
Computer Science
Technical Report

LiME Users Guide �

J. Ross Beveridge
Colorado State University

ross@cs.colostate.edu

November 20, 1997

Technical Report CS-97-122

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic Engineering
Center administered by the U.S. Army Research Office Scientific Services Program and monitored by Battelle. (Grant TCN 96188
D.O. #1958)

LiME Users Guide
�

J. Ross Beveridge
Colorado State University

ross@cs.colostate.edu

November 20, 1997

Abstract

This Users Guide provides a brief overview of the software system LiME which performs op-
timal 2D line segment matching. LiME searches for the optimal many-to-many correspondence
between a model and a set of data features, where each is expressed as a set of 2D line seg-
ments. The model may be rotated, translated and scaled relative to the data during matching.
LiME is written in c++ and is designed to be run as part of the DARPA Image Understanding
Environment (IUE). There is, in addition, a stand alone version of LiME. Also distributed with
LiME is a Java graphical user interface which will assist a user in running LiME. The roughly
65 user speci�ed parameters read by LiME are laid out in a series of logically grouped control
panels with accompanying on-line documentation. A brief tutorial in included at the end of this
Users Guide.

�This work was sponsored by the Defense Advanced Research Projects Agency (ARPA) through the Topographic

Engineering Center administered by the U.S. Army Research O�ce Scienti�c Services Program and monitored by

Battelle. (Grant TCN 96188 D.O. #1958)

Contents

1 Introduction 1

1.1 An Example of What LiME Does . 1

1.2 LiME and the Image Understanding Environment 2

2 Installation 2

2.1 You Need Unix and the X11 Library . 2

2.2 The source �les which makeup LiME. 4

2.3 The Source Files Which Makeup Limeade . 5

2.4 Changes to your Run-Time Environment . 5

2.5 Compiling LiME . 6

2.5.1 Compiling LiME for use with the IUE . 6

2.5.2 Compiling LiME without IUE . 6

2.6 Compiling Limeade . 8

3 A Brief Overview of the Three Matching Algorithms 8

4 Understanding LiME's Parameters through Limeade 9

4.1 What Limeade Does . 9

4.2 The Five Limeade Parameter Panes . 10

4.3 The File Pane . 11

4.4 The Match Error Pane . 12

4.5 The Match Space Pane . 13

4.6 The Search Pane . 15

4.7 The Display/Reporting Pane . 17

5 Tips, Trouble Shooting and Known Bugs 19

5.1 Java is unable to �nd Limeade and/or Limeade cannot �nd �les 19

ii

5.2 Limeade Hides LiME text output including error message! 19

5.3 Limeade Does not Recognize you Quit LiME . 19

6 Tutorial Examples 20

6.1 Tutorial 1: The Rectangle and Random Starts Local Search 20

6.1.1 Watching Single Trials of Local Search . 21

6.1.2 Inspecting a Match . 23

6.1.3 Running Multiple Trials . 23

6.2 Tutorial 2: Key Feature algorithm for Horizon Matching 24

6.3 Tutorial 3: An Interesting Problem . 24

7 More Advanced Features 26

List of Tables

List of Figures

1 An example match found using LiME . 3

2 Script that modi�es run-time environemnt to support LiME 7

3 Limeade Startup Window. 10

4 Limeade File Pane. 11

5 Limeade Match Error Pane. 13

6 Limeade Match Space Pane. 14

7 Limeade Search Pane. 15

8 Limeade Display/Reporting Pane. 17

9 Example of all Windows Running LiME through Limeade. 22

10 Horizon Match from Tutorial 2 . 25

iii

1 Introduction

LiME, or more fully, the Line Matching Environment, is a set of algorithms for matching object

models to image features where both are expressed as sets of 2D line segments. The LiME system

itself is written in c++: there are roughly 20 source �les which makeup LiME. The execution of

LiME is typically controlled through a parameters �le which contains 65 entries. Any of these

parameters may alternatively be passed to the executable as command line arguments.

To assist users working with LiME, a graphical users interface for selecting and modifying control

parameters has been developed in Java. This companion system, called Limeade, organizes the

control parameters into logical sets, provides on-line documentation, and allows users to quickly

change parameters and re-invoke LiME.

The purpose of this users guide is to assist someone installing LiME and to provide a general

overview of the what LiME can do. It includes some tutorial examples which should help a user

con�rm that the system is correctly installed as well as gain familiarity using the system.

1.1 An Example of What LiME Does

LiME has emerged out a long tradition of object recognition algorithms used in the computer

vision community which match geometric models of object to features extracted from imagery.

Consequently, it does not match pictures of object to other pictures, but instead geometric features.

LiME's de�nition of a feature is very simple: a feature is a 2D line segment.

An object model is simply a set of 2D line segments. These segments need not form a closed

contour, in fact there are virtually no constraints on the segments. However, if one is to go beyond

using LiME on the models and data supplied with it, then a means of deriving object models

appropriate to one's chosen domain must be found. In general, models can be derived from 3D

CAD models, extracted from cleaned up training images, or extracted from rendered images of

3D object models. A review of the technical papers written about the algorithms included within

LiME will show examples of these and more.

Data is also represented simply as a set of straight line segments. In our own past work with LiME,

line segments have been extracted from imagery using the Burns Algorithm [BHR86]. However,

a variety of straight line extraction algorithms have been developed and might be used [NB80,

LB82]. If you are using LiME as part of the IUE (DARPA Image Understanding Environment, see

Section 1.2 below) then you will also have access to our implementation of the Burns algorithm.

LiME will use one of three heuristic optimization algorithms in an attempt to �nd the globally

optimal many-to-many match between model and data segments. In the course of searching, the

model will be rotated, translated and scaled so as to best �t the corresponding data. Figure 1 shows

1

a particularly challenging matching problem from the standpoint of cluttered and fragmented data.

