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Abstract

We give anO(n) algorithm for finding the PQ tree
of a consecutive-ones matrix if a consecutive-ones ab cdefgh. i
ordering is given, whera is the number of columns .
and anO(n)-space representation of the matrix is 1 1111

given. We use this to obtain the modular decom- 11111
position of permutation graphs and two-dimensional 11

partial orders irD(n) time when their compact rep- 11

resentation with two linear orders is given. More 1111
generally, given a set & linear orders on a sét, 1111
we find a decomposition tree that gives a representa- 11
tion of all sets that form consecutive intervals in all
of the linear orders. There is a natural associative,
commutative intersection operator on such decom- |
position trees and show how to evaluate G V/|)
time. We use these results to obtain a linear time
bound for modular decomposition of 2-structures.

1 Introduction

a c h i
A 0-1 matrix has theconsecutive-ones properily ] ] ]
there exists a permutation of the set of columns suEigure 1: A consecutive-ones ordering of a matrix,
that the 1’s in each row occupy a consecutive blockd the corresponding PQ tree. The zeros in the ma-

Such a permutation is calledcansecutive-ones or-trix are omitted. The ordering of the columns is a
dering. (See Figure 1). consecutive-ones ordering because the 1's in each

A family F of subsets of a seV has the fOW are consecutive. The left-to-right leaf order of
consecutive-ones property if there exists an ordéf€ PQ tree gives this ordering. Reversing the left-
ing (x1,%2,...,xn) Of elements ofV such that ev- to-right order of children of a Q node (rectangles) or
ery member ofF consists of a consecutive intervaPermuting arbitrarily the left-to-right order of chil-
{Xi,Xi+1,...,x;} Of the ordering. This is equivalentdrén of a P node (points) induces a new leaf order,
to the matrix formulation, where the columns of th&/hich is also a consecutive-ones ordering. For in-
matrix denoteV’ and the rows are bit-vector repreStance, permuting the order of children of the left
sentations of the members 6f child of the root and reversing the order of children

In general, the number of consecutive-ones ord&t the right child gives(d, a,b,c,e,f,k,j,h,1,9)
ings need not be polynomial; there may [bé! of @S @ consecutive-ones ordering. An ordering of
them. However, th€Q treeof a family that has the €0lumns of the matrix is a consecutive-ones order-
consecutive-ones property gives a way to represéfg iff it is the leaf order of the PQ tree induced by
all of its consecutive-ones orderings usifg|Vv|) "eversing the children of some set of Q nodes and
space, as in Figure 1. The PQ tree is a rooted Hrmuting the children of some set of P nodes.
dered tree whose leaves are the elementg,aind
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whose internal nodes are each labeled eithar

Q. The left-to-right leaf order gives a consecutive-
ones ordering, and any new leaf order that can be
obtained by permuting arbitrarily the children of a P
node or reversing the order of children of a Q node is
also a consecutive-ones ordering. There are no other
consecutive-ones orderings.

One of the most significant applications of PQ
trees is in finding planar embeddings of planar
graphs [18]. Booth and Lueker used PQ trees to de-
velop an algorithm for determining whether a fam-
ily of sets has the consecutive-ones property [2].
The algorithm runs i®(|V|+ CardSum( ¥ )) time,
whereCardSum/( %) is the sum of cardinalities of
members ofF

