
Computer Science
Technical Report

Mutual Exclusion Between Neighboring
Nodes in a Tree That Stabilizes Using

Read/Write Atomicity?

Gheorghe Antonoiu1 and Pradip K. Srimani1

May 27, 1998

Technical Report CS-98-106

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

? A somewhat abridged version will appear in he Proceedings of Euro-Par-98, Soutampton, UK,
1–4 September 1998



Mutual Exclusion Between Neighboring Nodes in a

Tree That Stabilizes Using Read/Write Atomicity
?

Gheorghe Antonoiu1 and Pradip K. Srimani1

Department of Computer Science, Colorado State University, Ft. Collins, CO 80523

Abstract. Our purpose in this paper is to propose a new protocol that

can ensure mutual exclusion between neighboring nodes in a tree struc-

tured distributed system, i.e., under the given protocol no two neigh-

boring nodes can execute their critical sections concurrently. This pro-

tocol can be used to run a serial model self stabilizing algorithm in a

distributed environment that accepts as atomic operations only send a

message, receive a message an update a state. Unlike the scheme in [1],

our protocol does not use time-stamps (which are basically unbounded

integers); our algorithm uses only bounded integers (actually, the integers

can assume values only 0, 1, 2 and 3) and can be easily implemented.

1 Introduction

Because of the popularity of the serial model and the relative ease of its use in
designing new self-stabilizing algorithm, it is worthwhile to design lower level
self-stabilizing protocols such that an algorithm developed for a serial model
can be run in a distributed environment. This approach was used in [1] and can
be compared with the layered approach use in networks protocol stacks. The
advantage of such a lower level self-stabilizing protocol is that it makes the job
of self-stabilizing application designer easier; one can work with the relatively
easier serial model and does not have to worry about message management
at lower level. Our purpose in this paper is to propose a new protocol that
can be used to run a serial model self stabilizing algorithm in a distributed
environment that accepts as atomic operations only send a message, receive a
message an update a state. Unlike the scheme in [1], our protocol does not use
time-stamps (which are basically unbounded integers); our algorithm uses only
bounded integers (actually, the integers can assume values only 0, 1, 2 and 3) and
can be easily implemented. Our algorithm is applicable for distributed systems
whose underlying topology is a tree.

It is interesting to note that the proposed protocol can be viewed as a special
class of self-stabilizing distributed mutual exclusion protocol. In traditional dis-
tributed mutual exclusion protocols, self-stabilizing or non self-stabilizing (for
references in self-stabilizing distributed mutual exclusion protocols, see [2] and
for non self-stabilizing distributed mutual exclusion protocols, see [3, 4]), the ob-
jective is to ensure that only one node in the system can execute its critical
section at any given time (i.e., critical section execution is mutually exclusive
from all other nodes in the system; the objective in our protocol, as in [1], is
to ensure that a node executes its critical section mutually exclusive from its
neighbors in the system graph (as opposed to all nodes in the system), i.e., mul-
tiple nodes can execute their critical sections concurrently as long as they are
not neighbors to each other; in the critical section the node executes an atomic
step of a serial model self-stabilizing algorithm.

? A somewhat abridged version will appear in he Proceedings of Euro-Par-98,

Soutampton, UK, 1{4 September 1998



In section 2 we describe our model precisely while in section 3 we show
that the balance unbalance protocol of [2] is not self-stabilizing and describe an
alternative scheme to make it self-stabilizing to motivate the development of our
self-stabilizing protocol for a tree graph in section 3. We conclude the paper in
section 4.

2 Model

We model the distributed system, as used in this paper, by using an undirected
graph G = (V;E). The nodes represent the processors while the symmetric edges
represent the bidirectional communication links. We assume that each processor
has its unique id. Each node x maintains one or more local state variables and
one or more local state vectors (one vector for each local variable) that are used
to store copies of the local state variables of the neighboring nodes. Each node x
maintains an integer variable Sx denoting its status; the node also maintains a
local state vector LSx where it stores the copies of the status of its neighbors (this
local state vector contains dx elements, where dx is the degree of the node x, i.e.
x has dx many neighbors); we use the notation LSx(y) for the local state vector
element of node x that keeps a copy of the local state variable Sy of neighbor
node y. The local state of a node x is de�ned by its local state variables and its
local state vectors. A node can both read and write its local state variables and
its local state vectors; it can only read (and not write) the local state variables
of its neighboring nodes and it does neither read nor write the local state vectors
of other nodes. A con�guration of the entire system or a system state is de�ned
to be the vector of local states of all nodes.

