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Abstract

The rise in availability of powerful personal computers allows researchers in many different disciplines

access to problems that were, in the recent past, computationally intractable. Biologically realistic neural

models are one example of a problem that is both computationally expensive, but also multidisciplinary

by nature. These neural models incorporate fundamental neuroscience principles into a mathematical

framework that may be understood and studied by experts in computer science and mathematics. More-

over, the inclusion of these disciplines into neural modeling research is essential as the models grow

larger, more detailed, and hence more complicated in both construction and analysis. Neural modeling

demands collaboration among widely differing scientific disciplines and thus, demands an easily accessible

introduction to researchers grounded in the mathematical sciences. This introduction attempts to simply

and succinctly introduce the basic biological, chemical, and physical science upon which neural models

are built. The introduction then defines, derives, and explains, stepwise, numerical integration of the

compartment model using the Backward Euler method.
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1 Introduction

Computational neuroscience is the study of neurological function via mathematical models. A precise defini-
tion is more ambiguous. The methodology used in constructing mathematical neural models vary as widely
as the questions to be answered. Some models implement potentiation to understand biological learning
mechanisms. Other models may intend to reproduce anatomical data acquired from living tissue or repro-
duce electrophysiological recordings measured in vitro. Models may be inaccurate or highly accurate, small
or large, from a single neuron to an entire sub-organ. The methods of spatio-temporal approximation, nu-
merical analysis, and synaptic connectivity all may differ. However, the diversity of these models does not
displace their commonality. All computational neural models are mathematical approximations of some un-
known perfectly accurate and precise model of the brain. Therefore, computational neuroscience very much
depends upon knowledge of both neuroscience and mathematics. The field of computer science performs the
role of intermediary. Computer science techniques and technology enable the application of mathematical
ideas as well as representation and analysis of model behavior and function. The following principles govern
what should be considered well-practiced neural modeling.

• Knowledge of neuroscience principles

• Knowledge of computational time and space complexities

• Knowledge of numerical integration techniques

• Well-formed, realistic hypotheses

• Well-researched neurological parameters

• Awareness of computational resources

• Well-planned and implemented model design

• Documentation discipline (both parameter sources and coding)

• Knowledge of statistical analysis techniques

• Patience

You should note that principles of the study of neural modeling are rooted in principles of good science.
Without these basic elements, neural modeling efforts will falter. Modeling the brain without direction will
be fruitless. The topic is too vast. The interactions are too complex. The biological parameters required
are often unknown or riddled with uncertainty. Alas, neural modeling is a desperate and often discouraging
endeavor, yet the reward of discovery, and the priceless knowledge gained make it a worthwhile pursuit.

This paper briefly discusses the basic principles of neural modeling as a means to introduce advanced
undergraduate and graduate computer science and mathematics students to the field. Fundamental biology,
physiology, and chemistry components are presented as simply as possible. These introductions weave a
thread of scientific foundation on which computational modeling may be built. Non-computational details are
intentionally oversimplified to prevent distortion of the overall modeling message. The reader is encouraged
to self-study the citations for greater depth of knowledge.

The paper is organized as follows. Section 2 introduces basic neuroscience principles. Physical and
mathematical principles governing a single, linearly approximated neural model without synaptic connections
or branches are presented in Section 3. The reader should pay specific attention to derivations provided for
numerical integration of the compartment model as given in Section 3.6.

2 Neuroscience Principles

The neuron is the backbone of information processing in the brain. However, by itself a single neuron has
limited processing capability. The brain contains uncountable variations of neural networks, systems of
interconnected neurons, to satisfy a wide range of processing needs. To understand how neural networks
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Figure 1: Generalized depiction of a neuron.

serve as information processors, however, one must understand the anatomical and physiological architecture
of a simple neuron first. Only then can the role of complex interconnectivity be understood as a cohesive
functional unit.

2.1 The Neuron

From an information processing perspective, the purpose of the neuron is to receive, process, and retransmit
signals. Signals, in this context, are disruptions in the membrane potential of the neuron. A neuron, for
reasons to be discussed later, maintains an electrical potential across its membrane of approximately −60
to −70 mV . Because the equilibrium potential is negative, the neuron is said to be hyperpolarized with
reference to the extracellular space. Signals generally take the form of depolarization, positive change, of the
membrane potential. Depolarizing changes propagate across the neural membrane such that a depolarization
at a dendritic branch will propagate to the axon hillock. Membrane depolarizations have a second property,
they are additive. For example, a depolarization of 15 mV occurring adjacent to a depolarization of 20 mV
causes the locations between to have a depolarization of some linear combination of these values, greater than
either value individually (≥ 20). Neural anatomy is configured to take advantage of membrane potential
changes to convey and process information. A generalized neuron is depicted in Figure 1 to aide in the
discussion of anatomical functionality.

At a high-level, neural anatomy may be decomposed into five sections: the dendritic tree, the soma, the
axon hillock, the axon proper, and axonal branches. Functionally, however, the neuron has three sections:
reception and integration, decision, and retransmission. Information is received in the dendritic tree via
synaptic connections. Details of the synapse will be provided later, but initially, we can think of synaptic
connections as physical locations where inbound signals are collected by the neuron. All signals propagate to
the axon hillock where their effects are summed. If the summed depolarizations, via the additive property,
achieve a fixed threshold depolarization, an action potential occurs. An action potential is defined as an all-
or-none, massive depolarization of the neural membrane. The axon and axonal branches serve the purpose of
transmitting the action potential over long distances and to many different locations. To aide understanding,
a graphic depicting a generalized neuron in provided in Figure 1.

With this high-level description in place, the underlying information processing functionality of the
neuron is available for study. The highly complex branching structure of the dendritic tree serves to collect
numerous incoming signals from many different neurons. Due to passive propagation and additive properties
of the membrane depolarizations occurring at synaptic connections, the dendritic tree can be viewed as a
giant antennae that collects signals. As signals propagate down the branch structure they are summed at
intersections. The entire dendritic tree, may be referred to as the signal collection component.

