
Computer Science
Technical Report

Approximating a Policy Can be Easier Than
Approximating a Value Function

Charles W. Anderson
www.cs.colostate.edu/˜anderson

February 10, 2000

Technical Report CS-00-101

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu



Approximating a Policy Can be Easier Than Approximating a Value

Function

Charles W. Anderson
www.cs.colostate.edu/~anderson

February 10, 2000

Abstract

Value functions can speed the learning of

a solution to Markov Decision Problems

by providing a prediction of reinforcement

against which received reinforcement is com-

pared. Once the learned values relatively re-


ect the optimal ordering of actions, further

learning is not necessary. In fact, further

learning can lead to the disruption of the op-

timal policy if the value function is imple-

mented with a function approximator of lim-

ited complexity. This is illustrated here by

comparing Q-learning (Watkins, 1989) and

a policy-only algorithm (Baxter & Bartlett,

1999), both using a simple neural network as

the function approximator. A Markov Deci-

sion Problem is shown for which Q-learning

oscillates between the optimal policy and a

sub-optimal one, while the direct-policy al-

gorithm converges on the optimal policy.

1. Introduction

Reinforcement learning algorithms for solving Markov

Decision Problems (MDPs) can be distinguished by

whether they directly learn a policy function or a

state-action value function from which a policy is de-

termined. Examples of direct-policy algorithms are

the REINFORCE algorithm (Williams, 1987) and the

recent direct-gradient algorithm (Baxter & Bartlett,

1999). The Q-learning (Watkins, 1989) algorithms are

well-known examples of state-action value function al-

gorithms. Other approaches, such as the actor-critic

architecture (Barto et al., 1983), develop both a value

function and a policy function.

Preference for one algorithm over others can be based

on a number of algorithm characteristics. One might

prefer algorithms for which proofs of optimality or con-

vergence are known. Proofs of optimality of Q-learning

drove many practitioners to apply Q-learning to their

problems during the 1990's. Assumptions about the

state representation for an MDP limited the applica-

bility of these proofs to real world problems. Func-

tion approximators, such as neural networks, are typ-

ically used to represent the Q function, violating the

optimality proofs and requiring experimentation with

function approximator parameters to solve a given

MDP. However, proofs of convergence for more gen-

eral function approximators have recently appeared in

the work of Baxter and Bartlett (1999), who prove

convergence of their policy-only method, and Sutton

et al. (2000), who developed a proof of convergence

for a form of the actor-critic architecture.

Another way to develop a preference of one algorithm

over others for a given problem is to consider whether

the policy function or the value function is easiest to

represent for a chosen class of function approximators.

Assuming that the function that is easiest to repre-

sent is also easiest to learn, a problem for which the

policy is easier to represent should be attacked with

a policy-only algorithm. If the value function is most

easily represented, then one should use a value-only

algorithm, or a value and policy algorithm.

This is, of course, a much too simpli�ed perspective.

Many factors other than the complexity of the value or

policy function a�ect the e�ciency of learning. For ex-

ample, comparing immediate reinforcement to a base-

line, such as that provided by temporal-di�erence algo-

rithms for learning value functions, can lead to faster

learning.

Nonetheless, this article illustrates the advantage that

a policy-only algorithm has over a value function al-

gorithm when the same function approximator of lim-

ited complexity is used for both. The direct-gradient

(Baxter & Bartlett, 1999) and one-step Q-learning

(Watkins, 1989) algorithms are implemented using a

neural network with a single hidden unit for the func-

tion approximator. They are compared on an MDP

for which the neural network can represent the opti-

mal policy, but cannot represent the state-value func-

1



Action A Transitions

Action B Transitions

State Reinforcement
-1 -1 -1 -1 -1 -1 -1 -7 -6 -5 -1 -1 -1 -1

Optimal Policy

A A A A B B B B B B B B B B

GOAL

0

2 4 6 8 10 12
−30

−25

−20

−15

−10

−5

0

State

Max State-Action Value for Optimal Policy

Figure 1. Task

tion for the optimal policy. Results show that Q-

learning oscillates between the optimal policy and a

sub-optimal policy, while the direct-gradient method

converges on the optimal policy.

2. The Problem

The Markov Decision Problem consists of 13 states,

indexed from 1 to 13, with State 1 being the initial

state. Two actions, Actions A and B, are available in

each state. Immediate reinforcement ranges between

0 and �7. The problem is diagrammed in Figure 1,

which also shows the optimal policy and the maximum

of the Q values for each state, given that the optimal

policy is followed.