Next, our model assumes read/write atomicity of [2] (as opposed to the com-
posite read/write atomicity as in [5, 6]). An atomic step (move) of a processor
node consists of either reading the a local state variable of one of its neighbors
(and updating the corresponding entry in the appropriate replica vector), or
some internal computation, or writing of one of its local state variables; any
such move is executed in �nite time. Execution of a move by a processor may be
interleaved with moves by other nodes { in this case the moves are concurrent.
We use the notation N (x) = fnx[1]; : : : :nx[dx]g to denote the set of neighbors
of node x.

The process executed by each node x consists of an in�nite loop of a �nite
sequence of moves:

R1
x : LSx(nx[1]) = Snx[1]

R2
x : LSx(nx[2]) = Snx[2]

� � � : � � �

Rdx
x : LSx(nx[dx]) = Snx[dx]

CSx : if �x then execute CriticalSection

Wx : Sx = fx(vx)



In the �rst part of the loop the local state variables of all neighbors are
read and stored in the local vector elements LSx(y); y 2 N (x); the node x

then evaluates a predicate �x (involving variables Sx and LSx(y); y 2 N (x))
and if the predicate is true, executes its critical section (CS); lastly, the node
x computes its new local state variable as a function of its current local state
(Sx and LSx(y); y 2 N (x)) and writes on its local state variable Sx. Note that
each move in the sequence is an atomic operation; on a single node these moves
are serial, while moves on di�erent nodes may be concurrent. We also assume a
distributed message passing paradigm: to read the state of a neighbor, a node
sends a query message to its neighbor and receives a reply in �nite time; when
a node x receives a query message, it sends back (to the requesting node) the
last written value on Sx; note that since individual read and write operations
are atomic, any read request from any neighbor always reads the most currently
recorded state Sx of a node x.

Remark 1. The objective of mutual exclusion is that no two neighboring nodes
can execute the critical section concurrently. So, the mutual exclusion de�ni-
tion in a distributed system requires a common (global) time for all nodes in the
system; the physical time may be used for this purpose though this time may
not be explicitly known to the participating nodes.

Any operation (move) by a node is executed in a physical time interval (x; y];
unused time intervals may or may not exist between two consecutive operations.
The time intervals for the operations executed by the same node are always
disjunctive, but the time intervals for operations executed at di�erent nodes
may overlap; in this case the operations are concurrent. To read the state of a
neighbor, a node sends a query message to its neighbor and updates its local
register when the response is received (Note that it takes �nite time for the
request to reach the neighbor and it also takes �nite time for the response to
reach back the requesting node)1.

De�nition 1. The read operation Ri
x, performed by node x, reads from the

operation Wy, performed by node y = nx[i] if the value used to update LSx(nx[i])
is written by Wy.

Consider an arbitrary execution (sequence of moves by the nodes) in the
distributed system. We need to generate a serial execution equivalent to the dis-
tributed execution. We can use the time of completion for the moves to generate
a total order <, on the set of all moves in the system (node id is used to resolve
ties). However, this ordering relation does not have the property that any read
operation reads from the corresponding precedent write operation.

We note that in case of a read operation, the value read by the requesting
node depends on when the request reaches the neighbor; the delay for the re-
sponse to go back to the requesting node does not matter; thus we can de�ne the
completion time of the read move by the time the request reaches the neighbor.

1 To avoid the deadlock we assume that query messages are processed by a distinct

process at each node; the main process and the communication process may use any

local locking mechanism to serialize the access to the local state variables



De�nition 2. Consider an arbitrary execution. The normal form execution is

an execution that has (i) the same start and completion time for all write and

CS operations (ii) the completion time for every read operation is the time when

the query messages arrived at the corresponding neighbor.

Remark 2. Since the critical sections are executed at the same time in both
executions, it is enough to prove that our mutual exclusion algorithm works for
normal form executions only.

Thus, we can assume that all executions are in a normal form. We now use
the time of completion for the moves to generate a total order <, on the set of
all moves in the system (node id is used to resolve ties). This total order relation
has the property that any read operation of node x from node y, reads from

the immediately preceding (in the sense of relation <) write operation of node
y. This property allow us to de�ne a global system state such that when a node
moves the new system state depends only on the present state of the system
and the move (this property is somewhat similar with Markov property for the
probabilistic systems).