As signals propagate down the dendritic tree, they eventually reach a single terminus, the axon hillock.
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All signals are summed at this location. Therefore, the axon hillock may be viewed as the signal integration
component. However, the axon hillock does not just passively sum incident signals. This section of the
neural membrane contains a high density of voltage-gated ion channels. These channels have the effect of
magnifying membrane depolarizations should the passive sum of the depolarization achieve some value above
a fixed threshold value, which varies from neuron to neuron. In a very basic way, the combined effects of the
voltage-gated ion channels in the axon hillock form a binary switch. When summed membrane depolarization
is below some value, the switch remains off, and passive propagation continues through the axon hillock and
down the axon. However, if the summed depolarization reaching the axon hillock achieves a value greater
than (i.e. less negative than) the threshold, the the switch is turned on. Turning on the switch is equivalent
to generating an action potential, a massive depolarization, of approximately 100 mV .

The axon and axonal branches have the duty of transmitting action potentials to various locations in
a neural network. The axon, via its natural myelin sheath insulation, is capable of transmitting action
potentials over large distances, quickly, and with little loss of potential. Some axons can be as long a one
meter and achieve signal transmission velocities of 1 m/s. Axonal branches may carry the action potential
to several thousand other neurons.

2.2 The Synapse

The synapse is the location of transfer between neurons. Formally, the synapse is empty space separating
the axonal terminal of the presynaptic neuron with the dendrite of the postsynaptic terminal. Unlike signal
propagation within a neuron, signal transmission between neurons occurs via chemical signaling. At a
high-level, the process is comprised of discrete, sequential steps. First, an action potential must propagate
to the axonal terminal of the presynaptic neuron. The depolarization of the membrane caused by the
action potential causes vesicles containing neurotransmitters to bind to the membrane of the presynpatic
axonal terminal. These vesicles then rupture, releasing neurotransmitter into the empty space separating the
presynaptic and postsynaptic neurons, properly called the synaptic cleft. Neurotransmitters diffuse across
the synaptic cleft and bind to neurotransmitter specific receptors located on the dendritic membrane of the
postsynaptic neuron. These receptors in turn cause ion-channels to open, allowing diffusion of ions across
the postsynaptic neural membrane, depolarizing the membrane. Propagation of the signal then proceeds
passively as described previously. Neurotransmitter is absorbed by surrounding support cells, specifically
astrocytes. Vesicles are filled and repaired in the neuron nucleus. Slow transport processes are responsible
for moving vesicles containing neurotransmitter from the nucleus to the axonal branches as well as returning
ruptured vesicles for repair and refilling.

The type of neurotransmitter released by the presynaptic neuron governs the function of the synaptic
connection. Synaptic connections are classified in two ways, excitatory and inhibitory. Excitatory synapses
cause depolarization of the postsynaptic neuron. Inhibitory synapses hyperpolarize the postsynpatic neuron,
or secondarily, block the function of nearby excitatory synapses. The type of neurotransmitter and the
functionality of the postsynaptic receptor govern this classification. While hundreds of neurotransmitters
have been discovered, the four most significant types are defined below:

• AMPA (alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-proprionate), fast excitatory

• NMDA (N-methyl-D-aspartate), slow excitatory

• GABAA (gamma-aminobutyric acid, A-type), fast inhibitory

• GABAB (gamma-aminobutyric acid, B-type), slow inhibitory

The fast and slow specifications above concern the rate at which depolarization or hyperpolarization is
induced in the postsynaptic neuron. Fast synapses may cause potential change in 1− 3 ms. Slow synapses
may effect potential changes over 20− 40 ms. Speed of influence and excitatory or inhibitory behavior differ
widely among known neurotransmitters. For greater detail readers are directed to Kandel, Scwhartz, and
Jessell Kandel et al. (1991).
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2.3 Neural Networks

The process of signal collection, integration, and retransmission within a single neuron has been shown to be
equivalent to a non-linear function. A collection of neurons, given certain assumptions, can then be shown
to be mathematically equivalent to a linear combination of non-linear functions. Theoretically, any function
may be approximated via a linear combination of non-linear functions, given enough non-linear functional
elements exist.

While the exact role of the entire brain has not been determined, the functionality of subsections has
been determined experimentally. Details of these analysis are beyond the scope of this paper.

3 Neural Modeling Principles

3.1 Membrane Potential

Neurons convey information via electrical and chemical signals. Neural membrane potential is the mechanism
by which this signal information is conveyed. As discussed previously, an overly simplified neuron is a lipid-
bilayer compartment of intra-cellular fluid, cytoplasm, bathed in extracellular fluid. Both intra-cellular and
extracellular fluid types contain concentrations of various ions, particles carrying net positive charge (cations)
and net negative charge (anions). For the purpose of explanation, we will propose that these fluid contain
significant concentrations of only two ionic species, potassium and sodium. The extracellular fluid contains
a relatively greater concentration of sodium ions, Na+, and the cytoplasm contains a relatively greater
concentration of potassium, K+, ions. Both fluid types contain mixtures of these two ionic species.

This system, a barrier separating solutions of differing concentrations of ionic species, is the definition
of a battery. We know intuitively that batteries are sources of electrical potential and current. Given this
perspective, we may define membrane properties by means of electromagnetic. Ohms Law is the relationship
governing these basic relationships and is defined by the following equation.

V = I ·R (1)

where V denotes potential (Volts), I denotes current (Amps), and R denotes resistance (Ohms). Potential
is directly proportional to current and resistance. Thus, potential may be thought of as the driving force of
current. Current is the movement of charged particles through a circuit. Resistance represents the opposition
of current in a circuit.

It is well known that all neural membranes possess a multitude of ion-selective channels that facilitate the
diffusion of ions across the membrane barrier. Unique channel types vary by the thousands if not millions.
However, for simplicity we consider only passive, non-gated channels selective to one of the two species
available, Na+ or K+. These channels allow electro-chemical forces to drive ionic transfer across the barrier
via diffusion. The existence of ionic flow across the membrane defines what is called ionic current, Iion. As
with electrical circuits, ionic current and membrane potential behave according to Ohms Law.

With Ohms Law behind us, we can now investigate well-understood theory to explain the relationship
between ionic concentrations, membrane potential, and ionic current. However, we must abstract further
for clarity. Consider temporarily that the neural membrane is impermeable to Na+. This is equivalent to
stating that the membrane’s resistance to Na+ ion diffusion is infinitely large, which by Ohms law would
make Na+ potential equal to zero. Therefore, only K+ ions may transfer across the membrane and the
electro-chemical potential across the membrane, at equilibrium, may be described by the Nernst Equation:

EK =
RT

ZF
ln

[K+]o
[K+]i

(2)

where R is the ideal gas constant, T is temperature, F is the Faraday constant, and Z is the effective valence
of K+. Thus, if we consider equilibrium conditions to have constant temperature then RT

ZF is constant and
equilibrium depends only on the natural logarithm of the quotient of K+ ionic concentration outside and
inside the membrane, respectively. Further, when extracellular and intra-cellular K+ concentrations are
equal, it is obvious that EK = 0 mV .