1.2 LiME and the Image Understanding Environment

While LiME and Limeade have been developed to run in a stand-alone fashion without any de-

pendence upon other systems, they are nevertheless much more useful in the context of a larger

environment. For example, one is limited in using LiME if one does not possess an algorithm for

extracting straight line segments from imagery. Consequently, LiME has been incorporated into the

Image Understanding Environment (IUE). Speci�cally, a wrapper has been written to allow input

in the form of IUE objects (IUE_parametric_line_segment_2d) stored in IUE data exchange �les.

More is said about LiME and IUE in Section 1.2.

For those readers not familiar with the Image Understanding Environment, it is a comprehensive

set of c++ object de�nitions and associated libraries designed to support image understanding

research and technology transfer. The IUE is publicly available through a website maintained by

Amerinex Applied Imaging: http://www.aai.com/AAI/IUE/IUE.html. It has been developed with

the support of the DARPA Image Understanding Program and provides a common environment

for the development and distribution of algorithms.

2 Installation

2.1 You Need Unix and the X11 Library

LiME runs on Unix workstations and it is currently known to operate properly under Solaris and

Linux. LiME displays a window which shows visually the progress and �nal results of matching.

The X11 library is used to create this window; no higher level windowing support is required.

LiME should in principle port to any Unix workstation with X11. If you do port LiME to another

architecture, please let us know.

A typical installation of LiME has the following directories.

2

(a) (b)

(c) (d)

Figure 1: Optimal match to fragmented data. a) aerial photograph, b) segments [BHR86], c) model, d)
best match.

3

$LIME HOME/SunOS5

$LIME HOME/SunOS5/depends

$LIME HOME/data

$LIME HOME/java

$LIME HOME/java/AnimationImages

$LIME HOME/noniue

$LIME HOME/src

$LIME HOME/src/SunOS5

$LIME HOME/src/SunOS5/depends

$LIME HOME/src/SunOS5/depends/tmpl-inst

$LIME HOME/src/SunOS5/tmpl-inst

$LIME HOME/src/�les

$LIME HOME/tmpl-inst

$LIME HOME/tutorial

The data directories contain examples of model and data line segment sets. In some cases they

also include the imagery from which these models and data are derived. They are further described

below. The scripts directory contains a small script which should be run upon login to customize

your Unix environment for LiME. This script resides in the �le .lime_env.

There are two source directories, one for the *.c++ code which makes up LiME itself, and one for

the Java code for the Limeade GUI which helps one to run LiME interactively.

2.2 The source �les which makeup LiME.

The following is a complete list of the *.cc �les which constitute the LiME distribution under the

src directory which is used to build the IUE version of LiME.

limeBaseClass.cc limeLineClass.cc limeTableau.cc

limeCohenSutherlandClipping.cc limeMain.cc limeTableauBuild.cc

limeDEXIO.cc limeMatcherClass.cc limeTableauClass.cc

limeFit.cc limeOmission.cc limeUtils.cc

limeGenetic.cc limePairClass.cc limeVectorTransformations.cc

limeGrid.cc limeParameters.cc limeWindows.cc

limeGridClass.cc limeSearch.cc limeInterface.cc

limeSignal.cc limeDEXIO.cc

The following *.h �les are also part of the LiME distribution:

4

limeBaseClass.h limeIncludeSources.h limeParameters.h

limeChromo.h limeIncludes.h limePointLineUtils.h

limeChromoVSz.h limeInterface.h limePointPointUtils.h

limeCohenSutherlandClipping.h limeLineClass.h limeSearch.h

limeConstants.h limeLineUtils.h limeSignal.h

limeDe�nes.h limeMacros.h limeTableau.h

limeFit.h limeMatcherClass.h limeTableauBuild.h

limeGenetic.h limeMessyChromo.h limeTableauClass.h

limeGlobals.h limeMessyGene.h limeUtils.h

limeGrid.h limeOmission.h limeVectorTransformations.h

limeGridClass.h limePairClass.h limeWindows.h

Under the noniue directory there are duplicates of several �les which enable a user to build a stand

alone version of LiME. These �les are:

limeInterface.cc limeMain.cc

2.3 The Source Files Which Makeup Limeade

Limeade is written in Java and consists of the following �les:

CanvasLabel.java CustomFileDialog.java Data.java

DataCheckbox.java DataChoice.java DataTextField.java

FramedArea.java HelpLabel.java HelpSystem.java

LimeDisplayReportingFrame.java LimeFileFrame.java LimeMatchErrorFrame.java

LimeMatchSpaceFrame.java LimeSearchFrame.java LimeTabFrame.java

LimeadeTop.java OpensFile.java PathField.java

StringVector.java TabPanel.java TrivialApplication.java

These �les should be compiled for the Java virtual machine. Under Solaris, this is done using the

command javac. The Java compiler is smart enough that if you compile the root class, the �le

Limeade.java, the supporting classes will be compiled as well. This appears only to be true so

long as the �les reside in the same directory. Perhaps later versions of the java compiler will be

better at handling class source �les distributed across multiple directories.

2.4 Changes to your Run-Time Environment

There is a short script at the lime home directory called lime_env. This should be customized and

sourced by your .cshrc in order to setup paths and environment variables to support LiME and

Limeade. Figure 2 shows a copy of this script. After running the environment script, you should

5

be able to run LiME and Limeade from any directory.

There are several things done for you in this script. Perhaps the most important is that it de�nes

an environment variable:

LIME_WORK

This should be be your current directory when running LiME. To reset this environment variable

during your session the alias limeworkhere is provided. If you have problems with LiME, a likely

cause of di�culty is not have the proper binding for this environment variable.

2.5 Compiling LiME

There are two Make�les distributed with LiME, one for LiME as part of the IUE, and the other

for the stand alone version of LiME.

2.5.1 Compiling LiME for use with the IUE

To build the IUE version of lime you should type make at the LIME_HOME directory. The subdirectory

structure below LIME_HOME is consistent with use of the standard make�le distributed with the IUE.