Since the operations at a node are executed in the order they appear in the
in�nite loop, they also preserve the same order in the serial execution. However,
the presented algorithms work if a weaker assumption is made, the fairness of
an execution.

De�nition 3. An in�nite execution is fair if it contains a in�nite number of

actions for any type.

Remark 3. The purpose of our protocol is to ensure mutual exclusion between
neighboring nodes. Each node x can execute its critical section i� the predicate
�x is true at node x. Thus, in a legitimate system state, mutual exclusion is
ensured i�

�x ) 8y j y is a neighbor of x; :�y

i.e., as long as node x executes its CS, no neighbor y of node x can execute its
CS (�y j (y is a neighbor of x) is false).

3 Self-Stabilizing Mutual Exclusion Protocol for Two

Processes Without Shared Memory

The purpose of our protocol is to ensure self-stabilizing mutual exclusion be-
tween neighboring nodes that do not share any common memory and that can
communicate only by exchanging messages. To be more precise, each node has
a critical section in its code and the node shall be able to execute the critical
section in a mutually exclusive fashion with the other node; to execute its critical
section each node computes a predicate of its state and the state of the other
node, and if the predicate is true it executes the critical section.

The concept of a global legitimate (legal) state (or a set of such states) of the
system is an integral part of any self-stabilizing algorithm since that de�nes the



desired property of the system. Thus, the legitimate state is de�ned by what we
desire from the system. Our objective in the present paper is to ensure mutual
exclusion between any two neighboring nodes (processes); so in any legitimate
state of the system, if one node is executing its critical section, the other node
cannot execute its critical section, or in other words, if the predicate is true at
one node, the predicate at other node is not true or cannot be true until the �rst
node completes execution of its critical section.

3.1 The Balance Unbalance Protocol [2] is not Self-Stabilizing

The well known algorithms [7{9, 3, 4] for mutual exclusion between two processes
are not applicable in our case since each of them either uses a shared variable or
is not self-stabilizing. The balance-unbalance algorithm, [10, 2], does not use any
shared variable, does ensure mutual exclusion, but is not self-stabilizing. The
two processes in the algorithm [2] roughly execute the following loops:

Process A:
Ra: LSa(b) = Sb;

CSa: if(Sa = LSa(b)) then Execute Critical Section
Wa: if(LSa(b) = Sa) then Sa = (Sa + 1) mod 2
Process B:
Rb: LSb(a) = Sa;

CSb: if(Sb 6= LSb(a)) then Execute Critical Section
Wb: if(Sb 6= LSb(a)) then Sb = (Sb + 1) mod 2
Note that Sa and LSa(b) are local variables to process A; process A can write

on both Sa and LSa(b) and process B can only read Sa. Similarly, Sb and LSb(a)
are local variables to process B: process B can write on both Sb and LSb(a) and
process A can only read Sb. Note that the processes use read/write atomicity and
they are not uniform (two processes execute di�erent codes). Also observe that
the variables maintained by the processes are binary variables. If the process A
sees a balanced link, (LSa(b) = Sa), it unbalances it; if the process B sees a
unbalanced link, (LSb(a) 6= Sb), it balances it.

It can be easily shown that the protocol is not self-stabilizing, i.e., there is
no proper subset of states such that for any initial state the system reaches that
subset after a �nite number of moves.

3.2 Self-Stabilizing Balance Unbalance Protocol for a Pair of

Processes

One possible approach to make the above balance unbalance protocol self-stabilizing
is presented in [2]; this approach uses shared variables. We present an alternative
approach without using any shared variables. The structure of the two processes
A and B remain the same, i.e. in�nite loop at each processor consists of an
atomic read operation, critical section execution if certain predicate is true and
an atomic write action. As before, Sa and LSa(b) are two local variables main-
tained by process A (LSa(b) is the variable maintained at process A to store
a copy of the state of its neighbor process B); process A can write on both Sa



and LSa(b) and process B can only read Sa. Similarly, Sb and LSb(a) are local
variables to process B: process B can write on both Sb and LSb(a) and process
A can only read Sb. The di�erence is that the variables are now ternary, i.e.,
they can assume values 0, 1 or 2. The proposed algorithm is shown in Figure 1:

Process A Process B

Ra: LSa(b) = Sb; Rb: LSb(a) = Sa;

CSa : if(Sa = 0) then Execute Critical Section CSb : if(Sb = 1) then Execute Critical Section

Wa: if(LSa(b) = Sa) then Sa = Sa + 1 mod 3 Wb: Sb = LSb(a);

Fig. 1. Self-Stabilizing Balance Unbalance Protocol for a Pair of Processes

Since each of the processes A and B executes an in�nite loop, after a Ra

action the next \A" type action is Wa, after a Wa action the next \A" type
action is Ra, after a Rb action the next \B" type action is Wb, after a Wb action
the next \B" type action is Rb and so on.