A set family & with the consecutive-ones prop-
erty gives rise to ainterval graph which has one
vertex for each member ¢f , and an adjacency be-
tween two vertices if and only if the correspond-
ing members off intersect. Booth and Lueker’s

result gave a linear-time algorithm for determining tabedefghiil)
whether a given graph is an interval graph, and, if
so, finding such a set family for it. This prob- (ab)®) (edefah)(P) )

lishing that DNA has a linear topology [1], though
Ilne.arftlme algor_lthms were unavallabl_e atthattime. () ) () () fefg)D) Ih)
Variations on this problem come up in the assem- ‘

lem played a key role during the 1950’s in estab- /

bly of the genome of an organism from laboratory
data [26, 29]. {e} {f} {g}
A setX of vertices of a grapls = (V, E) is amod-
ule iff it satisfies the following conditions for to ev-Figure 2: The modular decomposition represents
eryyev-—-X: the modules of a graph with an ordered tree whose
nodes are subsets ¥f Each internal node is labeled
1. Either every element of is a neighbor ofj or linear (L), prime (P), ordegeneratéD). A subset of
no element oKX is a neighbor ofy; the vertices is a module iff it is a node of the tree,
the union of a set of children of a degenerate node,
2. Eithery is a neighbor of every element &for  or the union of a set of children of a linear node that
a neighbor of no element of. is consecutive in the left-to-right order of its chil-
dren. The modules of the depicted graph that are not
The modular decompositioof a directed graph nodes of the tree are unions of children{eff, g},
G = (V,E) is a recursive decomposition of a graphamewl{e)f}, {e, g}, and{f, g}, and unions of con-
into modules(Figure 2). The decomposition is arsecytive children ofa,b,c,d,e,f,g,h, i}, namely,
ordered, rooted tree. The nodes of the tree are qu,hb’c, d,e,f,g,h} and{c,d,e,f,g,h,i}. To repre-
a subset ofv that is equal to the union of its leafsent the decomposition, it is not necessary to label
descendants. Each internal node is labdieear internal nodes with the set that they correspond to,

(L), prime (P), ordegeneratfD). A subset oV is a  as this is given by the union of leaf descendants of
module iff it is a node of the tree, the union of a sgke node.

of children of a degenerate node, or the union of a
set of children of a linear node that is consecutive in
the left-to-right order of its children.

A comparability relationis the symmetric closure
of a partial order. That s, R is a partial order, and
(a,b) € R, then(b,a) is in its symmetric closure.
Thetransitive orientation probleris the problem of



inverting this closure operation: given a comparawo members oX. The modules of a 2-structure
bility relation, one must find a partial order that hasan be represented in the same way as they are in
the comparability relation as its symmetric closurgraphs, with a tree whose internal nodes are labeled
It is often described as the problem of orienting therime, degenerate, and linear. The modular decom-
edges of an undirected graph to obtain a transitipesition of a graph is just a special case: the modules
digraph. of a graph are the modules of of the 2-structure on

When such an orientation can be found, otherwiizge same vertex set that has one color for edgé&s of
NP-hard problems such as finding a maximal cliquend one color for edges of the compleménof G.
can be solved in linear time. A transitive orientatioherefore, everything we show about modules of a
of a comparability relatioR on a sel can be found 2-structure applies to modules of graphs as a special
in linear O(|V|+|R]) time [22]. The ability to find case.
the modular decomposition in linear time played a To get a sparse representation of a 2-structure on
key role in this result. It also played a key role in theertex setV, delete the edges of the most com-
linear time bound for recognition abgraphg5]. mon color, and leE be the remaining set of colored

The modular decomposition also gives a measslges. The edges of the most common color are rep-
of breaking down many NP-complete problem&sented implicitly by their absence from this graph.
in graphs into smaller subproblems, leading t# 2-structure algorithm can only be considered lin-
polynomial-time algorithms on graph classes, su@ar if it runs inO(|V| +|E|) time.
as cographs, which always have a nontrivial decom-The modular decomposition is a device for rep-
position tree. resenting a potentially large family of subsets\of