Detailed experimental measurements have determined EK = −75 mV . This result demands one further
explanation. Neurons normally carry net negative charge within the cell and net positive charge externally.
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Canonically, notation describing membrane potential as positive or negative assumes that negative potential
indicates excess intra-cellular negative charge, although it should be obvious that the opposite convention
would also be appropriate.

For completeness, the Nernst Equation describing potential generated by separation of extracellular and
intra-cellular Na+ ions given that the membrane is impermeable to K+ ions, follows:

ENa =
RT

ZF
ln

[Na+]o
[Na+]i

(3)

ENa has been determined experimentally to be approximately +55 mV . Again, note the relative nature
of this number, indicating that a significant net positive charge exists extracellularly. The realistic neural
membrane is more complex. A normal neuron contains passive channels permeable to bothK+ andNa+ ions.
Fortunately, equilibrium potential for the influence of multi-species, non-gated channels is well-understood
and described by the Goldman Equation as follows:

Vm =
RT

F
ln
pK [K+]o + pNa[Na

+]o
pK [K+]i + pNa[Na+]i

(4)

where pK and pNa are membrane permeabilities to K+ and Na+ ions, respectively. These values may be
thought of as the relative densities of open-gated, ion specific channels present in the membrane for each
ionic species. Thus, the Goldman Equation can be thought of as a more generalized version of the Nernst
Equation. In fact, if the permeability of one species is set to zero, then the Goldman Equation reduces to
the Nernst equation for the remaining species.

A question should arise in your mind at this point. Both the Nernst Equation and Goldman Equation
describe the equilibrium potential achieved when concentrations of ionic species are maintained on opposite
sides of the membrane. However, we also state that non-gated channels exist that allow diffusion of ionic
species across the barrier. If this is the case, then any equilibrium condition cannot be maintained as ions
flow from high concentration to low concentration. This diffusion of ions down the concentration gradient
will drive the membrane potential to 0 mV . How is this possible?

Thankfully, the answer is well understood. All neurons contain a metabolic process called the Na+−K+

pump. The Na+ −K+ pump functions to maintain net negative charge in the intra-cellular space. This is
achieved by a chemical process in which 3 Na+ ions are transported out of the neuron and 2 K+ ions are
transported into the neuron with the hydrolysis of ATP Kandel et al. (1991) as the result. Thus, equilibrium
concentrations in the extracellular and intra-cellular space are maintained. The imbalance of Na+ to K+

transfer during the Na+ − K+ pump cycle has an additional effect. The unequal 3-2 transfer of cations
across the membrane forces additional K+ ions to diffuse across the membrane into the neuron, forming an
net ionic current at equilibrium. The current is often called leak.

Experimental measurements have shown that neural membranes in which only non-gated Na+ and K+

channels account for ionic diffusion have an equilibrium membrane potential,Vm, of approximately −60 to
−70 mV . Canonically, the membrane potential in this configuration is defined as the resting potential
denoted, Erest. Given this very negative membrane potential it should be clear from the Goldman Equation
that the permeability of K+ channels dominates that of Na+ channels when at resting equilibrium.

Another important topic of discussion, one that will be raised many times later in this paper, is the
understanding of how the rest potentials relate to ionic current. The ENa, EK , and Erest potentials may
be thought of as theoretical batteries driving ionic currents in and out of the neuron as stated by Ohms
Law. At steady-state, Erest acts as the combined driving force of ionic current, which as was discussed, is
dominated by relatively high passive K+ diffusion across the membrane (high K+ ion permeability). Erest

is slightly depolarized from EK due to the effects of membrane permeability of Na+ ions as described by
the Goldman Equation.

3.2 Passive Membrane Properties

The brain’s purpose is to generate, disseminate, and process signals. We define a signal to be a unit of
information. In the case of biological neurons, the physical manifestations of the signal are magnitude and
rate of change of membrane potential. In the previous section we learned how membrane potential is defined
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at steady-state, physiologically based, and how Ohms Law determines the relationships between potential,
current, and resistance. This section developed understanding of how the magnitude of membrane potential
is determined. The rate of change of potential, with respect to time or space, requires further investigation.

Before we move onto these topics, however, we must discuss another electromagnetic concept that is
critically important in neural function, capacitance. Capacitance is the ability to store and release charge.
Capacitance relates to potential by the following equations:

V = Q/C

∆ V = ∆ Q/C

where C is capacitance, V is potential, ∆ V is change in potential, Q is charge, and ∆ Q is the change in
charge stored on the capacitor. To understand the role of capacitance in membrane potential rate of change,
let us assume that the membrane is a capacitor in addition to being a resistor as described in the previous
section. Given this, the charge carried by membrane current, Im, must be decomposed into two pieces, ionic
current, Ii, and capacitive current, Ic, related by the following equation:

Im = Ii + Ic

The ionic current, as described previously, is defined by the net ionic diffusion across the membrane and
behaves as described by Ohms Law. Capacitive current, however, has the property of adding and removing
charge stored on the membrane itself. An outward capacitive current would then be described by the
addition of cations to the intra-cellular surface of the membrane and removal of an equal number of cations
from the extracellular surface. This is analogous to storage of current that flows in the opposite direction.
The remainder of the section describes how the membrane’s capacitive properties influence potential rates
of change through both time and space.

3.2.1 Membrane Potential Temporal Rate of Change

The equation governing the rate of change of membrane potential with respect to time is given below:

∆Vm(t) = ImR(1− e−t/τ )

where t denotes time and τ denotes the membrane time constant, a dimensionless quantity defined as the
time required for the membrane potential to reach 63% of the value induced by a disruption of membrane
current. An obvious observation follows. Given a command current, a step of current applied externally to
the membrane, the membrane potential response behaves as a bounded non-linear function of time governed
by the membrane time constant. Related time signatures exist within the ionic and capacitive components
of the membrane current as shown in Figure 2.