Remark 4. We are not interested in the actions CSa or CSb since they do not
change the system state as far as our algorithm for mutual exclusion is concerned
(we are interested in proving the mutual exclusive execution of the critical sec-
tions by the two processes in a self-stabilizing way, but do not care what is done
in the critical section); we assume execution of critical section by either process
takes �nite time.

Remark 5. An execution of the system is an in�nite execution of the processes
A and B and hence an execution of the system contains an in�nite number of
each of the actions from the set fRa;Wa; Rb;Wbg; thus, the execution is fair.

The system may start from an arbitrary initial state and the �rst action in the
execution of the system can be any arbitrary one from the set fRa;Wa; Rb;Wbg.
Note that the global system state is de�ned by the variables Sa and LSa(b) in
process A and the variables Sb and LSb(a) in process B.

Remark 6. When a process makes a move (the system executes an action), the
system state may or may not be changed. For example, in a system state where
Sa 6= LSa(b), the move Wa does not modify the system state, i.e., the system
remains in the same state after the move.

De�nition 4. A move (action) that modi�es the system state is called a mod-

ifying action.

Our objective is to show that the system, when started from an arbitrary
initial state (possibly illegitimate), converges to a legitimate state in �nite time
(after �nitely many actions by the processes). We introduce a new binary rela-
tion.



De�nition 5. We use the notation x � y, if x = y or x = (y+1) mod 3, where
x; y 2 Z3.

Remark 7. The relation � is neither re
exive, nor transitive, nor symmetric. For
example, 1 � 0, 2 � 2, 2 6� 0, 2 � 1, 0 6� 1, etc.

De�nition 6. Consider the ordered sequence of variable (Sa; LSb(a); Sb; LSa(b));
a system state is legitimate if (i) Sa � LSb(a) ^ LSb(a) � Sb ^ Sb � LSa(b)
and (ii) if at most one pair of successive variables in the previous sequence are

unequal.

Example 1. For example, fSa = 1; LSa(b) = 0; Sb = 0; LSb(a) = 1g is a
legitimate state while fSa = 2; LSa(b) = 1; Sb = 1; LSb(a) = 0g is not.

Remark 8. It is easy to note that for a legitimate system state, only four possibil-
ities exist: (1) Sa = LSb(a) = Sb = LSa(b); (2) Sa = LSb(a)+1; LSb(a) = Sb =
LSa(b); (3) Sa = LSb(a); LSb(a) = Sb + 1; Sb = LSa(b); (4) Sa = LSb(a) =
Sb; Sb = LSa(b) + 1. Note: all additions are modulo 3.

Theorem 1. In a legitimate state the two processes A and B execute their crit-

ical sections in mutual exclusive way, i.e., if process A is executing CS then

process B cannot execute CS and vice versa, i.e. Sa = 0 ) Sb 6= 1 and

Sb = 1) Sa 6= 0.

Proof. The proof is obvious since in a legitimate state Sa � LSb(a) ^ LSb(a) �
Sb ^ Sb � LSa(b) and at most one pair of successive variables in the sequence
can be unequal.

Theorem 2. Any arbitrary move from the set fRa;Wa; Rb;Wbg made in a le-

gitimate state of the system leads to a legitimate state after the move.

Proof. Since there are only four possible moves, it is easy to check the validity
of the claim. For example, consider the move Ra; the variable LSa(b) is a�ected;
if LSa(b) = Sb before the move, this move does not change the system state;
if LSa(b) 6= Sb before the move, then the system state before the move must
satisfy Sa = LSb(a) = Sb (since it is legitimate) and after the move it will
satisfy Sa = LSb(a) = Sb = LSa(b) (hence, the resulting state is legitimate).

Lemma 1. Any in�nite fair execution contains in�nitely many modifying ac-

tions (see De�nition 4).

