
Computer Science
Technical Report

Antirandom Test Patterns Generation Tool

Huifang Yin
Computer Science Dept.

Colorado State University
Fort Collins, CO 80523

Fall, 1996

Technical Report CS-98-101

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



Antirandom Test Patterns Generation Tool

Huifang Yin
Computer Science Dept.
Colorado State University
Fort Collins, CO 80523

Fall, 1996

ABSTRACT

Random testing is a well known concept that each test is selected randomly regardless of the test previously applied.

This paper introduces the antirandom testing which each test applied is chosen such that its total distance from all

previous tests is maximum. And one automatic test patterns generation tool using this concept is implemented.

At the same time, one popular test generation and simulation tool Nemesis is used to simulate the test patterns

generated from Random testing, Antirandom testing and Nemesis which used the Boolean satis�ability method,

by comparing their fault coverage for stuck-at and bridgeIDDQ in some Benchmark circuits, the advantages and

disadvantages in these three methods are obvious, the suitable situation for each method can be easily found.

1 Introduction

To produce reliable computer systems, defect-free components must be available. In the overall
hardware development time, the testing time is a signi�cant fraction. How to make the testing
as e�cient as possible is a big challenging task for testers. For minimize the testing time, �nding

an e�cient algorithm for the test generation is very important [4].

Random testing and its variations have been extensively used and studied for hardware systems.

However, random testing does not exploit some information like the previous tests applied. It is
very di�cult to ascertain the fault coverage that is provided by the test procedure, and for large
circuits, it is really not e�cient.

If an experienced tester is generating tests by hand, he would select each new test such that
it covers some part of the functionality not yet covered by tests already generated. So Dr.
Malaiya gave this algorithm one formal de�nition Antirandom test generation algorithm. In

this project, I implement this algorithm in one automatic test patterns generation tool ARTG
(see appendix) and compare it with the Random testing and the Boolean satis�ability method
used in Nemesis.

Section 2, Some de�nitions in Antirandom Test Patterns Generation Tool.

2.1. Some terminologies in Antirandom tool.

2.2. The antirandom algorithm de�nition.

Section 3, The algorithm description.

3.1. Construction of MHDATS and MCDATS.

3.2. The theorems used in tool for reducing the computational complexity.

1



Section 4, Brief introduction to Nemesis.

4.1. The Boolean satis�ability method.

4.2. Terminologies in Nemesis.

4.3. Benchmark Circuits used in this project

4.4. Some important �les in Nemesis

Section 5, The comparison of Antirandom, Random and Nemesis.

Section 6, The analysis for the fault coverage diagrams.

Section 7, Conclusion.

2 Some de�nitions in Antirandom Test patterns Generation Tool

Dr. Malaiya formally de�ne the antirandom testing algorithm using two kinds of distances-
Hamming distance and Cartesian distance as the measures of di�erence [1]. Then he proposed
the antirandom algorithm to construct the test sequences.

2.1 Some terminology in Antirandom Tool

Antirandom test sequence (ATS): A test sequence such that a test ti is chosen such that
it satis�es some criterion with respect to all tests t0; t1; :::; ti�1 applied before.

Distance: A measure of how di�erent two vectors ti and tj are. Here we use two measures of
distance de�ned below.

Hamming Distance (HD): The number of bits in which two binary vectors di�er. It is not

de�ned for vectors containing continuous values.

Cartesian Distance (CD): Between the two vectors, A = aN ; aN�1; :::; a1; a0 and B =

bN ; bN�1; :::; b1; b0, if all variables in the two vectors are binary, it is given by:

CD(A;B) =
q
(HD(A;B)

Total Hamming Distance (THD): For any vector, the sum of its Hamming distances with
respect to all previous vectors.

Total Cartesian Distance (TCD): For any vector, the sum of its Cartesian distances with
respect to all previous vectors.

2.2 The antirandom algorithm de�nition

Maximal Distance Antirandom Test Sequence (MDATS): A test sequence such that

each test ti is chosen to make the total distance between ti and each of t0; t1; :::ti�1 maximum,
i.e:

TD(ti) = D(ti; t0) +D(ti; t1) + � � �+D(ti; ti�1)

is maximum for all possible choices of ti. We will use Hamming distance and Cartesian distance
to construct MHDATs and MCDATs.

2



3 The algorithm description

In antirandom algorithm, we use maximal distance criterion, every time we attempt to �nd
a test vector as di�erent as possible from all previously applied vectors. Suppose the distance
between two vectors is large, then the set of faults detected by one is likely to contain only a few

of the faults detected by the other. I will have some experiment data to verify this hypothesis.

3.1 Construction of MHDATs and MCDATs

� For each of N input variables, assign an arbitrarily chosen value to obtain the �rst test
vector. We will know this does not result in any loss of generality.

� To obtain each new vector, evaluate the THD (TCD) for each of the remaining combinations
with respect to the combinations already chosen and choose one that gives maximal distance,
let the THD and TCD are MHDAT and MCDAT. Add it to the set of selected vectors.