You may need to of course to make the standard path adjustments to match your site.

In keeping with IUE convention, a library is built for LiME which is then dynamically linked to

the main executable which resides at /s/parsons/a/fac/ross/vision/src/lime1.0/SunOS5 .

One key thing to keep in mind, the name of the actual executable is

limeIUE

2.5.2 Compiling LiME without IUE

A version of LiME may be built which does not use IUE. It uses most of the source �les in the

src directory and the additional �les in the noniue directory. The name of the executable for the

stand alone version of LiME is:

lime.

To build the stand alone version, invoke makewith the argument -f MakefileNonIUE. The preamble

of this make�le will probably need to be customized to re
ect how each site name the paths to

standard libraries.

6

#! /usr/local/bin/csh

CHANGE THE NEXT LINE TO MATCH YOUR SYSTEM!

setenv LIME_HOME /s/bach/g/proj/vision/src/lime1.0

setenv LIME_SRC $LIME_HOME

setenv LIME_BIN $LIME_HOME/SunOS5

setenv LIME_WORK ./

setenv LIME_DEMO $LIME_HOME

setenv LIME_DATA $LIME_HOME/data

setenv LIMEADE $LIME_HOME/java

Use this to change lime working directory to current one.

LIME_WORK is where output of lime is directed.

alias limeworkhere 'setenv LIME_WORK `pwd`'

The following aliases are simply here for convenience

They are not actually used by either LiME or Limeade.

alias golime 'cd $LIME_HOME'

alias golimebin 'cd $LIME_BIN'

alias golimesrc 'cd $LIME_SRC'

alias golimework 'cd $LIME_WORK'

alias golimedemo 'cd $LIME_DEMO'

alias golimedata 'cd $LIME_DATA'

alias golimeade 'cd $LIMEADE_SRC'

Add Limeade to the Java Class Path

setenv CLASSPATH $CLASSPATH\:${LIMEADE}

Add LIME_BIN and LIMEADE to path

echo $PATH | grep $LIME_BIN

if($status) then

setenv PATH ${PATH}:$LIME_BIN

setenv PATH ${PATH}:$LIMEADE

endif

Figure 2: Script that modi�es run-time environemnt to support LiME

7

2.6 Compiling Limeade

Limeade is made up of a series of Java classes all kept at the directory

LIME_HOME/java:

Also at this directory is a short shell script that will call the Javac compiler to build the Limeade

classes. The name of this script is makeLimeade.

3 A Brief Overview of the Three Matching Algorithms

LiME contains three quite di�erent heuristic matching algorithms: a random starts local search

algorithm, a key-feature algorithm and a messy genetic algorithm. All three algorithms seek to

minimize a match error which in turn uses a quadratic �tting process to globally align models to

data. An intuition for how this �tting and ranking process works is best developed by watching

the visual display of matches provided by LiME. During local search, LiME can be instructed to

draw each new best-�t con�guration of the model relative to the data. Fitting and the associated

match error are fully described in [Bev93].

Our work on optimal line segment matching began with the random starts local search algorithms

and �rst considered rigid 2D objects [BWR89]. We quickly discovered that �tting 2D models to

data is becomes simpler, not more complex, when scale is allowed to vary. This extension appeared

in [BWR90], and while we did not realize this at the time, we soon discovered our �tting procedure

is an extension of similar work by Ayache [AF86].

LiME has two di�erent local search algorithms available, Hamming-distance 1 steepest descent

and subset-convergent. An early comparison of the two appeared in [Bev92] and a more thorough

comparison appears as part of [JRBG97]. This latter paper addresses the basic question of how

run-time scales as a function of problem size. Both the algorithms and data used in this paper

come as part of the LiME distribution.

The other two algorithms have been developed more recently. The key-feature algorithm is ex-

plained and compared to random starts local search in [JRBS97]. The messy genetic algorithm is

explained and compared to random starts local search in [DWG97].

The key-feature algorithm begins by �nding spatially proximate triples of model and data line

segments and ranking these from best to worst according the match error. Then a simpli�ed local

search is used to �ll-out a match from this initial triple. Triples are formed by identifying the two

nearest neighbors to each model line in the model space and the two nearest neighbors to each data

line in the data space. Then, for every possible pair of model and data segments, two triples are

formed by combining these two nearest neighbors in pairwise matches.

8

The messy genetic algorithm uses the same spatially proximal triples as does the key-feature algo-

rithm. However, rather than attempt to build matches independently o� the k best triples, it places

these triples into a population and uses a type of genetic algorithm, a Messy GA [GDKH93], to

iteratively rank, select and recombine elements from the population until larger and better matches

emerge.

It has been our own experience to date that the messy genetic algorithm appears to best combine

speed with robust performance. However, one value of setting up matching problems within LiME

is that you can easily experiment will all three algorithms and draw your own conclusions.

4 Understanding LiME's Parameters through Limeade

Limeade has been written in large part to hide the contents of the LiME parameters control �le

from beginning users: as well as from experienced users who grow tired of constantly editing a

cryptic �le. This section gives and overview of what you will see when starting up Limeade and

how it interacts with LiME. The �ve panes used to specify logically related parameters are shown

and described in general terms. Since Limeade provides on-line help for each selection, �eld by �eld

descriptions are not provided here.

4.1 What Limeade Does

Limeade lets you run LiME interactively, quickly varying parameters and observing changes in

performance. It is intended that you will create a directory in which you wish to run one or more

interactive experiments and cd to that directory. Then, simply invoke Limeade by typing Limeade.

You will be presented with the Limeade startup window which contains an animated Logo and

a �le path: the path to a LiME parameters �le. An example of the startup window is shown in

Figure 3.