A partial orderR on a setV is alinear orderif (the modules) with a tree whose nodes are labeled
there exists an orderinfxy,x2,...,xn) of the ele- degenerate, prime, and linear. Lepartitive family
ments ofV such that(x;,x;) € Riff 1 <i<j<n. be anyfamily of subsets af that admits such a rep-
The orderingx1,x2,...,xn ) gives a compact repre-resentation. That is, |8t be any rooted ordered tree
sentation inO(|V|) space. A partial order i& di- whose leaves ar€, whose internal nodes each have
mensionalf it is the intersectiorR; "R, N...N Ry  at least two children and a label that is eitdegen-
of k linear orders, and the linear orders give a repratg prime, or linear. Let F(T) denote the family
resentation irO(k|V|) space. Every partial order isof sets whereX € ¥ iff it is the set of leaf descen-
the intersection of a set of linear orders [10], SO edants of a node, the union of leaf descendants of a
ery partial order has a dimension. If thelinear set of children of a degenerate node, or the union of
orders are given, then the modular decompositionle&af descendants of a set of consecutive children of
the partial order can be labeled to give an implicy linear node. TheW = F(T) is a partitive family,
representation of all sets &f linear orders whose andT is #’s (partitive) decomposition tree
intersection is the partial order. Whenever a set family is partitive, its decomposi-

Fork > 2, itis NP-complete to determine wither aion tree is unique up to labeling of nodes that have
given partial order i&-dimensional [28]. However, only two children (the labeling is irrelevant in this
two-dimensional partial orders can be decomposgése), the ordering of children of degenerate and
into two constituent linear orders in linear time [22]prime nodes, and reversal of the order of children
hence they can be recognized in linear time. Thg |inear nodes.
comparability relation of a two-dimensional partial The modules of a graph or two-structure are a par-
orderR is known as germutation graphthese can titive family [27, 13], and the modular decomposi-
be recognized by transitively orienting them and dgon is just their partitive decomposition tree. Other
termining whether the result is two-dimensional. partitive families have played a role in linear time

A 2-structureis a complete graph, with edge seounds for recognizing circular-arc graphs [19, 23],
{(a,b)la,b € V anda # b}, together with a color- O(n +mlogn) bounds for recognizing probe inter-
ing of its (directed) edges. It isymmetricif, for val graphs [25], and finding a certificates for show-
everya,b €V, (a,b) and(b, a) are the same color,ing that a set family does not have a consecutive-
andantisymmetrigf, whenevera,b € V, (a,b) and ones ordering or that a graph is not a permutation
(b, a) are different colors. graph [17].

Let H be a 2-structure on vertex sd. For  Two setsX and Y overlapif they intersect, but
x,Y,z € V, let us say that distinguishesc andy if neijther is a subset of the other.
(z,x) and(z,y) are of different colors, ofx,z) and
(y,z) are of different colors. A module i is a set Theorem 1. [4, 27, 12] A set familyF on domain
X of vertices such that ng € V — X distinguishes V is partitive iff it has the following properties:



e Ve F,0¢& F,andforallve V,{vle F in each set in the set family of as an adjacency-list
] representation of the graph. Since these are asymp-

e Forall X,Y e 7, if XandY overlap, therX N (otically space-optimal representations of arbitrary

YeF, XUYeF,X=YeF,andY—Xe F. graphs, these algorithms have provably optimal time

Theorem 1 provides a useful test of Whetheras%?ﬂnsvs'v r when the inout i rmutation araoh
family has a partitive decomposition tree. owever, when the Input IS a permutation grap
or two-dimensional partial order, optimality of the

time bound again does not follow, since these have
1.1 Newresults an O(|V]) representation in the form of two linear

. o . .orderings of the vertices. Our second result, which

Any algorithm can be made to run in time linear in . . ! .

! o . . -, We obtain using Theorem 2, is the following:

the size of its input simply by selecting a suitably
space-inefficient representation for the input. For ifheorem 3. Given anO(|V/|) representation of a

stance, many algorithms for NP-complete problentso-dimensional partial order or permutation graph
can be made to run in “linear” time by choosing asing two ordered lists, it take®(|V/|) time to find

unary representation for integer inputs. Linearity éfs modular decomposition.
an algorithm does not imply an optimal time bound If R, and R, are two linear orders on a

un!essthe r.epresentatlon of the input is also asymp; V, their common factorsare those sub-
totically optimal.