� Repeat step 2 until all 2N combinations have been used.

3.2 The theorems used in tool for reducing the computational complexity

For N test vectors, we need 2N times computation. Dr. Malaiya proposed some theorems to
be used to reduce the computational complexity.

Theorem 1: A MHDATs (MCDATs) will always contain complementary pair of vectors, i.e.
t2k will always be followed by t2k+1 which is complementary for all bits in t2k where k = 1; 2; :::

(Proof omitted here)

According to this theorem, for N test vectors, we only need 2N�1 times computation.

Theorem 2: Expansion of MHDATs (MCDATs).

� Start with a complete MHDATs of N variables, XN�1; XN�2; :::; X1; X0.

� For each vector ti; i = 0; 1; :::(2N�1), add an additional bit corresponding to an added
variable XN , such that ti has the maximum total HD (CD) with respect to all previous

vectors. (Formal proof is to be sought)

Theorem 3: Expansion and Unfolding of a MHDATs (MCDATs).

� Expand by adding a variable using Theorem 2. We now have the �rst (2N=2) vectors needed.

� Complement one of the columns and append the resulting vectors to �rst set of vectors
obtained in Step 1.

In the antirandom test patterns generation tool, I use these three theorems to implement the
antirandom algorithm, the speed is greatly increased.

4 Brief introduction to Nemesis

Nemesis is a diverse program that simulates and generates test patterns for circuits with a
variety of di�erent types of faults [2]. Nemesis generates and simulates tests for stuck-at and

3



bridgeIDDQ faults in combinational circuits. The test patterns which Nemesis generates are
done using the Boolean satis�ability method [5].

4.1 The Boolean satis�ability method

Nemesis generates test patterns in two steps:

� It constructs a formula expressing the Boolean di�erence between the unfaulted and faulted
circuits.

� It applied a Boolean satis�ability algorithm to the resulting formula.

4.2 Terminologies in Nemesis

Test Generation: Test generation is the process of �nding a test for a fault or showing that
no test for that fault exists.

Test Simulation: Test simulation is the process of simulating a potential test against a list
of faults.

Stuck-At Fault: A stuck-at fault is an abstraction wherein the faulty circuit behaves as if
one line were permanently tied to a logic 1 or logic 0 instead of varying as a function of the
circuit inputs.

Bridge Fault: A bridge fault is a short between two signal wires in the circuit which are
interconnected with a logical behavior speci�ed by a Ptbridge tta �le.

BridgeIDDQ Test: For a bridge fault, any test that causes the two bridged wires to take on
opposite logic values in the fault free circuit is an IDDQ test for that fault.

Con�guration File: To specify the information necessary for Nemesis to run, one con�gura-
tion �le includes the following information is needed: Simulate or generate tests, Fault type, Root
directory, Circuit directory, Faultlist directory, Test directory, Cell library and for bridge faults,

a truth table directory. The circuit name can be given in command line or in the con�guration
�le.

subsectionBenchmark Circuits used in this project

I choose two kinds of combination circuits C432 and C1908 for the experiment. There is 36 bit
input in C432 circuit, there is 33 bit input in C1908 circuit. Because in antirandom test patterns
generation tool, we only consider the input bits, so we ignore output here.

4.3 Some important �les in Nemesis

Nemesis.log: It is an output �le created by the initial run of Nemesis and written to the
directory you are running Nemesis from. Every successive time Nemesis is run, the results are
appended to the Nemesis.log �le.

Circuit name.deteted: It contains a list of detected faults.

4



Circuit name.undetected: It contains a list of undetected faults.

Circuit name.tdl: It's the gate level netlist description of the fault free circuit.

Circuit name.faultlist: Nemesis uses faultlist �les to determine what faults to look for when

simulating or generating tests. The two formats used for faultlists are bridge and stuck-at.

Circuit name.tta: Truth table �les are necessary to give a more accurate representation of
what occurs at a bridge fault site. There are tta �les for all MCNC cell bridge faults. These �les

were created by Ptbridge.

Circuit name.tests: Nemesis communicates test information in the test format. This format

is used for output test �les when Nemesis is generating tests, and for input test �les when Nemesis
is simulating tests. As a result, Nemesis may simulate tests that it has generated.

5 The comparison of Antirandom, Random and Nemesis test generation algorithms

As I said before, Nemesis is a test generation and test simulation tool. So in this project, I

used this useful tool to do the following things:

� Using generate.tests con�guration in Nemesis to generate test patterns for stuck-at faults
and bridgeIDDQ faults for C432 and C1908.

� Using Antirandom test generation tool to generate test patterns for C432 and C1908. (Same

algorithms for Stuck-At faults and bridgeIDDQ faults).

� Randomly choosing the same test set No. to construct each corresponding random test

patterns.

� Using simulate.tests con�guration in Nemesis to simulate these three groups of test patterns.