A neural network is used as the function approximator.

State is input to the neural network as a single integer

between 1 and 13. A neural network with a single, sig-

moid, hidden unit and a single linear output unit can

represent the optimal policy, as shown below in the

results section. However, the problem is designed so

that the optimal Q function cannot be represented by

the network. An informal argument for this is as fol-

lows. One hidden unit is needed to switch the relative

values of the Q function between States 4 and 5, so

that Action A is preferred for States 1{4 and Action B

is preferred for States 5{13. However, at least one ad-

ditional hidden unit is required to accurately represent

the variations in the Q function for States 7{13.

3. Policy-Only Algorithm

The implementation of the direct-gradient algorithm

of Baxter and Bartlett (1999) is speci�ed below. The

speci�cation is specialized to the particular 13-state

MDP and neural network used in the experiments de-

scribed here.

Let sk be the state, ak the action, and rk the reinforce-

ment at time step k. The network's hidden layer and

output layer weights are give by wh
k and wo

k, respec-

tively. The input to the network is yik, the output of

the hidden layer is yhk , and the output of the �nal layer

is yok. Rows of the weight matrices contain the weights

for individual units, and the y vectors are column vec-

tors. zhk and zok represent the estimated gradients of

the reinforcement sum with respect to the network's

hidden and output layer weights, and are the same

shape as the weight matrices. The function f is the

usual sigmoid function

f(x) =
1

1 + e�x
:

Also, x0 represents the vector x augmented by concate-

nating a constant 1. The isolation of the �rst column

of a matrix x is denoted by [x]1.

The algorithm is initialized by

wh
0 = uniform random numbers in [�0:1; 0:1]

wo
0 = 0

The following steps are repeated for each of the 100,000

trials:

zhk = 0;

zok = 0;

sk = 1:

Then, for each trial, repeat these steps until sk = 13

or 100 steps have taken place:

yik = sk � 6

yhk = f(wh
ky

i0

k )

yok = wo
ky

h0

k

ak =

�
A; with prob f(yok)

B; otherwise,

�sk =

8>><
>>:

1; sk � 4; ak = A;

1; sk � 5; ak = B;

�1; sk � 4; ak = B;

�1; sk � 5; ak = A;

sk+1 =

8<
:

13; sk +�sk > 13;

1; sk +�sk < 1;

sk +�sk; otherwise:



rk+1 =

8>><
>>:

�7; sk+1 = 8;

�6; sk+1 = 9;

�5; sk+1 = 10;

�1; otherwise:

�k =

�
1� yok; ak = A;

yok; ak = B:

zok+1 = �zok + �ky
h0

k

zhk+1 = �zhk + yhk � (1� yhk )[w
o
k ]1;�ky

i0

k

wh
k+1 = wh

k + �hrk+1z
h
k+1

wo
k+1 = wo

k + �ork+1z
o
k+1

4. Q-Learning Algorithm

Watkin's (1989) one-step, Q-learning algorithm is de-

�ned similarly. The neural network has a single hidden

unit as before, but now there are two output units cor-

responding to the two actions, A and B.

The algorithm is initialized by

wh
0 = uniform random numbers in [�0:1; 0:1]

wo
0 = 0

The following steps are repeated for each of the 100,000

trials. Set

sk = 1

and these steps are repeated until sk = 13 or 100 steps

have taken place:

yik = sk � 6

yhk = f(wh
ky

i0

k )

yok = wo
ky

h0

k

ak =

(
A; with prob e

�[yo
k
]1

e
�[yo

k
]1
+e

�[yo
k
]2

B; otherwise,

�sk =

8>><
>>:

1; sk � 4; ak = A;

1; sk � 5; ak = B;

�1; sk � 4; ak = B;

�1; sk � 5; ak = A;

sk+1 =

8<
:

13; sk +�sk > 13;

1; sk +�sk < 1;

sk +�sk; otherwise:

rk+1 =

8>><
>>:

�7; sk+1 = 8;

�6; sk+1 = 9;

�5; sk+1 = 10;

�1; otherwise:

xk+1 = wo
kf

0(wh
k (sk+1 � 6)0)

0 2 4 6 8 10

x 10
4

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

Trials

M
ea

n 
T

ot
al

 R
 p

er
 T

ria
l

Trial 43,150Trial 
33,000

Figure 2. Q-learning: Sum of reinforcement per trial, aver-

aged over bins of 10 trials.

