner (7) plus the value below and to the left of the lower-left

corner (1). This works because each cell in this matrix contains the sum of the values in all the

cells below and to the left of the current cell. Therefore, the upper-right cell of the rectangle (23)

contains the sum of all of the cells from (-1, -1) to (3,2).

Referring to �gure 6, the cell in the upper right of A contains the sum of all pixels down and

to the left of that cell. If we subtract all of the pixels to the left of and below the unhatched box

labeled by A, we would be left with just the sum of pixels in A. To do this, take the value in the

upper right cell of A, subtract the values in the upper right cells of C and D, and add the value

in the upper right cell of B. Since B is included in both C and D, it has been subtracted twice,

making this last addition necessary.

Referring to �gure 5, note that for this computation you have:

7



1 3 2 21

3 1 3 2 2

1 1 2 3 2

2 1 2 3 2

3 3 1 2 1
472717100

0

0

0 0 0 0 00

0

0

38

7 13 22 39

5

4

1

10 17 23

31

29

8

4 6 7 9

13 2016

Figure 5: Image array vs. sum array - computing the sum of the values in the box.

A

B

C

D

Image

Figure 6: Sum of cells in inner unhatched box = A - C - D + B

� from image array: 1 + 3 + 2 + 1 + 2 + 3 = 12

� from sum array: 23 - 7 - 5 + 1 = 12

As you can see, summing the values in a rectangle in the image array is O(# cells in rectangle),

whereas doing the same using the sum array only requires accessing 4 values.

8



6 Computation of Statistics

Having obtained the sum of all the pixels within a box in the image, one can now use statistical

analysis to determine whether or not the pixel at the center of the target box represents a detection.

The t and p values are computed for every pixel location in the image. If the user is looking for cold

detections, the t value is negated. These values are then stored in the imgTValue and imgPValue

arrays (these arrays have the same dimensions as the image array).

If the current pixel is not within the margin box, 0.0 is assigned to the t value and p is set to 0.5,

which is a reasonable assumption. If the pixel is inside the margin box, the means and variances

of the values contained within the target box and the frame are computed separately. From these,

the pooled variance is determined, and the t value is computed. If the two means are equal or if

the the pooled variance is equal to zero, the t statistic is assigned the value 0.0. The p value is

then computed, which is the probability that the pixel values in the target box and the frame are

drawn from the same normal distribution.

7 Detection strength image

An image which represents the detection strength of every pixel is generated. This is done by

converting the values in the imgTValue array to the range 0..255.

8 Detection boxes image

To see where the detections are in the image, detection boxes are drawn into a copy of the t value

image (imgTScratch). The maximum value is extracted from the t value array, and a detection

threshold is created from it by multiplying by (1.0 - upThresh). This makes the threshold equal

to the top upThresh percent of the maximum value. A detection box is drawn in the boxes image

(imgDetBoxes) at this location, and an area equal to the outside frame of the sliding detection

box is cleared around the current pixel location. Clearing this area ensures that there is only one

detection box drawn around the pixel with the maximum value. This procedure is repeated until

there are no more t values greater than the threshold.

References

[BPY94] J. Ross Beveridge, Durga P. Panda, and Theodore Yachik. November 1993 Fort Car-

son RSTA Data Collection Final Report. Technical Report CSS-94-118, Colorado State

9



University, Fort Collins, CO, January 1994.

[D. 90] D. M. Nguyen. An iterative Technique for Target Detection and Segmentation in IR Imaging

Systems. Technical Report November, (CECOM) Center for Night Vision and Electro-

Optics, 1990.

10