The experiment results are represented in the following tables and diagrams. Here are two
examples which are stuck-at faults tested for C432 and C1908. We tested antirandom testing, and

random testing with seed 0 - Random1, seed 9830160 - Random2, seed 2147483647 - Random3.

Table 1: Stuck-At faults tested in C432 (Total: 524)

Test No. Antirandom Random1 Random2 Random3

1 122 19 58 62

2 193 52 88 92

6 248 188 185 171

10 289 263 236 234

15 365 338 274 347

25 440 409 325 396

35 462 438 364 420

45 470 458 390 438

60 481 477 441 449

5



50

100

150

200

250

300

350

400

450

500

10 20 30 40 50 60

stuck-at
faults
testes
in C432

test vector no.

Antirandom r

r

r

r

r

r

r

r

r

r
r r

r
r r r

Random1 b

b

b

b

b

b

b

b

b

b
b

b
b

b
b

b

Random2
Random3

Figure 1: Stuck-At faults tested in C432

200

400

600

800

1000

1200

1400

1600

20 40 60 80 100 120 140

stuck-at
faults
tested

in C1908

test vector no.

Antirandom r

r

r

r

r

r
r

r
r

r

r

r
r

r
r

r r r r

Random1 b

b

b

b

b

b

b

b
b b b

b
b

b

b b
b b b

Random2
Random3

Figure 2: Stuck-At faults tested in C1908

6



Table 2: Stuck-At faults tested in C1908 (Total: 1879)

Test No. Antirandom Random1 Random2 Random3

1 523 414 169 432

2 835 615 478 583

6 1044 983 813 1028

10 1125 1070 965 1144

20 1186 1147 1030 1210

36 1328 1158 1187 1344

56 1392 1212 1326 1402

80 1464 1406 1399 1462

100 1534 1412 1448 1493

120 1543 1441 1495 1521

140 1556 1445 1513 1553

6 The analysis for the fault coverage diagrams

From the two diagrams for C432 and C1908, we can see:

The Boolean satis�ability method in Nemesis is almost always better than Random and An-
tirandom, However, when the test patterns No. is less than 60, the Antirandom testing method
is better than Random, after 60, the Random and Antirandom becomes same also.

7 Conclusions

From the results in experiment, we can �nd the Antirandom testing is more e�cient than
Random testing for �nding the Stuck-At faults.

So how to combine the antirandom algorithm with some other methods to be a very e�cient
and powerful automatic test generation tool will be our future work.

References

[1] Y. K. Malaiya, \Antirandom Testing: Getting the most out of black-box testing," Proc.

International Symposium On Software Reliability Engineering, Oct. 1995, pp. 86-95.

[2] Craig Hall and Brian Chess, \The Nemesis User Manual", Computer Engineering University
of California, Santa Cruz 95064.

[3] Barry W. Johnson, \Design and Analysis of Fault-Tolerant Digital Systems", University of
Virginia, Charlttesville.

[4] Naixin Li, \Measurement and Enhancement of Software Reliability through Testing", Col-

orado State University.

[5] Tracy Larrabee, \Test pattern Generation Using Boolean Satis�ability", IEEE Transactions

On Computer-Aided Design, Vol. 11, No. 1, Jan. 1992. IEEE Software, Sept. 1995, pp. 6-17.

7



8 APPENDIX

8.1 Appendix A - ARTG program performance

In measuring the performance for ARTG (Antirandom Testing Generation program), I used
the times function to record the CPU time, and the purify testing tool to record the memory

usage.

The experiment is done for getting 50 binary testing vectors, and the binary bit no. is from
2 to 100. It runs in Sun-OS machine. The CPU time is recorded by Clock Tick, the memory
usage is based on the basic memory usage (including Purify overhead). The code memory is
about 250K, the data memory is about 50K, the stack memory is 1.6K, only the heap memory
is expanding when the binary bit no. is expanding. So I represented the heap memory no. and

CPU time with the binary bit using the following table 3 and graphs 3, 4.

In this experiment, I found the CPU time varied with the load in machine, and the results
from Purify-instrmented program demonstrated UMR (uninitialized memory usage). So for these
results, I think they are not accurate, they only represent the varying trends for CPU time and
Heap memory. More research and investigation for these are needed.

Table 3: Heap memory and CPU time for ARTG program

Bit No. Heap(K) CPU(Clock Tick)

2 24.6 1

4 41.0 3

8 73.7 30

12 106.5 73

16 139.3 130

20 172.0 193

25 213.0 272

30 254.0 347

35 294.9 465

40 335.9 566

60 499.7 1104

80 663.6 1778

100 835.6 3132

8



100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

Heap
memory

(K)

binary bit no.

Heap memory r

r
r

r

r

r

r

r

r

r

r

r

r

r

Figure 3: Heap memory usage for running ARTG

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

CPU
time

(Clock Tick)

binary bit no.

CPU time r

r r r
r

r
r

r
r

r

r

r

r

r

Figure 4: CPU time for running ARTG

9