� =

8>><
>>:

�
1

0

�
; ak = A;�

0

1

�
; ak = B;

�ok = (rk+1 +max
j
([xk+1]j)� yok)�

�hk = yhk � (1� yhk )[w
o
k]1�

o
k

wh
k+1 = wh

k + �h�hky
i0

k

wo
k+1 = wo

k + �o�oky
h0

k

5. Results

Parameter values were chosen for each algorithm to ob-

tain the best performance for each. For the Q-learning

algorithm, �h = 0:0001, �o = 0:0001, and � = 10. For

the policy-only algorithm, �h = 0:01, �o = 0:0001, and

� = 0:999.

Figure 2 shows how the sum of reinforcement per trial

increases from values from �120 to �180 during the

initial trials to close to the optimal value of �28 at

Trial 33,000, marked by the �rst vertical dashed line.

Then, performance periodically degrades to close to

�100, the reinforcement sum that results when the

state never progresses beyond State 5; recall that a

trial terminates after 100 steps and all states less than

State 5 result in �1 reinforcement. Between brief pe-

riods of �100 performance, near optimal performance

is regained. Trial 43,150 is also marked as a dashed

line. Both trials are examined below.

To understand this behavior, the policies, outputs of



0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

state

pr
ob

ab
ili

ty

Trial 43,150

Trial 33,000

Figure 3. Q-learning: Probability of Action A.

0 5 10 15
−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

Q
 V

al
ue

s

Trial 33,000

Trial 43,150

A

B

A

B

Figure 4. Q-learning: Outputs of the two output units.

the neural network, and the weights of the hidden unit

are examined. First, let's look at the policies that

result at Trials 33,000 and 43,150. The policies are

shown in Figure 3 as the probability of Action A in

each state. At Trial 33,000 the policy is extremely

close to optimal, but by Trial 43,150 the action chosen

for States 5 and 6 have switched.

The switch in chosen action is due to a change in the

relative ordering of Q values for those states. This can

be seen in Figure 4, a plot of the Q values for the two

actions These two sets of Q values suggest the cause for

the oscillation. At Trial 33,000, the relative placement

of the two Q curves does result in the optimal pol-

icy, but the steep reduction in the predicted reinforce-

ment for States 8, 9, and 10 is poorly-approximated.

0 5 10 15

0

0.2

0.4

0.6

0.8

1

state

H
id

de
n 

U
ni

t O
ut

pu
t

Trial 33,000

Trial 43,150

Figure 5. Q-learning: Hidden unit outputs.

By Trial 43,150, the steep reduction for these states

is well-approximated, but this has shifted the state

at which the chosen action switches and the optimal

policy has been lost. Further learning results in the

oscillation between these two con�gurations.

A similar oscillation is seen in the output of the hidden

unit, shown in Figure 5. The oscillation is explicit in a

plot of the evolution of two weight values in the hidden

unit while learning. Figure 6 shows this trajectory.

Clearly the weight vector trajectory is periodic.

Now let's examine the behavior of the policy-only,

direct-gradient algorithm. The plot in Figure 7 of the

sum of reinforcement per trial shows that the algo-

rithm relatively quickly converges close to the optimal

sum of �28 and this performance is stable.

The output of the single output unit is shown in Fig-

ure 8 and the resulting policy is shown in Figure 9.

Both are for the �nal trial, Trial 100,000. The policy

is clearly very near optimal, with probabilities close to

0 and 1. The output of the hidden unit is shown in

Figure 10. The evolution of the hidden unit's weight

vector is shown in Figure 10.

To show that the Q-learning algorithm is capable of

solving this problem with an adequate function ap-

proximator, training was repeated with a neural net-

work consisting of two hidden units. Figure 12 shows

that the problem is solved|the reinforcement sum is

close to the optimal value of �28. The resulting Q val-

ues for Trial 100,000 are shown in Figure 13, and the

policy is shown in Figure 14. The policy is very close

to optimal for all states but State 4, which should be

1 rather than 0.6. Further training does not increase

this probability, though additional hidden units proba-



−6 −5 −4 −3 −2 −1 0 1
−4

−2

0

2

4

6

8

B
ia

s 
w

ei
gh

t

State input weight

Figure 6. Q-learning: Evolution of hidden unit weight vec-

tor.

