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Abstract

We explore the use of multigrid techniques to speed the convergence of

value iteration for Markov Decision Problems by applying it to the moun-

tain car problem. We look at some of the fundamental di�erences between

these kinds of problems and those traditionally treated with multigrid

methods. We demonstrate that signi�cant performance improvements

can be achieved by using these techniques.

1 INTRODUCTION

Chow and Tsitsiklis (1991) de�ne a multigrid version of the value iteration, or

successive approximation, algorithm for discounted, in�nite horizon Markov De-

cision Problems (MDP). The multigrid version is performed by discretizing the

continuous state and action spaces of an MDP at di�erent granularities. First,

the solution of the MDP is approximated using value iteration at a coarse level.

The resulting approximation is used to initialize the value iteration procedure

at the next �ner level. This coarse-to-�ne progression is repeated until the solu-

tion at a �ne granularity forms a satisfactory approximation to the solution of

the MDP. Chow and Tsitsiklis show that the computational complexity of their

multigrid algorithm is within a factor of O
�

1
1�


�
of the complexity of �nding

the optimal solution of an MDP (Chow and Tsitsiklis, 1989), where 
 is the

discount factor. They also show that when an ergodicity condition holds, their

algorithm is within a constant factor of optimal.

Multigrid methods (Briggs, 1987; McCormick, 1992; R�ude 1993) have been

applied to a variety of physical boundary value problems where the problem
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solution can be formulated as an iteration to convergence over a lattice. These

problems include linear systems, �nite element analysis networks, algebraic and

di�erential eigenvalue problems, and image processing, to name a few (Briggs,

1987). To speed up the transfer of information and convergence, the problem

is �rst solved to some degree of error on a coarse grid. This creates a matrix

with far fewer points and much smaller diameter. Then the grid size is doubled

and the values interpolated from the coarse grid to the �ne grid. Multigrid, in

its most elementary form, is simply a loop of relaxations (iteration) and inter-

polations to �ner and �ner grid sizes1. Although this is not always guaranteed

to converge faster, it often can be tuned to do so.

A large class of reinforcement learning (RL) algorithms use one or more

matrices of values. For example: Q learning, SARSA, and TD(�) and Value

Iteration. These algorithms all have some form of iteration over a matrix to

converge to a solution. They also exhibit the same problems as with the relax-

ation scheme above in that the information must 
ow across the matrix from

the boundaries (termination states) and that the matrix must be given time

to stabilize. Although the multigrid approach appears very similar to matrix

iteration used in reinforcement learning algorithms, there are some important

distinctions.

A nice feature of PDE-like problems is that the size and shape of a point

remains the same regardless of grid size. For example, at a particular point in

a grid for a heat transfer problem, the point refers to the temperature at that

exact point regardless of the grid in which it is embedded. In a reinforcement

learning matrix the value refers to the average across an area where the area

changes with grid size. For example, each cell may be divided into four subcells

occupying di�erent regions of the parameter space. The area and scaling prop-

erties imply that the interpolation operator should be constructed di�erently for

RL applications. These properties also imply the values in a converged solution

for a coarse grain matrix in a RL application may not be the same as values

for the �ne grain solution. Another surprising di�erence between RL methods

and multigrid relaxation methods is locality. Classical relaxation methods gen-

erally assume each point is connected to its neighbors in an orderly orthogonal

grid2. In RL matrices, the value in one cell is related to the cells that contain

neighboring states and are not necessarily neighboring cells numerically.

Here we implement a multigrid, value iteration algorithm and apply it to the

mountain car problem (Sutton, 1996). Our implementation di�ers from Chow

and Tsitsiklis's formulation in a number of ways, some of which are described in

the following section. Our implementation is similar to their formulation in that

1This is a gross simpli�cation of the vast set of multigrid algorithms which often include

relaxing on error terms as well as the original problem and may include both re�ning and

coarsening steps.
2Again, multigrid methods allow for a wide variety of grid patterns which may include

the composition of grids of varying granularity, however strict assumptions are usually made

about the distance metrics for the space.
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we discretize the continuous state space in a one-way, coarse-to-�ne, schedule.

Our results show that the multigrid approach to value iteration converges to the

correct value function much faster than the conventional, single-grid approach.

In Section 2, we de�ne our multigrid, value iteration algorithm. Section

3 describes experiments with the mountain car problem and summarizes our

current results. Section 4 states our conclusions and outlines on-going work.