The lower plot of Figure 2 depicts a step of command current as well as the ionic, Ii, and capacitive,
Ic, components with respect to time. The superposition of Ii and Ic comprises the total current, Im. This
behavior is intuitive by the equation of membrane current provided above. More subtle, and important, is
the behavior of membrane potential with respect to time as is given in the upper plot of Figure 2. Membrane
potential change with respect to time (plot c) is non-linear as is shown by plot c. Figure 2 is important,
however, in that it shows how the non-linear nature of potential change arrives from the interplay of resistive
and capacitive properties of the membrane. Given the command current of the lower plot, line a depicts
potential change behavior if the membrane contained only resistive properties. In this case the potential
change would be instantaneous and maintain a constant value throughout application of the command
current. Line b depicts change if the membrane were purely capacitive. Capacitive potential response is
linear, and potential increases as the capacitor is charge. Once command current is released, the upper
plot of Figure 2 depicts how potential non-linearly returns to the initial level. The lower plot reveals how
stored capacitor charge is released in the absence of command current. A negative current, symmetrical to
the capacitive current during application of command current, is released. This current is exactly opposed
by the ionic current, creating a net zero membrane current. The two plots of Figure 2 fully specify the
temporal nature of potential rate of change, showing how both resistive and capacitive properties of a neural
membrane influence this change.
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Figure 2: Membrane potential temporal response to current perturbation.

3.2.2 Membrane Potential Change through Space

A passive neuron behaves much like a wire cable used to transfer electricity. Ohms Law states that potential
induces current. In our discussion, potential across the neural membrane induces ionic and capacitive current
across the membrane, where membrane resistance, Rm, dissipates ionic current. When viewed as a cable,
however, axial transfer of potential also occurs. That is, the potential at any point along the cable effects
the potential at locations differentially proximal and distal to some fixed reference point. The relationship
between potential, current, and resistance therefore applies spatially. Axial resistance, Ra, describes the
dissipation of current induced by a potential as it propagates down the cable. As a property of conservation,
current flows in the direction of least resistance. Therefore, a current applied to a point along the cable has
two potential avenues of flow, ionic current across the membrane or propagation down the cable length. The
following equation describes potential as a function of distance.

∆Vm(x) = ∆Voe
−x/λ

where Vo denotes the potential change at some point, xo, x is the distance from the location of command
voltage, and λ is the length constant, defined by the following relationship:

λ =

√

Rm

Ra

where λ is equivalent to the distance from the point of current application where ∆V has decreased by 63%.
A spatial description of potential change with respect to distance can be seen in Figure 3.

Given these relationships governing the spatio-temporal rates of change of membrane potential, we have
a clear view of passive neural membrane behavior. Passive neural behavior is most commonly seen in the
dendritic branches of the neuron where voltage-gated ion channels are sparse or nonexistent.

3.3 Active Membrane Properties

We have limited our discussion to a simple neuron having only non-gated, ion selective membrane channels.
Of course, this simple neuron is insufficient for describing the complex membrane potential changes of a
normal neuron. Hodgkin and Huxley Hodgkin and Huxley (1952d); Hodgkin and Huxley (1952b); Hodgkin
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Figure 4: Current injection applied to maintain 50 mV command voltage for 20 ms for both normal squid
axon (Na unblocked) and squid axon with blocked Na channel.

and Huxley (1952a); Hodgkin and Huxley (1952c) first explained the role of voltage-gated ion channels in
neural membrane potential changes. The now legendary experiment, performed on the axon of the giant
squid, mathematically elucidated the behavior of Na+ and K+ selective voltage-gated channels.

Hodgkin and Huxley noted the complex, non-linear path of membrane current when a command voltage
was applied to the giant squid axon. A plot of this classical behavior is depicted in Figure 4 (Na unblocked).
Given a command voltage step, the current necessary to maintain membrane potential spikes quickly followed
by a brief period of stability. This stable period then decays non-linearly before again recovering non-linearly.
Hodgkin and Huxley knew a priori that Na+ and K+ ions were the dominant ionic species involved in the
electro-chemical potential of the neural membrane, and they believed that the complex signature observed
was actually the superposition of the Na+ and K+ ionic current signatures. To validate this hypothesis, they
prepared the axon in an extracellular solution absent Na+ ions. They then tested this preparation under a
command voltage step identical to that of the normal neuron. Their resulting injection current trace, shown
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Figure 5: Current injection applied to maintain 50 mV command voltage for 20 ms for squid axon with
blocked K channel.

in Figure 4 (Na blocked), was that of the behavior of the K+ ions alone. Subtraction of this plot from the
normal neuron plot provided the Na+ ion current trace which is shown in Figure 5.

Decomposition of Na+ and K+ ionic contributions to the membrane current trace was only the ini-
tial experimental step. Hodgkin and Huxley performed similar experiments over a wide range of command
voltages. Studying the differences in the current signatures, they were able to develop the functional re-
lationship between voltage-gated ionic channel permeability and voltage. A mathematical model based on
these findings, widely called the Hodgkin-Huxley model, is described below.

As we have already discussed, an ion channel is an opening in the neural membrane that permits diffusion
of ionic species across the membrane barrier. Channels permit ionic passage in either direction. Channels
are also selective to particular ionic species, meaning that a channel permitting Na+ diffusion across the
membrane will not permit K+ diffusion. Non-gated ion channels freely allow passage of ionic species. More
formally, non-gated ion channels have constant conductance. Ionic currents passing through these channels
directly obey Ohms Law.

Voltage-gated ion channels behave much differently. The conductivity of these channels is a function of
membrane potential. As the name would imply, the conductivity of these channel types is gated. Another
way to think of this is that the channel itself is door that swings open freely. The gates act as a system of
locks keeping the door closed to ionic passage.

Each gate has a probability, a value on the range [0, 1], of being unlocked, which is referred to as the
permissive state. A particular channel’s conductivity may depend on many identical gates and any number
of gate types. Formally, conductance is related to these permissive states by the following equation:

Gchan = ḡchan
∏

i

p

where p is the probability of a gate being in its permissive state, Gchan is the absolute channel conductance
per unit membrane area, and ḡchan is the maximal channel conductance possible if all gates were in the
permissive state. The product of the probabilities of a permissive state for all gates governing the channel
comprises the fraction of maximal conductance possible, thus defining the absolute conductance. We will
see that the probability of the permissive state for a gate is a function of voltage. However, first we should
introduce practical notation. The vast majority of voltage-gated ion channels are gated by at most three
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unique gate types. Thus, the previous equation may be rewritten as:

Gchan = ḡchanp
x1

1 p
x2

2 p
x3

3

where Gchan and ḡchan are defined as previous, pi, i = 1, 2, 3 are the unique gate types, and xj , j = 1, 2, 3,
represent the number of gates of each gate type involved in channel gating, respectively.