0 2 4 6 8 10

x 10
4

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Trials

Total R per Trial, Averaged over Bins of 10 Trials

M
ea

n 
T

ot
al

 R
 p

er
 T

ria
l

Figure 7. Policy-only: Sum of reinforcement per trial aver-

aged in bins of 10 trials.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

State

O
ut

pu
t V

al
ue

s
Figure 8. Policy-only: Output of output unit at Trial

100,000.

0 5 10 15

0

0.2

0.4

0.6

0.8

1

state

pr
ob

ab
ili

ty

Figure 9. Policy-only: Probability of Action A at Trial

100,000.



0 5 10 15

0

0.2

0.4

0.6

0.8

1

state

H
id

de
n 

U
ni

t O
ut

pu
t

Figure 10. Policy-only: Hidden unit output at Trial

100,000.

−2 0 2 4 6 8 10 12
−2

0

2

4

6

8

10

12

14

16

B
ia

s 
w

e
ig

h
t

State input weight

Figure 11. Policy-only: Evolution of hidden unit weight

vector.

0 2 4 6 8 10

x 10
4

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

Trials

M
ea

n 
T

ot
al

 R
 p

er
 T

ria
l

Figure 12. Q-learning with two hidden units: Sum of rein-

forcement per trial averaged in bins of 10 trials.

0 2 4 6 8 10 12 14
−30

−25

−20

−15

−10

−5

0

5

State

Q
 V

al
ue

s

Figure 13. Q-learning with two hidden units: Outputs of

output units at Trial 100,000

bly would. Figure 15 shows that the two hidden units

learned two functions that are very similar to the two

con�gurations that the single-hidden-unit network os-

cillated between.

6. Conclusions

This experiment is only an illustration of a case where

directly learning a policy has an advantage over try-

ing to accurately learn a state-action value function.

The advantage arises by limiting the complexity of the

function approximator so that it is not capable of accu-

rately approximating the value function but is capable

of approximating the optimal policy.

The results shown here do not support any general con-

clusions about the relative merits of policy-only versus



0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

state

pr
ob

ab
ili

ty

Figure 14. Q-learning with two hidden units: Probability

of Action A at Trial 100,000.

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

state

H
id

de
n 

U
ni

t O
ut

pu
ts

Figure 15. Q-learning with two hidden units: Outputs of

the two hidden units at Trial 100,000.

value function algorithms. However, this illustration

does suggest that it might be fruitful to examine the

relative complexity of policies versus value functions in

larger, realistic problems. An optimal value function

for a given problem is probably at least as complex

as the optimal policy function. The value function not

only must represent all of the boundaries in state space

which separate regions of di�erent optimal actions; it

must also capture the possibly many variations in val-

ues within the regions. Since the latter variations have

no e�ect on the resulting policy, dedicating the re-

sources of a function approximator to representing the

variations is misdirected and possibly disastrous to the

maintenance of a good policy, as shown by the results

of the illustration.

Acknowledgements

Discussions with Peter Bartlett and Jonathan Baxter

about their direct-gradient algorithm motivated the

experiments reported here. Thanks also to the De-

partment of Systems Engineering, Research School of

Information Sciences and Engineering, The Australian

National University, in Canberra, Australia, for pro-

viding computing resources during the author's sab-

batical visit.

References

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983).

Neuronlike elements that can solve di�cult learning

control problems. IEEE Transactions on Systems,

Man, and Cybernetics, 13, 835{846. Reprinted in

J. A. Anderson and E. Rosenfeld, Neurocomputing:

Foundations of Research, MIT Press, Cambridge,

MA, 1988.

Baxter, J., & Bartlett, P. (1999). Direct gradient-based

reinforcement learning: I. gradient estimation algo-

rithms (Technical Report). Computer Sciences Lab-

oratory, Australian National University.

Sutton, R. S., McAllester, D., Singh, S., & Mansour,

Y. (2000). Policy gradient methods for reinforcement

learning with function approximation (Technical Re-

port). AT& T Labs.

Watkins, C. (1989). Learning with delayed rewards.

Doctoral dissertation, Cambridge University Psy-

chology Department, Cambridge, England.

Williams, R. J. (1987). Reinforcement-learning con-

nectionist systems (Technical Report NU-CCS-87-

3). College of Computer Science, Northeastern Uni-

versity, Boston, MA.