, . ., sets of V that are consecutive in each &,
When Booth and Lueker’s algorithm [2] for find- dR,. For instance, ifR; = (1,2.3,..,12)

ing the PQ tree is applied to a set family that is not 4 R, = (3,1,10,12,11,8,5,9,7,4,6.2), then
known to have the consecutive-ones property, the "5 6780 i’s ,a f,actbr ,si,n(,:e’ it’ a’p;’)ea{rs as the
gorithm either returns the PQ tree, or else rejects t er‘vél ’(4’ 5f6 7.8,9) in ,R, and as the interval
family as not having the consecutive-ones proper{% 507 4)63 i;w ]’22’

The running time ofO(|V|+ CardSum(¥))isan .. """ | '

i . . X .. It is well-known that the modules of the two-
optimum time bound, since it uses a Space'eﬁ'c'e&?nensional partial ordeR; MR, are just the com-

representation of arbitrary set families. mon factors oft; andR,. More generally, if§ —

IHo;ve\ll(er, whin Ir:IS aptEHGd toase:'famlly that(%])Rz,ka} are linear orders on on doma
aiready known {o have th€ CONSECUlVE-ONeS Prage, , 1h,se subsets bfthat are consecutive in all of

_erty, the proof .Of opt|mal|ty of the time t_)oundthfe linear orders are just the modules of a 2-structure
is no longer valid because it assumes an input af_ H(Ry,Ry,... Ry), where, forx,y,u,w € V

size O(|V| + Cardsum(F)). Families with the ‘1 and (u,w) have the same color iff for all

. . x,Y)
consecutive-ones property have a representation th %y{],z,...,k}, (x precedesy in Ry) <= (u pre-

is more compact than the standard listing of el%’edesw in Ry). That is, they have the same colors if
ments of each member of the family. A consecutive- h '

ones family F can be represented @(|V| -+ | %) x precedeg andu precedesv in the same subset of

7. ) g the linear orders. Therefore, the common factors of
space by giving a consecutive-ones ordering, agéa

. . are a partitive family whose decomposition tree
representing each membéof 7 in O(1) space by is given bF;/ the modula?/decompositionpldf

g'VIr.]gdtge;”.Sttﬁ.nd Ia;t f"emger c]:f tft1e |ntelztrya[[r(])c- Using Theorem 2, we obtain the following gener-
cupied byX in this ordering. Our first result is the_ . i\ of Theorem 3:

following:
. _ Theorem 4. If linear orders{Ry,R3,...,Rx} on do-
Theorem 2. It takesO(|V|+|#]) time to find the mainV are given withk ordered listings of elements

PQ tree of a consecutive-ones family, given a of v, it takesO (k|V/) time to find the decomposition

first and last element of in the ordering. _ _ N
By Theorem 1, the intersection of two partitive

An O(|V|+|E|) bound for modular decomposi-set families is a partitive set family. This suggests
tion of arbitrary undirected graphs was first givethe problem of finding the decomposition tréef
by the algorithm in [21, 22]; other algorithms withthe intersectionf; N 72, given the decomposition
a variety of desirable properties have since fdlreesT; andT, of F; and #,. We can refer to this
lowed [6, 8, 15]. The firsO(|V|+ |E|) bound for asfinding the intersection of two partitive decompo-
directed graphs is given in [9]; a simpler approadition trees which defines an associative, commuta-
is given in [24]. These are all linear in the size dive operatofl = T; N T, on partitive decomposition
the input when it is given as a listing of elementsees.