The rate of change of gate permissiveness with respect to time obeys first order kinetics. This is described
mathematically as:

dpi
dt

= αpi
(1− pi)− βpi

pi

where α denotes the activation, or opening, of the gate, and β denotes the inactivation, or closing, of the
gate. Both variables, α and β, are functions of membrane potential. Before moving on, it is important
to understand this equation exactly. Given some probability of permissiveness, the rate of change of per-
missiveness with respect to time is increased by the activation rate times the probability of the gate being
closed minus the inactivation rate times the probability of the gate being open. The probability of gate
permissiveness is always on the range [0, 1]. Any product of a value on this range to any power will always
be on the range [0, 1]. Therefore, even though gate permissiveness may change with respect to time, the
channel conductance, as defined above will always vary over the range [0, ḡchan].

Finally, we must specify functional descriptions of the variables α and β with respect to membrane poten-
tial. Through careful experimentation, these functions have been approximated for a wide range of voltage-
gated channel types. The most commonly encountered channels have gate variables well-approximated by a
common function form Bower and Beeman (1997):

A+Bx

C + exp
(

x+D
F

)

Given that we have rates of change equations defined for the permissiveness of our gates to ionic diffusion,
a question should enter your mind. These gates must have absolute values when solving for channel conduc-
tance. Yet we only have equations for rates of change. How do we solve for the values themselves? While
the proper answer to this question must wait for a discussion of numerical integration methods, we can solve
for gate permissiveness under equilibrium conditions. Given any membrane potential over the range defined
for α and β, the steady state value of the gate permissiveness can be determined. This is achieved by setting
the derivative of the gate permissiveness equal to zero and solving for the activation and inactivation values
at some membrane potential, usually termed, Vinit. Simple algebraic manipulation of the equation of rate
of change yields the following equation:

pss =
αp

αp + βp

where pss is the steady state permissiveness of gate, p at some voltage, V , and αp and βp are the activation
and inactivation values of gate p at V .

Thus, given any initial membrane potential value, Vinit, we assume the neuron is not disturbed and
achieves equilibrium. Each gate variable permissiveness at this potential may be determined and used as an
initial state value of the neuron. With the inclusion of voltage-gated ion channels, we have achieved a formal
specification of a biologically-motivated neural membrane.

For illustration, Figure 6 depicts mathematically modeled behavior of Na+ and K+ channel activation
and inactivation gates for hippocampal CA3 pyramidal cells originally modeled by Traub Traub et al. (1991).
In this diagram, the m and h gates govern the Na+ channel conductance and the n gate controls the K+

channel conductance. The left-hand plot depicts the rate of change of the gate activation and inactivation
variables with respect to membrane potential. Rates of change are measure in ms. The most important
point of this figure is to understand that gate variable rates of change are highly non-linear and vary widely.
The interplay of these functions produce the complex behavior of the neuron. The right-hand plot depicts
the steady state permissiveness of the gates for a range of membrane potentials. As was explained above,
these values must vary over the range [0, 1]. The steady state plot of gate permissiveness is very powerful in
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(right) steady state permissiveness.
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Figure 7: Schematic of a generalized compartment model.

determining the range of membrane potential over which the voltage-gated ion channels governed by these
gates will play a role in neural decision functionality.

The importance of the understanding of voltage-gated ion channels in neural modeling cannot be under-
stated. The complex interactions of the gate activation and inactivation equations are the most important
influence in membrane potential change of an active neuron during simulation. Inherent understanding of
the mathematical premises on which changes take place is crucial to successful modeling.

3.4 The Compartment Model

Now that we have developed the appropriate neurological theory to understand the mechanisms by which
neurons maintain membrane potential, as well as how neural membranes respond to the introduction of exter-
nal currents and potentials both temporally and spatially, we are ready to introduce a formal mathematical
neural model on which realistic neural behavior may be simulated.

Canonically, the neural equivalent circuit, or compartment model, is used to formally diagram a section
of neural membrane. The compartment model circuit incorporating all of the biological features discussed
in previous sections is diagrammed in Figure 7.

This circuit diagram represents a single neural compartment. The variables gK , gNa represent vari-
able conductances of voltage-gated ion channels. The constant conductance gleak is defined as above. Ra

represents axial resistance. Cm is membrane capacitance. EK and ENa represent the reversal potentials
(equilibrium potentials) of K+ and Na+ non-gated ion channels, respectively. Iinject represents externally
applicable current sources such as would be used in current and voltage clamp experiments. V ′m and V ′′m
variables are provided to illustrate the possible presence of many such compartments. This point raises a
major issue in neural modeling. Abstraction of a biological neuron to a computational model requires com-
partmentalization of the neuron. The number of compartments used determines the accuracy of the model.
The mapping of a realistic neural membrane to a compartment model abstraction is illustrated in Figure 8

While a neuron may be roughly approximated by one compartment, it is often advantageous to utilize
many compartments connected in serial. The increase in accuracy of a multi-compartment model, however,
is often complicated by the absence of realistic neural data to estimate model parameters. This is no small
problem. In fact, collection of realistic data for use in parameter approximation is the single most difficult
problem in neural modeling. Many of the parameters required to fully specify a computational model are
unavailable. Often, parameters from similar or dissimilar neural types are the only data available. Estimation
of parameters that are unknown has been labeled the “black art” of computational neuroscience. Knowing
when to substitute data taken from dissimilar sources, as well as developing an intuitive feel for good
approximate parameter values should be considered an important skill learned with experience. However,
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Figure 8: Graphical representation of a complex neural membrane equivalent circuit.

the incorporation of numerical analysis and machine learning techniques for optimizing model parameters
given criteria of appropriate behavior should minimize the longevity of this art. Computational tools should,
given a set of criteria and bounds on reasonable parameter values, be able to solve for a finite set of optimal
model parameters.

Another important principle that should be highlighted here is the importance of units. Once a theoretical
model is applied, units become a critical issue. The values supplied as parameters must be mutually consistent
with all other values. The two most common sets of units used for neural modeling are base SI (system
international) units and biological units, where biological units are a canonical subset of SI units such that
model parameters have values close to single or double digits. The use of base SI units often forces parameter
specification to be very large or very small such as 15× 10−6 m and so on. When incorporating units taken
from many different sources, make sure the units are consistent, whatever system used.