The choose button may be used to invoke a �le browser with which to select a LiME parameters

�le. The open button will open this �le, which means it will read the �le's contents and give you

a GUI through which you can modify the �le. There is a Save & Run option which lets you run

LiME directly without leaving Limeade. In this fashion, you can quickly and easily modify the

parameters and try di�erent variations.

A warning, Limeade currently will show a default �le name even if such a �le does not exist,

therefore you will want to copy a default parameter �le from the LiME LIME_HOME directory to

your working directory. Unfortunately, if you open an non-existing �le the current version of

Limeade just sits and does nothing. Future versions will hopefully at least give some warning that

no �le was found.

9

Figure 3: Limeade Startup Window.

4.2 The Five Limeade Parameter Panes

The LiME parameters controlled by Limeade are grouped into �ve distinct logical categories: �le

inputs, match error, match space, search and display/reporting. File inputs specify where LiME

is to read the model, data and optionally and image used for display. Match error parameters

alter the way the match error weights di�erent terms. Match space parameters determine how

LiME selects which model line segments might match which data line segments. Search parameters

control which of the three search algorithms are used as well as selecting di�erent types of behavior

within each algorithm. Finally, display and reporting parameters alter how LiME allows the user

to visualize matching progress, whether information about the matches found is stored to a log �le,

and what text is printed to standard out.

One moves between panes by selecting the desired pane name from along the top of the window.

Along with the pane selection buttons, the Save, Save as..., Save & Run and Done buttons are

always displayed regardless of the pane chosen. These are used to save the parameters �le, save

10

Figure 4: Limeade File Pane.

the parameters �le to a �le with a new name as speci�ed through the File Browser, to save the

parameters �le and then invoke LiME, and �nally close this window when �nished experimenting

with this parameters �le.

At the bottom of this window is a help window which will display a short help message associated

with whatever �eld the mouse is currently over. This is perhaps the best way to refresh your

memory about what each of the parameters does.

4.3 The File Pane

The File Pane, Figure 4, allows a user to select model, data and image input �les using the File

Browser. When using the stand-alone version of LiME, the model and data �les are simple ASCII

�les containing line segments endpoints. Here is an example of the �le which contains the rectangle

model from �le $LIME HOME/data/rectangle/Lime rectangle-model-lines.dat:

9.310 9.310 9.310 85.120

11

9.310 85.120 94.430 85.120

94.430 85.120 94.430 9.310

94.430 9.310 9.310 9.310

When using the IUE version of LiME, the model and data �les are IUE DEX �les containing a

sequence of IUE_parameteric_line_segment_2d.

The Synchronize Directories checkbox tells the File Browser to use a common pathway to �nd

model, data and image �les. This is convenient since typically these �les are stored in a common

directory.

The image �le is not actually used by the matching algorithms. Instead, it is used by LiME in

the search display window in order to show the original source image along with the line segments

during matching. If display of an image is not desired or there is not image available, the string

None is treated as a special
ag to LiME indicating that there is no image to use in its display.

4.4 The Match Error Pane

The Match Error Pane, Figure 5, allows a user to vary the parameters which determine the exact

form of the match error which is being optimized. While beginning users of LiME are not encouraged

to play with all the degrees of freedom in the Match Error, it is important to understand that this

is a parameterized error function which can, and usually should be customized for new domains.

Of all the parameters listed on this pane, the one which is most likely to require changing is

Maximum Displacement. The units for this parameter are pixels, and maximum displacement

in e�ect controls how far apart (measured by perpendicular distance) a model and data segment

can be and still be considered a good match. What value to choose depends upon the degree of

skew expected in the line segment data as well as the accuracy of the model.

The other parameter worthy of speci�c mention here is the Scale Range. There is a penalty term

as part of the match error which penalizes matches which make a model grow either too large or

too small. The penalty kicks in at the value of Scale Range. Hence, for a value of 2, there is no

penalty so long as the model ranges between one half and twice its original size. Any scale change

outside this range incurs a penalty. This parameter can be used to focus attention on matches

which essentially leave the model the same size. One caution, however, if Scale Range is made

too tight, then search can become nearly impossible due to all intermediate matches looking equally

dreadful. Take care when using a value of less than 1:5 for the Scale Range.

All of the match error parameters correspond to parameters described in Beveridge's Thesis [Bev93].

To gain a solid understanding of how match error is formulated, computed and parameterized we

recommending reading Chapters 3 and 4.

12

Figure 5: Limeade Match Error Pane.

4.5 The Match Space Pane

The Match Space Pane, Figure 6, allows a user to vary the parameters which determine the initial

combinatorial space of possible matches to be searched. Once LiME reads in the model and data

segments, it then constructs a set of pairs of possibly matching model and data segments. The

search space for matching is then the powerset of this set of pairs.

In terms of how this search space is constructed, there are essentially two modes in which one

can operate LiME. The �rst presumes that one lacks any prior constraint upon where the model

appears in the image. In this case, any model segment might match any data segment and the

complete set of model segments cross data segments form the basis for the search space. The second

mode presumes some initial guess as to the placement of the model in the image. Based upon such

a guess, it is possible to rule-out certain model-data pairings. For example, a vertical model line

segment could be precluded from ever matching a horizontal data segment.

To re
ect these di�erent modes, there are actually three ways that LiME o�ers for constructing

the initial set of possibly matching pairs. These are selected by the menu choice Match Space,

13

Figure 6: Limeade Match Space Pane.

which can be either Complete, Standard or Constraint Based. Choosing Complete builds

the complete set of pairs in which all model segments possibly match to all data segments. This is

the default and the proper setting if no prior knowledge of the model's placement in the image is

available.

Both the Standard and Constraint-based modes use the initial placement of the model to �lter

out data segments. Speci�cally, there are two additional parameters which determine how the

Standard mode operates: Delta Pixels and Delta Phi. Any pair of model and data segments

with a minimum Euclidean distance between segments greater than Delta Pixels are removed

from the set of possibly matching segments. Any pair of model and data segments which di�er in

orientation (unsigned) by more than Delta Phi are removed from the set of possibly matching

segments. Delta Phi is expressed in radians.