2 MULTIGRID VALUE ITERATION

Assume that a continuous state space is discretized equally along each dimension

resulting in a multi-dimensional grid. Let � be the spacing of grid, in each

dimension, relative to the �nest grid; for the �nest grid, � = 1, for the next

coarser grid � = 2, etc. We de�ne S�+1, the discretization of the state space for

level � + 1, as a function, f , of the discretization at level �:

f : S�
! S�+1; f(s�) = s�+1:

The discretization of the action space is de�ned similarly:

g : A�
! A�+1; g(a�) = a�+1:

The probability of visiting state t� after taking action a� while in state s� is

represented by P �
s�a�t�

. The state transition probabilities for one level depend

on the probabilities at the next �ner level in the following way. Let S�
�+1 be the

set of state, action, next state triples at level � that correspond to a given triple

at level � + 1. Speci�cally,

S�
�+1 =

�
(s� ; a�; t�)jf(s�) = s�+1; g(a�) = a�+1; f(t�) = t�+1

	
:

The transition probabilities at a coarser resolution are de�ned in terms of the

probabilities at the �ner resolution by

P �+1

s�+1a�+1t�+1
=

1

jS�
�+1j

X

(s�;a�;t�)2S�

�+1

P �
s�a�t� :

To complete the de�nition of an MDP discretized at level �, we de�ne the

expected reward given an action a� in state s� as R�
s�a�

. Now we can de�ne the

multigrid version of value iteration in which states are updated asynchronously

by the following update procedure:

V �
s� (k + 1) = max

a�2A�

fR�
s�a� + 
�

X

t�2S�

P �
s�a�t�V

�
t� (k)g;

where 0 < 
� � 1 is a discount factor.
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The value iteration update procedure is �rst performed at the coarsest level.

After some criterion is met, such as number of iterations or minimum amount

of change in the value function, the current estimate of the value function at

the coarse level is used to initialize the value function at the next �ner level and

value iteration is performed at that level. The way in which the �ner-level value

function is initialized depends on the problem being solved.

3 APPLICATION TO THE MOUNTAIN CAR

PROBLEM

In this section the general multigrid form of value iteration is specialized to

the mountain car problem (Sutton, 1996) in which a car must be driven out

of a two-dimensional valley by rocking it back and forth. The state space is

two-dimensional, consisting of the car's position and velocity, and the available

actions are a �xed magnitude acceleration forward and backward and a zero

acceleration coasting action. Rewards are deterministic|a reward of �1 is

given for all actions except those that cause the car to leave the valley at its

most positive position, for which a reward of 0 is given.

We applied conventional value iteration to the mountain car problem after

discretizing its state space into a grid of 32 x 32 states. For each iteration,

all states were updated, starting with states for which the car's position and

velocity are most positive and ending with states for which the car's position

and velocity are most negative. Value iteration continued until the maximum

value change over all states during one iteration was less than 10�6.

To apply multigrid value iteration to the mountain car problem, we special-

ized the algorithm in the following ways. The same action space, consisting of

three actions, is used at all levels. The discount factor, 
, is set to 1 for all

levels. Finally, we must specify how the value function at one level is used to

initialize the value function at the next �ner level. We implemented a simple,

linear interpolation scheme to do this. Let the discrete state at level � be in-

dexed by i� and j� whose values range from zero to one less than the number of

intervals along the respective dimensions at level �. The interpolation is given

by

a = 
oor(i�+1=2);

b = 
oor(j�+1=2);

c = 2i�+1
� 3a� 1;

d = 2j�+1
� 3b� 1;

V �
i�j� =

1

16
(9V �+1

ab + 3V �+1
ad + 3V �+1

cb + V �+1
cd );

for states other than those along the border of the �-level grid. Those in the

corners are determined by one value at the coarser level, while those along the
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edges are determined by a linear interpolation between two values at the coarser

level.

Value iteration at a given level was terminated after a �xed number of iter-

ations. Several iteration limits were tried. In the next section, we report results

from limiting iterations at each level to 4, 8, 16, 32, and 64 at each level. The

multigrid procedure started at a granularity of 2 x 2 and at each level the size

of the grid was doubled, resulting in four times as many discrete states. So,

with an iteration limit of 4, 4 iterations of value iteration were performed at a

granularity of 2 x 2, then 4 were performed at 4 x 4, then 4 at 8 x 8, then 4 at

16 x 16, and, �nally, iterations were performed at 32 x 32 until the maximum

value change was less than 10�6.