In addition, the nature of the compartment model should be discussed. We have only described the
compartment model as an approximation of neural membrane, but not really what this means. A neuron
was previously related to a wire cable. For the purpose of this discussion, we consider a single compartment
to model some “segment” of a real neuron. This length takes the form of a cylindrical geometry in most
cases (a sphere is often used to approximate the soma). Given this, it should be known that the parameter
values specified for the compartment model to this point have not incorporated spatial extent. Conduc-
tances are defined in Siemens. Resistances have been defined in Ohms. When specifying parameters for a
computational compartment model, representing a real neuron, these parameters must be specified in terms
relative to length, area, and volume. For example, axial resistance is the quantity Ohms/meter. Channel
conductances are given in Siemens/meter2, and so on. To scale these parameters appropriately, the neural
modeler must decide how large a neural section the compartment represents and then assign appropriate
units to this geometry.

3.5 Synaptic Connectivity

The complex physiology of the synapse was discussed in Section 2. Fortunately, abstraction of synaptic
behavior is rather well-defined when incorporated into models at the compartment level. Almost all synaptic
channels have variable conductance that are functions of time. An exception is the case of the NMDA
channel which is voltage dependent through the use of an Mg2+ ion intermediary. In general, though, the
synapse may be modeled by the following equation:

Isyn = gsyn(t)(Vm − Esyn)

Isyn is the synaptic current contribution to ionic current, gsyn is the time-dependent synaptic conductance
and Esyn is the reversal potential of the synaptic channel. Other variables are defined as previous. Note,
the reversal of the Vm and Esyn terms as compared to voltage-gated ion channels. This term reversal has
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Figure 9: Synaptic channel conductance behavior for the alpha function approximation when (left) gmax is
varied (τ = 2.0) and when (right) τ is varied (gmax = 1.0).

important ramifications for the intrinsic value of Esyn for each synaptic channel modeled as will be described
below.

While seemingly complex, the majority of synaptic channels may be simply described by two function
of time, the alpha function and the dual-exponential function. The alpha function is defined by following
equation:

gsyn = gmax
t

τ
(e1−t/τ )

τ is the time constant and gmax represents the maximum possible conductance of the synapse. Given
this description, the notion of fast and slow behavior is evident. A large value of τ will yield a slow acting
synaptic connection. In addition, the gmax term will be large for a powerful connection and small for a weak
connection. These relationships are depicted in Figure 9.

The inhibitory or excitatory nature of a synapse is not primarily determined by either the gmax or τ
term. Rather, the value and sign of the Esyn term has greatest influence on the synaptic connections
hyperpolarizing or depolarizing influence.

When necessary to describe more complex behavior, the dual-exponential function is used, having the
following form Bower and Beeman (1997):

gsyn(t) =
Agmax

τ1 − τ2

(

e−t/τ1 − e−t/τ2
)

, τ1 > τ2

where A is a normalizing constant and τ1 and τ2 represent the rising and falling time constants, respectively.
An AMPA synaptic connection is well-modeled by the dual-exponential function. Typical values for this
connection might be as follows: gmax = 4.8× 10−9S,Esyn = 0.0V, τ1 = 1.0ms, andτ2 = 1.0ms.

3.5.1 NMDA: A voltage gated synapse

Unfortunately, not all synaptic connections commonly used in neural models are as simple as the alpha and
dual-exponential functions. NMDA, a common slow, excitatory synaptic connection is one such exception.
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NMDA conductance is time, voltage, and concentration dependent rather than simply time dependent. The
concentration dependence of NMDA is mediated by magnesium, [Mg2+], that varies among differing neural
types. Traub Traub et al. (1991) described NMDA behavior for a CA3 hippocampal pyramidal cell using
the following formulation.

gNMDA = gligand × g[Mg2+],Vm

gligand = gmax
t

τ
(e1−t/τ )

g[Mg2+],Vm
=

1

1 + [Mg2+]
3 × exp(−0.07(Vm − ξ))

This example underlines the robustness and complexity of nature that must be captured in mathematical
models.

3.6 Solving the Discrete Compartment Model

Given the basic mathematical theory of the separate influences on neural compartment potential, we are
now ready to assemble the complete mathematical compartment representation. We begin by discussing
compartment model parameters as they are often cited in research, as specific units. CM is specific membrane
capacitance, having SI units of F/m2. RM is specific membrane resistance having SI units of Ohm∗m2. RA

is specific axial resistance having units of Ohm∗m. Specific quantities are often reported in neural modeling
so that they can be studied independent of compartment dimensions, quantities that are often varied.

With specific parameters defined, it is now necessary to convert these quantities into their absolute
equivalents. Equations 5, 6, and 7 detail these conversions for a cylindrical compartment.

Cm = ΠdlCM (5)

Rm =
RM

Πdl
(6)

Ra =
4lRA

Πd2
(7)

From these absolute units we may redefine the description of passive cable properties representing time
τ , and space, λ, constants of the cable as follows.

τ = RmCm

λ =

√

Rml

Ra/l

.
As proposed by Mascagni Mascagni and Sherman (1998) the differential equation describing a passive

cable compartment is given by:

λ2
δ2V

δx2
− τ

δV

δt
− V = 0

Substitution of the λ and τ factors yields

Rml
2

Ra

δ2V

δ2
−RmCm

δV

δt
− V = 0
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Simple algebraic manipulation yields:

Cm
δV

δt
=

l2

Ra

δ2V

δx2
−

V

Rm

The factor δ2V
δx2 may then be discretized by the method of lines Mascagni and Sherman (1998), which

assumes that all compartments are of similar geometry and maintain equivalent axial resistance between
compartments.

Cmi

dVi
dt

=
l2

Rai

Vi−1 − 2Vi + Vi+1
(∆xi)2

−
Vi
Rmi

Obviously, l = ∆x, therefore we may reduce the equation further:

Cmi

dVi
dt

=
Vi−1 − 2Vi + Vi+1

Rai

−
Vi
Rmi

However, for compartment models in which compartment geometry and size differs, a more robust discrete
approximation of the cable model may be derived:

Cmi

dVi
dt

=
Vi−1 − Vi
Rai−1

+
Vi+1 − Vi

Rai

−
Vi
Rmi

The derivation is that which is most commonly used in neural modeling. The Vi

Rmi

resistance based term

may be replaced by the more conventional term representing passive membrane conductance per unit area,
ḡmi

, often called the leak conductance, ḡleaki
. It should be noted that if you incorporate membrane resistance

based current into your calculations you cannot, realistically, introduce membrane conductance based current
influences. These terms are the same and therefore represent a preference in notation. It should also be
noted that the Vi

Rmi

term is derived for a theoretically based compartment having a rest potential of OmV .