Proof. By contradiction. Assume that after a �nite number of moves Sa does
not change its value anymore. Then after a complete loop executed by process
B, LSb(a) = Sa and Sb = Sa. In the next loop the process A must move, which
contradicts our assumption. It is easy to see that if Sa changes its value in�nitely
many times, any other variable changes its value in�nitely many times.

Lemma 2. For any given fair execution and for any initial state, a state such

that three variables from the set fSa, LSb(a), Sb, LSa(b)g are equal each other

is reached in a �nite number of moves.



Proof. Consider the �rst move that modi�es the state of Sa. After this move
Sa 6= LSa(b). To change again the value of Sa, the LSa(b) variable must change
its value and become equal to Sa. But LSa(b) always takes the value of Sb. Since
Sa change its value in�nitely many times a state such that Sa = LSa(b) and
LSa(b) = Sb is reached in a �nite number of moves.

Lemma 3. For any given fair execution and for any initial state, a state such

that Sa 6= LSa(b), Sa 6= Sb, Sa 6= LSb(a), is reached in a �nite number of moves.

Proof. Since we use addition modulo 3, the variables Sa, LSb(a), Sb, LSa(b),
can have values in the set Z3 = f0; 1; 2g. When three variables from the set
fSa; LSb(a); Sb; LSa(b)g are equal to each other, Lemma 2, there is a value
i 2 Z3 such that Sa 6= i, LSa(b) 6= i, Sb 6= i, LSb(a) 6= i. When LSb(a), Sb,
LSa(b) change their values, they only copy the value of one variable in the set
fSa; LSb(a); Sb; LSa(b)g. Thus, when Sa reaches for the �rst time the value i,
the condition Sa 6= LSa(b), Sa 6= Sb, Sa 6= LSb(a) is met.

Theorem 3. For any given fair execution, the system starting from any arbi-

trary state reaches a legitimate state in �nitely many moves.

Proof. The system reaches a state such that Sa 6= LSa(b), Sa 6= Sb, Sa 6= LSb(a)
in a �nite number of moves, Lemma 3. Let Sa = i 2 Z3 Since LSb(a) 6= i, Sb 6= i

and LSa(b) 6= i, Sa can not change its value until LSa(b) becomes equal to i,
LSa(b) can not become equal to i until Sb becomes equal to i and Sb can not
become equal to i until LSb(a) becomes equal to i. Thus, Sa can not modify its
state until a legitimate state is reached.

4 Self-Stabilizing Mutual Exclusion Protocol for a Tree

Network Without Shared Memory

Consider an arbitrary rooted tree; the tree is rooted at node r. We use the
notation dx for the degree of node x, nx[j] for the j-th neighbor of the node x,
N (x) = fnx[1]; : : : :nx[dx]g for the set of neighbors of node x, C(x) for the set of
children of x and Px for the parent of node x; since the topology is a tree each
node x knows its parent Px and for the root node r, Pr is Null.. As before, each
node x maintains a local state variable Sx (readable by its neighbors) and a local
state vector LSx used to store the copies of the states of its neighbors; we use
notation LSx(y) to denote the component of the state vector LSx that stores a
copy of the state variable Sy of node y, 8y 2 N (x). All variables are now modulo
4 integers (we explain the reason later). We assume that each node x maintains
a height variable Hx such that Hr = 0 for the root node and for 8x 6= r, Hx is
the number of edges in the unique path from node x to the root node. It is easy
to see that if the root node sets Hr = 0 and any other node x sets its Hx to
HPx + 1 (level of its parent plus 1), the height variables will correctly indicate
the height of each node in the tree after a �nite number of moves, starting from



Root node r

R1
r: LSr(nr[1]) = Snr[1];

...
...

Rdr
r : LSr(nr[dr]) = Snr [dr];

CSr: if Sr = 0 then Execute Critical Section;

Wr: if

�V
y2C(r)

(Sr = LSr(y))

�

then Sr = Sr + 1 mod 4;

Leaf node y

R1
y: LSy(Py) = SPy ;

CSy: if �(y) then Execute Critical Section;

Wy: Sy = LSy(Py);

Internal Node x

R1
x: LSx(nx[1]) = Snx[1]

...
...