Several measures of performance were used to compare the results of multi-

grid value iteration at the di�erent iteration limits and conventional value iter-

ation. Note that some measures are taken at di�erent granularities and plotted

on the same axes. Strictly speaking one cannot directly compare value iteration

at di�erent granularities. To have truly valid comparisons, the reader should

only look at the data when algorithms are working on the �nest grid size. How-

ever, we believe that the values for coarse grids in the multigrid algorithm are

indicative of the degree of convergence. The relative smoothness of the measures

across interpolation steps supports this.

One performance measure is the average steps to goal that measures the

quality of the greedy policy derived from the current estimate of the value

function. The mountain car state was initialized to the center of each grid cell

at a given granularity level and then driven with actions at each step chosen

by a greedy policy using the current value function. Each driving sequence was

terminated when the car escaped the valley or a maximum number of steps

occurred. The number of steps from each initial state was averaged to obtain

the average number of steps to goal. The smaller the average, the better the

policy. For coarse grids this measure is not being applied to a grid of the �nal

grid size, hence this measure is only a predictor of the steps to goal in the �nal

grid size. The number of steps to goal is not dependent on the granularity of

the grid, because the same action granularity is used at all levels.

The second performance measure is the RMS error in the value function with

respect to the optimum value function. We obtained an estimate of the optimal

value function by applying conventional value iteration until the maximal change

of any one cell in an iteration was less than 10�6. The smaller the RMS error,

the closer the current value function is to the optimal one. The RMS value can

only be computed for grids of the same size. The value function at coarser grids

was compared against the ideal value function only at the coarser granularity.

The third performance measure is the maximum change to any value during

an iteration. Many values change much less than the maximum value in any

given iteration.

All three performance measures were recorded with respect to the number

of value updates as a measure of execution time. For example, one iteration of
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a 10 x 10 grid results in 100 value updates.

4 RESULTS

The plots in Figure 1a of RMS error between estimated and optimal value

functions show that the performance of multigrid value iteration is superior

to conventional value iteration for all tested iteration limits. The gains made

and preserved in the �rst 2,500 value updates are striking. The large positive

jumps in RMS error for the multigrid curves coincide with the change from

one granularity level to the next �ner one. These jumps are more clear in

Figure 1b, where the logarithm of the maximum value change in an iteration

is plotted versus the number of value updates. The interpolation points at

which the multigrid algorithm switches from one granularity level to the next

�ner one cause spikes in the maximum change measure. After each spike, the

maximum change value quickly recovers to be lower than that of conventional

value iteration and remains so down to an error of 10�6.
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a. RMS error versus value updates. b. Maximum change versus value updates.

Figure 1: RMS error and maximum change versus value updates for conventional

value iteration (VI) and our multigrid value iteration algorithm (MG-VI) using

4, 16, and 64 iterations per level.

The average steps to goal is the performance measure most relevant to the

behavior of the mountain car. In Figure 2, the average steps to goal is plotted

with respect to value updates. An iteration limit of 16 or more results in a quick,

large reduction in steps to goal. All runs achieved nearly equivalent policies,

ending with an average number of steps to goal of approximately 60. However,

multigrid value interation achieved this performance level about 8 times faster

than did conventional value iteration.
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Figure 2: Steps to goal versus value updates.

5 CONCLUSIONS

The multigrid value iteration algorithm studied here follows a one-way, coarse-

to-�ne, schedule of discretization levels. Multi-way schedules for shifting be-

tween granularities can yield faster convergence when solving systems of partial

di�erential equations with boundary conditions. We plan to investigate such

multi-way schedules for multigrid value iteration.

Future research will also be focused on tuning the interpolation points and

automating when to interpolate. Various interpolation schemes should be in-

vestigated including one that would anticipate changes in policy.

The practicality of value iteration is strongly limited by its requirement of

known state transition probabilities. Since reinforcement learning methods em-

body a Monte Carlo approach to dynamic programming that do not require

transition probabilities, the integration of multigrid techniques and reinforce-

ment learning has the potential of being a very general and e�cient approach

to solving MDPs. We plan to continue the research into multigrid, Monte Carlo

approaches initiated by Anderson and Crawford-Hines (1994).

In the long term, the vast literature of multigrid methods should be explored

and adapted to the reinforcement learning �eld. If these preliminary results are

any indication, the merging of these two �elds should be quite fruitful.
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