The following is given in [24], and plays a keymodular decomposition of the 2-structure is given
role in the linear time bound for modular decompdsy T; N T, N...N Tk, which takesD (k| V|) time to
sition of digraphs: find, by Theorem 6. O

Theorem 5. Given partitive decomposition treés, Using somewhat more careful methods, we refine
T, on a setv, whereT; andT, have no linear nodes, these methods to obtain a linear time bound:
Ty NT; can be found in time proportional to the SUMpagrem 8. Let T, T,

o . ., T, be partitive trees on
of cardinalities of their nodes.

domainV, let s be the sum of cardinalities of their

The difficulties posed by linear nodes are illug?on-root internal nodes, and Iétbe the number of
trated by the simple case of two tréBsandT, that _thek roots that are linear nodes. leen_ the nor_1-root
each havé/ as their only internal node. ¥ is lin- intérnal nodes, it take® (s + (1 +1)[V|) time to find
ear in at most one of; andT,, T; N T, hasV asits 11 T20...N T
only internal node, so finding; N, is trivial. If V Using Theorem 8, and linear-time modular de-
is linear in both, therf; N T, can have a large num-composition of directed graphs, it is easy to obtain
ber of internal nodes. However, given Theorem #he following corollary.
we can now solve this problem (|V]) time, since 10 o |t takes O(|V| + |E|) time to find the
T; N T, is just the decomposition tree of the common iy

. . . “modular decomposition of a 2-structure.
factors of the two linear orders on childrensfin
the two trees. Using a generalization of this trick, The proof is similar to that of Corollary 7, but
we obtain the following: avoids touching isolated vertices in eagh
) ) - It is worth noting that Theorem 8 gives the fol-
Theorem 6. Given arbitrary partitive decomposi-|owing remarkably simple alternative to Booth and
tion treesT; and T, on domainV, it takesO(|V]) |yeker's algorithm for finding the PQ tree of a
time to findTy N T>. consecutive-ones family when a consecutive-ones
rdering is not given. LetF = {X7,X2,...,X\n}
E% a set family on domaifv, and letT; denote
the trivial PQ tree of the one-member set family

o . Xi}. The only non-leaf, non-root internal node of
it is easy to construct three orderings ¥fwhose { b '
y g T, is X;. By Theorem 12 (below), the PQ tree

common factors havg as their decomposition tree Ay .
5 P of ¥ is given byT; N T, N...N T, which takes

This givesé linear orders altogether, and the com= :
mon factors of thesé linear orders havé =T, 1T, °OUV/+ Cardsum(¥))time to compute, by Theo-

as their decomposition tree. The time bound foIIovxfgm 8. This is somewhat surprising, since this prob-
from Theorem 4. em does not assume that the consecutive-ones or-

The best published bound for modular decompg-er_ing is already given, yet th_e algorithm is deri_v_ed
sition of arbitrary 2-structures B(|V/?) [11]. How- indirectly from Theorem 2, which assumes that it is.

ever, anO(|V|+ |E|) bound for the special case Oft' The?r%r:"ns 3 4’26 \;a\llndhCorotlrI]arty ?hgwe glgl)ph.ca—
a symmetric 2-structure witkd(1) colors is given lons ol Theorem 2. Vve hope that others will anse.

in [24], and this is a key element in the the Iine%heorem 4, in particular, gives an optimal bound for

Details are given below, but it is instructive to se
how it can be proven in the case where there are
degenerate nodes i or T,. For eachrl;i € {1,2},

time bound for modular decomposition of directe nc:mg the fac:orsl of a f)?t ?{f Il_nleaLprdters. 'I(;htise
graphs given in that paper. Due to Theorem 4, ctors are hatural combinatorial Objects, and they

can now get a more general bound: might have applications in scheduling theory, for ex-
’ ample.
Corollary 7. It takesO(k|V|+|E|) time to find the

modular decomposition of a 2-structure that Has
comr‘;_ Postt e 2 Sketches of proofs