As was discussed previously, imbalance of ions maintained by metabolic processes generates a non-zero rest

potential for a neuron, which is labeled, Erest. Thus, in a neural model in which Erest is non-zero, this passive

conductance term is canonically described as (Eleak−Vi)
Rmi

yielding the generalized passive compartment model:

Cmi

dVi
dt

=
Vi−1 − Vi
Rai−1

+
Vi+1 − Vi

Rai

−
(Erest − Vi)

Rmi

Adding terms for voltage-gated ion channels and externally applied current yields the overall, generalized
compartment equation for potential change with respect to time, Equation 8.

Cmi

dVi
dt

=
Vi−1 − Vi
Rai−1

+
Vi+1 − Vi

Rai

−
(Erest − Vi)

Rm
+
∑

chan

ḡchani
(Echan − Vi) +

∑

syn

ḡsyni
(Esyn − Vi). (8)

3.6.1 Numerical Integration

With a spatially discrete mathematical description in hand, the remaining question of modeling becomes one
of change with respect to time. As was stated previously, the information of a neuron is not merely membrane
potential, but rather how this potential changes with time. Thus, a neural model must accurately simulate
membrane potential change given the above equation. To perform this simulation, we must integrate the term
dVi

dt for each compartment with respect to time. The numerical integration process used in a neural model
comprises the bulk of the computational process. Primarily, there are three numerical integration techniques
used to solve the equation described above: Forward Euler, Backward Euler, and Crank-Nicolson. The first
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two techniques are simply opposite approximation techniques. When the term dVi

dt is discretized to
V n+1

i
−V n

i

∆t ,
the Forward Euler method requires that all voltage terms on the righthand side be described at time n, which
is known

Cmi

V n+1
i − V n

i

∆t
=

V n
i−1 − V n

i

Rai−1

+
V n
i+1 − V n

i

Rai

−
(Erest − V n

i )

Rm
+

∑

chan

ḡchani
(Echan − V n

i ) +
∑

syn

ḡsyni
(Esyn − V n

i ) + Iinject

This type of numerical integration is termed an explicit method, meaning only one unknown variable
need be solved, that of V n+1

i . The Backward Euler method is simply the opposite case. All voltage terms
on the righthand side are defined for the future time step.

Cmi

V n+1
i − V n

i

∆t
=

V n+1
i−1 − V n+1

i

Rai−1

+
V n+1
i+1 − V n+1

i

Rai

−
(Erest − V n+1

i )

Rm
+

∑

chan

ḡchani
(Echan − V n+1

i ) +
∑

syn

ḡsyni
(Esyn − V n+1

i ) + Iinject

The Backward Euler method is an implicit method, as there exists more than one unknown variable

to solve given one equation. Solution of an implicit method requires solving all equations for
V n+1

i
−V n

i

dt
simultaneously. It should be clear that for N compartments, there will exist N equations having 3 unknowns
per compartment. This system of linear equations (SLE) forms a tridiagonal matrix which will be discussed
in the next section. A second implicit method is the Crank-Nicolson Method which is merely the average of
the Forward and Backward Euler methods. The discrete potential derivative form is as follows:

Cmi

V n+1
i − V n

i

∆t
=

V n
i−1 − V n

i

Rai−1

+
V n
i+1 − V n

i

Rai

−
(Erest − V n

i )

Rm
+

∑

chan

ḡchani
(Echan − V n

i ) +
∑

syn

ḡsyni
(Esyn − V n

i ) + Iinject)/2 +

(
V n+1
i−1 − V n+1

i

Rai−1

+
V n+1
i+1 − V n+1

i

Rai

−
(Erest − V n+1

i )

Rm
+

∑

chan

ḡchani
(Echan − V n+1

i ) +
∑

syn

ḡsyni
(Esyn − V n+1

i ) + Iinject)/2

The Forward Euler method, while fastest, is inherently unstable for all but the most prohibitively small
time steps, ∆t. The Backward Euler method is slow, but inherently stable for all size timesteps ∆t. The
Crank-Nicolson method is stable, but generally not as slow as the Backward Euler method due to its math-
ematical properties. The details of this stability are beyond the scope of this paper and readers are referred
to Mascagni Mascagni and Sherman (1998) for further information.

Defining these numerical integration formats, however, is not the final step. Rearrangement of terms
is still necessary to place the equations in a suitable form for computational solution. A derivation of the
tri-diagonal SLE follows for the Backward Euler method. Derivation of the Crank-Nicolson is similar and
left as an exercise.

Given the initial Backward Euler form:

Cmi

V n+1
i − V n

i

∆t
=

V n+1
i−1 − V n+1

i

Rai−1

+
V n+1
i+1 − V n+1

i

Rai

−
(Erest − V n+1

i )

Rm
+

∑

chan

ḡchani
(Echan − V n+1

i ) +
∑

syn

ḡsyni
(Esyn − V n+1

i )
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Cmi

∆t
V n+1
i −

V n+1
i−1 − V n+1

i

Rai−1

−
V n+1
i+1 − V n+1

i

Rai

+
(Erest − V n+1

i )

Rm
−

∑

chan

ḡchani
(Echan − V n+1

i )−
∑

syn

ḡsyni
(Esyn − V n+1

i ) =
Cmi

∆t
V n
i + Iinject

Cmi

∆t
V n+1
i −

V n+1
i−1

Rai−1

+
V n+1
i

Rai−1

−
V n+1
i+1

Rai

+
V n+1
i

Rai

+
Erest

Rmi

−
V n+1
i

Rmi

−
∑

chan

ḡchani
Echan +

∑

chan

ḡchani
V n+1
i −

∑

syn

ḡsyni
Esyn +

∑

syn

ḡsyni
V n+1
i ) =

Cmi

∆t
V n
i + Iinject

−
V n+1
i−1

Rai−1

+

(

Cmi

∆t
+

1

Rai−1

+
1

Rai

−
1

Rmi

+
∑

chan

ḡchani
+
∑

syn

ḡsyni

)