Rdx
x : LSx(nx[dx]) = Snx[dx]

CSx: if �(x) then Execute Critical Section

Wx: if

�V
y2C(x)

(Sr = LSx(y))

�

then Sx = RHx(Px);

Fig. 2. Protocol for an Arbitrary Tree

any illegitimate values of those variables. To avoid cluttering the algorithm, we
do not include the rules for handling Hx variable in our algorithm speci�cation.
As before, the root node, internal nodes as well as the leaf nodes execute in�nite
loops of reading the states of neighbor(s), executing critical sections (if certain
predicate is satis�ed) and writing its new state. The protocols (algorithms) for
root, internal nodes and leaf nodes are shown in Figure 2 where the predicate
�(x) is:

�(x) = (Sx = 0 ^ (Hx is even)) _ (Sx = 2 ^ (Hx is odd))

Note, as before, the state of a node x is de�ned by the variable Sx and
the vector LSx; the global system state is de�ned by the local states of all
participating nodes in the tree.

De�nition 7. Consider a link or edge (x; y) such that node x is the parent of

node y in the given tree. The state of a link (x; y), in a given system state, is

de�ned to be the vector (Sx; LSy(x); Sy; LSx(y)). The state of a link is called

legitimate i� Sx � LSy(x)^LSy(x) � Sy ^Sy � LSx(y) and at most one pair

of successive variables in the vector (Sx; LSy(x); Sy ; LSx(y)) are unequal.



De�nition 8. The system is in a legitimate state if all links are in a legitimate

state.

Theorem 4. For an arbitrary tree in any legitimate state, no two neighboring

processes can execute their critical sections simultaneously.

Proof. In a legitimate state (when the H variables at nodes have stabilized) for
any two neighboring nodes x and y, we have (either Lx is even & Ly is odd), or
(Lx is odd & Ly is even). Hence, �(x) and �(y) are simultaneously (concurrently)
true i� Sx = 2 and Sy = 0 or Sx = 0 and Sy = 2. But since link (x; y) is in a
legitimate state, such condition can not be met; hence, two neighboring nodes
cannot execute their critical sections simultaneously.

Lemma 4. Consider an arbitrary link (x; y). The node x modi�es the value of

the variable Sx in�nitely many times, if and only if the node y modi�es the value

of the variable Sy in�nitely many times.

Proof. If node x modi�es Sx �nitely many times, then after a �nite number
of moves the value of Sx is not modi�ed anymore. The next complete loop of
node y after the last modi�cation of Sx, makes LSy(x) = Sx and LSy(x) is not
be modi�ed by subsequent moves. Hence, after at most one modi�cation, Sy
remains unchanged. Conversely, if node y modi�es Sy �nitely many times then
after a �nite number of moves the value of Sy is not modi�ed anymore. The next
complete loop of node x after the last modi�cation of Sy, makes LSx(y) = Sy
and LSx(y) is not be modi�ed by subsequent moves. Hence, after at most one
modi�cation, Sx remains unchanged.

Lemma 5. For any fair execution, variable Sr at root node r is modi�ed in-

�nitely many times.

Proof. By contradiction. Assume that the value of Sr is modi�ed �nitely many
times. Then, after a �nite number of moves, the value Sy for each child y of
r will not be modi�ed anymore, Lemma 4. Repeating the argument, after a
�nite number of moves no S or LS variables for any node in the tree may be
modi�ed. Consider now the leaf nodes. Since the execution is fair, the condition
Sz = LSz(Pz) must be met for each leaf node z. If this condition is met for leaf
nodes it must be met for the parents of leaf nodes too. Repeating the argument,
the condition must be met by all nodes in the tree. But, if this condition is met,
the root node r modi�es its Sr variable in its next move, which is a contradiction.

Lemma 6. For any fair execution and for any node x, the variable Sx is mod-

i�ed in�nitely many times.

Proof. If node x modi�es its variable Sx �nitely many times, its parent, say node
z, must modify its variable Sz only �nitely many times, Lemma 4. Repeating
the argument, the root node also modi�es its variable Sr �nitely many times,
which contradicts Lemma 5.



Lemma 7. Consider an arbitrary node z (6= r). If all links in the path from r

to z are in a legitimate state, then these links remain in a legitimate state after

an arbitrary move by any node in the system.