TheConstraint-basedmode usesDelta Pixels andDelta Phi in the same way as the Standard

mode. However, it applies an additional length constraint. If Length Filter is set to Minimum

Length, then any data segment shorter than the speci�ed minimum length is removed from any

pairing with any model segment. If Length Filter is set to Length ratio, then a model-data

14

Figure 7: Limeade Search Pane.

pair is removed if the data segment is shorter than some percentage of the length of the associated

model segment. It is also possible to specify that each model segment should consider matching

only the K longest data segments that satisfy the Delta Pixels and Delta Phi constraints.

4.6 The Search Pane

The Search Pane, Figure 5, allows a user to select which of the search algorithms LiME will execute.

The algorithm may be chosen either from theMatch Methodmenu or by selecting the appropriate

checkbox. Most parameters are algorithm speci�c and the pane is organized accordingly. The

exception to this rule concerns the random number generator.

Both the Random Starts Local Search and Messy GA methods are non-deterministic and use the

srand48 random number generator. By default, each execution of LiME uses the time as the

random seed, thus no two runs are likely to be the same. However, a user may specify a random

seed. This is helpful if looking for a particular behavior which one wants to repeat either for

debugging of illustration purposes.

15

There are three parameters which control the behavior of the random starts local search algorithm.

The method is either Steepest Descent or Subset Convergent. Typically one runs between 5

and 100 trials when watching the system: anymore and the wait gets annoying. The parameter

Start Loading determines, on average, how many data line segments are matched to a model

segment in the randomly chosen initial matches.

Both the Key Feature Algorithm and Messy GA use spatially proximal triples and/or doubles to

focus the attention of the search process. There are 2n proximal triples, where n is the number

of possibly matching model and data segments. There are n proximal doubles. Thus, the total

number of key features is 2n when using only triples, n when using only doubles, and 3n when

using both.

Typically, the Key Feature algorithm uses only the best key features. How deep to go down into the

ranked list of Key Features is controlled by Fraction of Possible. Recall the features are ranked

from lowest to highest match error. Thus, a value of 0:10 instructs the algorithm to use only the

best 10%: 0:2n when using triples only. The parameter Add Pairs Only indicates that the local

search procedure used to �ll out matches from each Key Feature will consider only the addition of

pairs. If this
ag is turned o�, then local search will allow both additions and deletions, and local

search will become capable of moving o� of the Key Feature if a better alternative is found.

The Messy Genetic algorithm is typically run multiple times, since like random starts local search,

it may not converge to the best match in any given run. However, the Messy GA is typically much

less likely to become hung up on a local optima, and therefore far fewer trials are typically run.

Typically between 1 and 10 trials are su�cient.

The size of the initial population used by the Messy GA is controlled by the parameter Fraction of

Possible. This is analogous to the parameter of the same name used by the Key Feature algorithm.

However, in this case it is expected that a larger value should be used: it is better to include more

triples/doubles rather than fewer in the initial population.

The last parameter for the Messy GA is the maximum number of generations to run. The Messy

GA uses the Genitor [WS90] selection strategy and therefore the de�nition of a generation may

strike some as counter intuitive. In Genitor, a generation involves the selection and recombination

of a single pair of parents. The number of generations should typically be in the thousands. The

Messy GA may terminate before this number of generations if the population is determined to have

converged.

4.7 The Display/Reporting Pane

The Display/Reporting Pane, Figure 8, presents parameters which alter how LiME displays the

progress of search to the user as well as how the results of matching are logged to disk.

16

Figure 8: Limeade Display/Reporting Pane.

LiME has the ability to create a window in which it visually displays the matches being found.

Whether this window is created, and what is displayed to it, is controlled by the choice parameter

Graphics Display Level. The least interesting option is no display. This setting, is however

very useful if you want to save a parameters �le suitable for running LiME in a batch processing

mode without any graphics.

When displaying the progress of the matching algorithm, there are four modes or levels of detail

which can be requested. The lowest is to request that the best found yet be displayed. This is

useful when the goal is to monitor how good of a match the system is �nding. The next level is to

request to see the result of every trial. This is somewhat harder to interpret, since good matches

and bad matches will go by in rapid succession depending upon how each trials comes out. For the

Key Feature algorithm, where there are no trials, the results of �lling out each key feature will be

displayed in turn.

17

The third level of detail is to request to see every match found by local search as it progresses from

the initial to �nal (locally optimal) match. This mode makes the most sense for the random starts

local search algorithm, and it is highly recommended that users use this mode with trials set to 1

or a small number in order to develop a sense of how the global �tting process positions the model

during search and for which matches are favored over others.

There is a �nal level in which the user is prompted to hit the enter key before search will take the

next step. Warning, this mode will only work if you invoke LiME from the command line, so you

must save the parameters �le and then run LiME from outside Limeade.

There is two other parameters which relates to the display of the matches, and this is theWindow

Target Width. This parameter controls the size of the display window on your screen. It can be

adjusted to suit the users tastes and the size of their screen. The other is the Origin Placement.

LiME currently allows the coordinate pairs (a; b) of points read from a �le to be interpreted in two

ways: either with the origin at the upper left of the window (row; col) or with the origin at the

lower left (x; y).

The Reporting Level parameter controls the detail contained in messages printed by LiME to

standard output. Again, at the risk of being redundant, these reports will only be seen when LiME

is invoked from the Unix command line. The more typical way to capture the results of matching

for later analysis is through the writing of Log �les, and there is a parameter which enables logging.

The �le will appear in the directory from which LiME (or Limeade) is invoked. The name of the

Log �le is speci�ed in the parameters �le, but is not modi�able through Limeade.

There is one last
ag in the Display/Reporting Pane that is very useful. Sometime you want to see

the relative position of the model with respect to the data without actually doing any matching.