V n+1
i −

V n+1
i+1

Rai

=
Cmi

∆t
V n
i +

∑

chan

ḡchani
Echan +

∑

syn

ḡsyni
Esyn −

Erest

Rmi

+ Iinject

εi =
∆t

Cmi

−εi
V n+1
i−1

Rai−1

+

(

1 +
εi

Rai−1

+
εi
Rai

−
εi
Rmi

+ εi
∑

chan

ḡchani
+ εi

∑

syn

ḡsyni

)

V n+1
i −

εi
V n+1
i+1

Rai

= V n
i + εi

(

∑

chan

ḡchani
Echan +

∑

syn

ḡsyni
Esyn −

Erest

Rmi

+ Iinject

)

γi = ε

(

∑

chan

ḡchani
Echan +

∑

syn

ḡsyni
Esyn −

Erest

Rmi

+ Iinject

)

−εi
V n+1
i−1

Rai−1

+

(

1 +
εi

Rai−1

+
εi
Rai

−
εi
Rmi

+ εi
∑

chan

ḡchani
+ εi

∑

syn

ḡsyni

)

V n+1
i − εi

V n+1
i+1

Rai

= V n
i + γ

ΘL,i = −
εi

Rai−1

(9)

ΘC,i = 1 +
εi

Rai−1

+
εi
Rai

−
εi
Rmi

+ εi
∑

chan

ḡchani
+ εi

∑

syn

ḡsyni
(10)

ΘR,i = −
εi
Rai

(11)

ΘLV
n+1
i−1 +ΘCV

n+1
i +ΘRV

n+1
i+1 = V n

i + γi (12)

Equations 9 through 12, for compartments i = 1, ..., N form a system of linear equations which must be
solved simultaneously. However, to correctly solve these systems, an additional problem arises. The ḡchan
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terms are functions of membrane potential, not simply constants. If we utilize the permissiveness rate of
change equation with α and β emphasized as functions of potential:

dpi
dt

= α(V )pi
(1− pi)− β(V )pi

pi

Then we may formulate the Backward Euler integration method for this equation as: equation with α
and β emphasized as functions of potential:

dpi
dt

= αpi
(Vi)(1− pi)− βpi

(Vi)pi

pn+1i − pni
∆t

= α(V n+1
i )pi

(1− pn+1i )− βpi
(V n+1

i )pn+1i

Algebraic manipulation will yield the following equation:

pn+1i =
pni +∆tαpi

(V n+1
i )

1 + ∆t[αpi
(V n+1

i ) + βpi
(V n+1

i )]
(13)

Obviously, Equation 13 has two unknowns, that of potential and permissiveness at a future timestep.
Thus, both the future potential and permissiveness must be solved iteratively by the following algorithm:

1. Compute temporary, V n+1
i value using current pni value.

2. Compute temporary, pn+1i value using temporary V n+1
i value

3. Iterate steps 1 and 2 until the values of V n+1
i and pn+1i converge (ie. step change is below some relative

error value)

3.6.2 Boundary Conditions

The sealed end boundary condition, typically used in solving the types of linear systems described above,
requires that no current escape out either end of the cable. This condition can be approximated by assuming
the axial resistance at the end compartments approaches infinity. For compartment 1, this causes the ΘL,1

coefficient to be zero. For compartment N, this causes the ΘR,N coefficient to be zero and the ΘC,N coefficient
to be described as follows:

ΘC,N = 1 +
εi

Rai−1

−
εi
Rmi

+ εi
∑

chan

ḡchani
+ εi

∑

syn

ḡsyni

3.7 Solving Tridiagonal Matrices

For a neuron having N linearly-connected compartments, the implicit Backward Euler method generates a
system of linear equations (SLE) to be solved, having a unique form called a tridiagonal matrix. A five
compartment neuron SLE is depicted in Equation 14 representing the Backward Euler numerical integration
derivation described above.
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(14)

The reason the tridiagonal matrix occurs in compartment modeling arises from the method-of-lines ap-
proximation to the second spatial derivative of potential in the cable model. Each compartment potential
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depends on its own potential as wells as the left and right neighboring compartments’ potentials. The vec-
tor of constants arises from the BE derivation incorporating non-voltage dependent terms that are added
to the current, known potential. Once in this form, any numerical stable SLE solver may be used. LU
Decomposition (Gaussian elimination) is recommended Hines (1989); Mascagni and Sherman (1998).

3.7.1 Concentration Shells

Another common compartment model abstraction is that of the concentration shell, or shell. A shell is a
cylindrical volume, having a radial thickness that is measured from the compartment’s membrane. This
shell acts as a way to abstract the storage and transfer of ions whose concentrations are largely effected by
diffusion across the membrane surface. A shell containing ionic species, S, of compartment i is defined as a
concentration, χS,i, an ionic conversion rate, φS,i, and a concentration decay rate, τS,i. The units of χS,i are
moles/m3. The units of φS,i are moles/(m

3A and the units of τS,i are sec. The kinetics of concentration
are described by Equation 15:

dχS,i

dt
= φS,iIS,i −

χS,i

τS,i
(15)

where IS,i is the ionic current of species, S, in compartment, i. Discretizing this equation using the
Backward Euler method gives the following derivation:

χn+1
S,i − χn

S,i

∆t
= φn+1S,i IS,i −

χn+1
S,i

τS,i

χn+1
S,i

∆t
+
χn+1
S,i

τS,i
= φn+1S,i IS,i +

chinS,i
∆t

χn+1
S,i

(

1

∆t
+

1

τS,i

)

= φn+1S,i IS,i +
χn
S,i

∆t

χn+1
S,i

(

1 +
∆t

τS,i

)

= ∆tφn+1S,i IS,i + χn
S,i

χn+1
S,i =

∆tφn+1S,i IS,i + χn
S,i

1 + ∆t
τS,i

(16)

Given the derived Backward Euler update, Equation 16, solutions of χS,i for all species, S, and all
compartments, i, must be addressed at each time step. Moreover, if channels are gated on value of χS,i then
it must be updated during convergence of compartment potential over a timestep.

3.8 Units Conversion Table

Relevant SI Units
Quantity Name Symbol Units Base Units

Capacitance Farads F C/V m−2kg−1s2Q2

Charge Coulombs Q A ∗ s Q
Conductance Siemens S Ω−1 m−2kg−1sQ2

Current Amperes A Q/s Q/s
Length Meters m m m
Potential Volts V V m2kgs−2Q−1

Resistance Ohms Ω S−1 m2kg1s−1Q−2

Time Seconds s s s
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