Proof. Let (x; y) be an link in the path from r to z. Since (x; y) is in a legitimate
state, we have Sx � LSy(x) ^LSy(x) � Sy ^ Sy � LSx(y) and at most one pair
of successive variables in the sequence (Sx; LSy(x); Sy ; LSx(y)) are unequal. We
need to consider only those system moves (executed by nodes x and y) that can
change the variables Sx, LSy(x), Sy, LSx(y). Considering each of these moves,
we check that legitimacy of the link state is preserved in the resulting system
state. The read moves (that update the variables LSy(x), LSx(y)) obviously
preserve legitimacy. To consider the move Wx, we look at two cases di�erently:

Case 1 (x = r): When Wx is executed, Sx can be modi�ed (incremented by
1) only when Sx = LSx(y). Thus, since the state is legitimate, a Wx move can
increment Sx only under the condition Sx = LSy(x) = Sy = LSx(y) and after
the move the link (x; y) remains in a legitimate state.

Case 2 (x 6= r): Since the link (t; x) (where node t is the parent of x, i.e.,
t = Px) is in a legitimate state, we have LSx(t) = Sx or LSx(t) = (Sx+1) mod 4.
When Wx is executed, Sx can be modi�ed only by setting its value equal to
LSx(t); hence, after the move the link (x; y) remains in a legitimate state.

Lemma 7 shows that if a path of legitimate links from the root to a node is
created the legitimacy of the links in this path is preserved for all subsequent
states. The next lemma shows that a new link is added to such a path in �nite
time.

Lemma 8. Let (x; y) be a link in the tree. If all links in the path from root node

to node x are in a legitimate state, then the link (x; y) becomes legitimate in a

�nite number of moves.

Proof. First, we observe that the node y modi�es the variable Sy in�nitely many
times, Lemma 6. Then, we use the same argument as in the proof of Theorem 3
to show that the link (x; y) becomes legitimate after a �nite number of moves.

Theorem 5. Starting from an arbitrary state, the system reaches a legitimate

state in �nite time (in �nitely many moves).

Proof. The �rst step is to prove that all links from the root node to its chil-
dren become legitimate after a �nite number of moves. This follows from the
observation that each child x of the root node modi�es its S variable in�nitely
many times and from an argument similar to the argument used in the proof of
Theorem 3. Using Lemma 8, the theorem follows.

5 Conclusion

In this paper we have proposed a self-stabilizing protocol for ensuring mutually
exclusive critical section execution from neighboring nodes in a tree structured



message passing distributed system. The proposed protocol can be readily used
to provide a suitable run time or execution time environment to run self stabi-
lizing algorithms developed for serial model. Our protocol is id-based and does
not use any shared variable as opposed to the self-stabilizing traditional mutual
exclusion algorithm [2] which is anonymous and does use shared link registers.
Our protocol is based on read/write atomicity of operations like [2] and operates
under a distributed demon. To compare our algorithm with that of [1], we do not
use any time stamp to implement the scheme; one immediate improvement is
that we use only bounded integers (in fact, the variables in our scheme can have
only values 0, 1, 2 and 3) while time stamps in [1] are essentially unbounded
integers. It'd be interesting to extend the concepts developed in this paper to an
arbitrary system graph.

References

1. M. Mizuno and H. Kakugawa. A timestamp based transformation of self-stabilizing

programs for distributed computing environments. In Proceedings of the 10th In-

ternational Workshop on Distributed Algorithms (WDAG'96), volume 304{321,

1996.

2. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming

only read/write atomicity. Distributed Computing, 7:3{16, 1993.

3. M. Raynal. Algorithms for Mutual Exclusion. MIT Press, Cambridge MA, 1986.

4. P. K. Srimani and S. R. Das, editors. Distributed Mutual Exclusion Algorithms.

IEEE Computer Society Press, Los Alamitos, CA, 1992.

5. M. Flatebo, A. K. Datta, and A. A. Schoone. Self-stabilizing multi-token rings.

Distributed Computing, 8:133{142, 1994.

6. S. T. Huang and N. S. Chen. Self-stabilizing depth-�rst token circulation on net-

works. Distributed Computing, 1993.

7. E. W. Dijkstra. Solution of a problem in concurent programming control. Com-

munication of the ACM, 8(9):569, September 1965.

8. L. Lamport. A new solution of Dijkstra's concurrent programming problem. Com-

munications of the ACM, 17(8):107{118, August 1974.

9. L. Lamport. The mutual exclusion problem: Part II { statement and solutions.

Journal of the ACM, 33(2):327{348, 1986.

10. H. S. M. Kruijer. Self-stabilization (in spite of distributed control) in tree-

structured systems. Inf. Processing Letters, 8(2):91{95, 1979.