This can be done by setting the Show input con�guration only checkbox. If you then run

LiME, you will see the model drawn exactly as it appears in the model �le. Recall that in the

standard mode of de�ning the search space, delta pixels and delta phi for data segments relative to

model segments is de�ned relative to this initial con�guration. One caution, with this box checked,

LiME no longer performs matching (and may therefore appear broken if you have forgotten this

option is chosen).

5 Tips, Trouble Shooting and Known Bugs

The separation between LiME and Limeade is in some respects unfortunate. It re
ects more the

process by which LiME came into existence then it does a conscious preference. However, along

with disadvantages, some if which will be discussed here in regard to some tricks that make life

easier, it is worth pointing out that the separation has the advantage that LiME is readily run

under the control of Unix scripts with no GUI interface to get in the way.

18

5.1 Java is unable to �nd Limeade and/or Limeade cannot �nd �les

Limeade is run by the Java virtual machine and it is intended to be invoked by a script Limeade

kept in the LiME bin directory. This script expands to a single command line which calls the

Java virtual machine, invokes the Limeade Java application, and passes two Unix directories into

Limeade. The �rst is the directory where the Limeade .java and .class �les are kept. The is

actually only needed so that Limeade can �nd the images used to construct its initial animated Logo.

Possible problems with Limeade may sometimes be traced to incorrect directory speci�cations.

5.2 Limeade Hides LiME text output including error message!

By design, when running LiME from Limeade, Limeade will parrot precisely the Unix command

needed to duplicate how it would call LiME. This is hack to get around the unfortunate property

that how Limeade tells you that there is a problem running LiME is by not saying anything at all.

Granted this is very frustrating, but the only way out of this problem is to pass a text I/O stream

into LiME from Limeade, and the interface is not to date that sophisticated.

If for any reason LiME does not appear when invoked from Limeade, the recommended procedure

is to copy the parroted command into the Unix prompt and run LiME directly from the command

line. In this way you will see whatever error message LiME may have intended you to see.

5.3 Limeade Does not Recognize you Quit LiME

When you run LiME from Limeade, the button that usually says Save & Run changes to Kill

Lime. However, when you terminate the run of LiME by clicking on the Quit button in the LiME

search display window, Limeade does not automatically switch back the label on the button to

Save & Run. This is mostly a cosmetic annoyance, you can click on the Kill Lime button and

it goes back to Save & Run and is ready to use again.

6 Tutorial Examples

The following tutorials will familiarize you with the use of LiME, Limeade and several interesting

matching problems. These tutorials assume you are sitting down at a terminal with your own test

directory and that you are setup to run Limeade. The tutorial will work equally well with either

the IUE or NONIUE versions of lime. The only di�erence will be in whether you use dex �les for

the model and data line segments or the native dat �les which work with the stand alone version

of LiME.

19

The source data �les that go with the tutorials can be found at the directory LIME_HOME/tutorial/data

and the source Parameter �les which include all the parameters settings as they should be set to

start each tutorial are at LIME_HOME/tutorial/Parameters . The best way to start the tutorials

is to create your own lime working directory under you own account and make your own copy of

the Parameters File which correspondes to the tutorial you want to run.

Two Warnings before you start!

1. Be sure to run the script limeworkhere at your working directory before you attempt to

run LiME or Limeade. If this script is not run in order to set the LIME_WORK environment

variable, then LiME will not run properly.

2. Throughout the tutorial, all �le names will have to be revised to match the paths for your

installation of LiME. LiME and Limeade both store absolute paths in the Parameters Files.

When LiME is installed, these match the paths at the previous site where LiME was assem-

bled. You must �x this on a case by case basis.

6.1 Tutorial 1: The Rectangle and Random Starts Local Search

.

Copy the �le LiME_parameters_tutorial1 from the $LIME HOME/tutorial/parameters directory

into your test directory. Start Limeade by typing either limeadeIUE or limeadeNONIUE depending

upon which version of LiME you wish to run. Just a note, the only di�erence between these two

scripts is the name of the executable to run which is passed into Limeade. Limeade is otherwise

the same.

Once the Limeade main window appears, use the Browse button to bring up the File Browser.

From within the Browser select the �le LiME_parameters_tutorial1 from your current directory.

Now open this �le using theOpen button. A note, in this browser you must double-click a selection

so it appears as the selection at the top. Then to exit with this selection click on Choose.

Look at the File Pane and see if the Model and Data �les have been found. This is indicated by a

parenthetical comment next to the �eld labels: either (File Found) or (Not a File). Probably

the �les have not been found, since the $LIME HOME directory is going to be di�erent for every

installation, and the parameter �le uses hard pathways rather than the $LIME HOME environment

variable.

Use the Browse.. option to modify the pathways to the model and data �les to re
ect where this

data is stored on your system. For this tutorial you want to select model �le Rectangle-model.dex

and data �le Rectangle-model.dex (Rectangle-model.dat and Rectangle-model.dat if running

LiME without IUE.) One other aspect of running with and without IUE. The placement of the

20

Figure 9: Example of all Windows Running LiME through Limeade.

origin of the images are di�erent. The parameters OriginPlacement in the display and reporting

pane can be used to select the correct origin.

The parameters �le should be all set to run once you have speci�ed the path to the model and data

�les. Con�rm that the method selected is random starts local search and set the number of trials

to 1. Then click on the Save & Run button. In several seconds you should see the LiME search

display window appear. If you do not see LiME appear, then go to Section 5.2 and read about

how to invoke LiME from the command line with the same arguments being used by Limeade in

order to get messages from LiME about problems. Also, if you used the synchronized directories

in the �le Browser, odds are good you selected a path with no �lename for the image and that this

is causing the error. Go back to the File Pane and enter None in the image �le �eld.

For reference, Figures9 show a snapshot of a screen for this tutorial. The mostly covered window

in the upper right is the Limeade welcome window. The window on the top left is the Limeade

21

window in which LiME parameters are edited and from which Lime is run. The window in the

lower right is the search display showing an optimal match for this rectangle example. Finally, the

xterm from which Limeade was invoked is shown along the bottom. Note how the command line

that would be needed to invoke LiME directly is parroted back to this terminal window.

6.1.1 Watching Single Trials of Local Search

Once you get LiME started properly, You will see the model (typically red) repeatedly drawn over

top of the data for successively better matches. The button in the lower left of the search display

window will say Abort while search is active. Once search terminates, this message changes to

Quit. This switch of labels is an important cue letting you know matching has terminated.

Odds are small that the match you now see is truly optimal. You can gain some intuition for the

nature of the local optima which trap the search algorithm by quitting and restarting LiME several

times. You can do this either with the Kill Lime button in Limeade or with Quit button on the

search display window.

6.1.2 Inspecting a Match

A nice feature of the search display window is that you can use it to inspect exactly which data

segments have matched a given model segment as well as which data segments are candidate

matches. Once matching has �nished, the button now says Quit, you may click the mouse near a

model segment and LiME will use di�erent colors to indicate which data segments match. Any data

segment found to match that model segment will turn bright green. The other segments which are

candidate matches will turn dull green. At this point, a complete match space has been selected,

so all data segments will be dull green.

You can inspect model segments repeatedly and thus go in turn through the entire match seeing

visually exactly which data segments have been found to match which model segments. When you

are �nished, quit LiME.

This is also a good time to enable logging in the Display/Reporting Pane by selecting Compre-

hensive Log and run LiME. You should see a new *.log �le in the test directory. Go ahead

and load this �le into an editor and inspect it. With detailed logging enabled the �rst thing to

appear in the �le is a copy of the parameters �le. This keeps a complete record how the matches

which follow were generated. Next comes a repetition of the model and data segments, followed

by an enumeration of the set of possibly matching pairs. The remainder of the �le lists the locally

optimal matches found by LiME. A very short log �le just summarizing which segments match can

be generated by selecting Log Match Summaries.

22

6.1.3 Running Multiple Trials

Go to the Search Pane and select 10 trials of local search and re-run LiME. You will now see the

complete progression of matches found by each of the 10 random trials of search. This can at �rst

be a bit confusing. As soon as a locally optimal match is found, the display immediately switches

to the random initial match of the next trial. However, after all trials are completed, the best

match found by any trial is displayed. Now it is much more likely that the match you are seeing is

in fact optimal.

If you only want to see when the system �nds a match better than any it has seen yet, this can be

done by dropping to a lower detail graphics level. Speci�cally, go to the Display/Reporting Pane

and select Show best currently found for the Graphics Display Level. Now re-run LiME.

Depending upon the machine on which you are running, you may now see a somewhat boring

display, since on this problem the best match is quickly found and left up on the screen.

6.2 Tutorial 2: Key Feature algorithm for Horizon Matching

In this tutorial we will assume you have already completed Tutorial 1, and therefore be more

concise with our instructions. Begin by copying the parameters �le LiME_Parameters_Tutorial2

to your working directory. Start Limeade and open this Parameters File. Go to the Search Pane

and observe that the Key Feature algorithm has been selected. Also go to the Display/Reporting

Pane and observe that the origin has been placed in the Upper Left. The line segments in the

model and data have been generated with the Burns algorithm in the IUE and thus the choice of

origin.

Also go to the Match Space Pane and observe that the Standard match space initialization tech-

nique has been selected. The means that only data segments within Delta Pixels of a model segment

and Deltat Phi (in orientation) are considered to be candiate matches. Consequently, you should

see \N = 90" displayed at the bottom of the search window when you run search: there are 90

candidate model-data pairs which are possible matches in this example.

Click on Save & Run and what you will see is an outdoor terrain image with a horizon line. The

model in this case has been extracted from a rendered terrain map and the data is extracted from

this image. The key feature algorithm will run a constrained local search from each of the top 21

spatially proximal triples. You will actually see each successive earch being carried out. Without

attempting to explain all the details of the key feature algorithm, there are 1; 067 possible pairing

between model and data segments, and twice that many possible spatially proximal triples: 2; 134.

The Key Feature Fraction is set to 0:01, and therefore only the top 1% percent of the triples

will be considered. One percent of 2; 134 is 21.

Observe that for this example the Key Feature Matching algorithm has done well. The optimal

23

Figure 10: Horizon Match from Tutorial 2

24

match is shown in �gure 10. You may compare the performance of the key feature algorithm to

that of local search by selecting local search and re-running LiME. It is also instructive to run

LiME from the command line by simply copying and executing the command line Limeade prints

to standart output. In this way you can see the reports generated by lime as it runs successive

searches. One word of caution, the messages talk about the Messy Genetic algorithm. This is a

weakness in lime, the text output has not been fully updated to re
ect each of the algorithms.

6.3 Tutorial 3: An Interesting Problem

This tutorial will consider the image and data for �gure 1. This example has been used in several

of our publications and it is one of the more challenging matching problems we have run across. Be

prepared to make yourself a cup of co�e or tea at some points during this tutorial: to see interesting

behavior make take several minutes of CPU time. Also, the data for this example is not in IUE

Dex format, so you will be using the stand-alone version of LiME.

Begin by copying the parameters �le LiME_Parameters_Tutorial3_NONIUE to your working direc-

tory. Start Limeade and open this Parameters File. The parameters are setup to constrain the

search space around the center of the image. This will make it feasible to watch local search run

on this problem. The search method is subset-convergent local search and the number of trials

selected is 10. Also, the Maximum Displacement in the Match Error Pane is set to 2.0 pixels.

This is important if the match shown in �gure 1 is to be favored as the globally optimal match.

The display mode is set to show only the best match found by each successive trial of random starts

local search.

Go ahead and click on Save & Run and observe the variety of local optima which the algorithm

�nds in this data. If you are lucky, the best match may show up in the ten trials. However, it

is not that likely. There are obviously many local optimal for the subset-convergent local search

algorithm.

After you grow tired of watching the local search algorith, go to the Search Pane and select the

Messy GA. For this problem, you should set the Population Fraction is set to 0:25 and run 1

trial of the Messy Genetic Algorithm. Also, in order to generate visual feedback on how the Messy

GA is doing, select Show Search Progression from the Display/Reporting Pane. The Messy

GA is a hybrid algorithm which runs local search periodically on individuals selected at random

from the population. You will \see" these individuals being improved since these sort runs of local

search will be displayed to the search window.

One trial of the Messy GA is not that likely to �nd the optimal match. Now comes the part where

making co�ee (or perhaps going out to lunch) domes in. You can run 10 trials of the Messy GA,

and the probability that one of these will �nd the optimal match is fairly high. However, this may

take between ten minutes to an hour depending upon your machine. Finally, you can also run the

25

key feature algorithm on this problem, and you will discover if you set the Key Feature Fraction

low the algorithm quickly �nds some sub-optimal matches. If you set the Key Feature Fraction

to 1:0 then the algorithm will run for a long time and still only �nd sub-optimal matches.

7 More Advanced Features

The colors used by LiME in its search display can all be modi�ed in the parameters �le. These colors

are speci�ed using the hexadecimal notation commonly used by X windows. Here are examples of

two di�erent sets of colors. Also shown are the parameters which control such things as font color

and line thickness. The set on the left are used in the tutorial.

-WindowFontColor white

-WindowBgColor #196400

-WindowFgColor white

-WindowFontColor white

-WindowButtonColor #d8b800

-WindowButtonFontColor #196400

-BgDataColor #c43feb

-BgModelColor #3fc4eb

-DataColor #00ff77

-ModelColor #fe2046

-NormalColor #b27020

-BgColor #333346

-CurrentDataSpaceColor #00cc88

-CurrentDataMatchColor #00ff77

-CurrentModelColor #fe2046

-BgDataThickness 3

-BgModelThickness 3

-WindowFontColor white

-WindowBgColor #196400

-WindowFgColor white

-WindowFontColor white

-WindowButtonColor #d8b800

-WindowButtonFontColor #196400

-BgDataColor #c43feb

-BgModelColor #3fc4eb

-DataColor #ff0000

-ModelColor #0000ff

-NormalColor #b27020

-BgColor #333346

-CurrentDataSpaceColor #008888

-CurrentDataMatchColor #00ff00

-CurrentModelColor #fe2046

-BgDataThickness 4

-BgModelThickness 4

References

[AF86] N. Ayache and O. D. Faugeras. Hyper: A new approach for the recognition and po-

sitioning of 2-d objects. IEEE Trans. on Pattern Analysis and Machine Intelligence,

8(1):44 { 54, January 1986.

[Bev92] J. Ross Beveridge. Comparing Subset-convergent and Variable-depth Local Search on

Perspective Sensitive Landmark Recognition Problems. In Proceedings: SPIE Intel-

ligent Robots and Computer Vision XI: Algorithms, Techniques, and Active Vision,

volume 1825, pages 168 { 179. SPIE, November 1992.

26

[Bev93] J. Ross Beveridge. Local Search Algorithms for Geometric Object Recognition: Optimal

Correspondence and Pose. PhD thesis, University of Massachusetts at Amherst, May

1993.

[BHR86] J. B. Burns, A. R. Hanson, and E. M. Riseman. Extracting straight lines. IEEE Trans.

on Pattern Analysis and Machine Intelligence, PAMI{8(4):425 { 456, July 1986.

[BWR89] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman. Optimization of 2-dimensional

model matching. In Proceedings: Image Understanding Workshop, pages 815 { 830, Los

Altos, CA, June 1989. DARPA, Morgan Kaufmann.

[BWR90] J. Ross Beveridge, Rich Weiss, and Edward M. Riseman. Combinatorial Optimization

Applied to Variable Scale 2D Model Matching. In Proceedings of the IEEE International

Conference on Pattern Recognition 1990, Atlantic City, pages 18 { 23. IEEE, June 1990.

[DWG97] C. Guerra-Salcedo D. Whitley, J. R. Beveridge and C. Graves. Messy Genetic Algo-

rithms for Subset Feature Selection. In Proc. 1997 International Conference on Genetic

Algorithms, pages 568 { 575, July 1997.

[GDKH93] David E. Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges Harik. Rapid,

accurate optimization of di�cult problems using fast messy genetic algorithms. In

Stephanie Forrest, editor, Proc. 5th International Conference on Genetic Algorithms,

pages 56{64. Morgan-Kaufmann, 1993.

[JRBG97] Edward M. Riseman J. Ross Beveridge and Christopher R. Graves. How Easy is Match-

ing 2D Line Models Using Local Search? IEEE Trans. on Pattern Analysis and Machine

Intelligence, 19(6):564 { 579, June 1997.

[JRBS97] Christopher R. Graves J. Ross Beveridge and Jim Steinborn. Comparing Random-

Starts Local Search with Key-Feature matching. In Proc. 1997 International Joint

Conference on Arti�cial Intelligence, page (to appear), August 1997.

[LB82] David G. Lowe and T. O. Binford. Segmentation and Aggregation: An Approach To

Figure Ground Phenomena. In Proc. ARPA Image Understanding Workshop, 1982.

[NB80] R. Nevatia and R Babu. Linear feature extraction and description. Computer Vision,

Graphics, and Image Processing, 13:257 { 269, 1980.

[WS90] D. Whitley and T. Starkweather. Genitor ii: A distributed genetic algorithm. Journal

of Experimental and Theoretical Arti�cial Intelligence, 2(3):189 { 214, 1990.

27