Proof. Let G; denote the graph ovi given by edges 2.1  Additional background
of colori, and supposéy. is the graph of the color
class given implicitly by the edges that are abse@tu
from E. Find the modular decompositidn of each Theorem 10. [14] Given a lengthn list
G; for eachi from 1 to k—1 using the linear- L of real values and a set ofp intervals
time modular decomposition algorithm for directe¢li;,jq1,[i2,j2],...,[ip,ipl} Of L, it takesO(n +p)
graphs given in [24]. Since the edge sets are digme to find a maximum elementlofn each of the
joint, this takes a total 0O (k|V|+|E|) time. The intervals.

r algorithms make extensive use of the following:



A partitive family is symmetridf, in addition to blocks is notO(|V|+ | %), but, since they each cor-
the properties given in Theorem 1, it has the propespond to intervals in the consecutive-ones order-
erty that wheneveK andY are overlapping mem-ing, we can represent each of them@1) space
bers, then theisymmetric differencAY is also a by giving the starting and ending position of the in-
member. It isantisymmetridf this is never the case.terval it occupies in the consecutive-ones ordering.
It is not hard to show that the modules of a synBince the decomposition tree H&s$leaves and each
metric 2-structure are a symmetric partitive familyjode of the decomposition tree &f( ) has at least
and that those of an antisymmetric 2-structure are @avo children, this take® (|V|) space.
antisymmetric partitive family. A partitive family is The overlap graph does not ha®{|V|+ |F|)
symmetric iff its decomposition tree has no lineaize. However, to find the overlap components, it
nodes with at least three children, and antisymmetiffices to find a subgrapH of the overlap graph
ric if it has no degenerate nodes with at least threghose connected components are the same as the
children. connected components of the overlap graph, but

If F is a family of subsets of a univerdg then whose size iO(|F]). This subgraph will be the
F's non-overlapping familydenotedA (¥ ) is the union of two spanning forests.
family of nonempty subsets &f that do not overlap  Each block of ones in a consecutive-ones order-
with any member off . ing of a matrix can be viewed as an interval on

) ) . thereal line whose endpoints happen to be integers,
Theorem 11. [16] If ¥ is an arbitrary set family, namely, the column numbers of the first and last in-
thenA\((F) is a symmetric partitive family. terval. Assume that no two rows are identical. It is

Theorem 12. [16] If ¥ has the consecutive-one£asy to radix sort the endpoints of the intervals in
property, the PQ tree is the decomposition tree 8(|V|+|7|) timez and_then perturi_a them by epsilon
A((F ), where the prime nodes are interpreted as tmounts to obtain a list of endpoints where no two

Q nodes and the degenerate nodes are interpreteoeé}dpOints coincide, without disturbing the overlap
the P nodes relation among the intervals. For instance, subtract-

ing 1/4 from each left endpoint and adding 1/4 to
If F is a set family, let itooverlap graphG, (F) each right endpoint. It is then easy to add epsilon
be the graph that has one vertex for each membewafues to a set of coinciding right endpoints without
F and an edge between two vertices iff the corréisburbing the containment relation among the inter-
sponding members of overlap. vals. Coinciding left endpoints can be handled sim-
Given a connected componegtof G, (F), let ilarly. The resultis a sorted list of endpoints, where
=, be an equivalence relation dj C, where if no two endpoints coincide and where the original
x,y € U C, thenx =y iff the family of members of overlap relation is preserved.
C that containx is the same as the family of mem- Next, if x is an interval, letR(x) denote the set
bers of C that containsy. Let C’s blocksbe the of intervals that overlap witk and whose right end-
equivalence classes &f.. points lie to the right ofx. If R(x) is nonempty,
_ _ _ letx’s right parentbe the member oR(x) with the
Theorem 13. [20] If ¥ is & set family on domain rightmost right endpoint. It'deft parentis defined
V, thenX C V'is a node of the decomposition tregymmetrically: letL(x) denote the set of intervals
of AL(F) iff it is one of the following: that overlap withx and whose left endpoints lie to
the left ofx. If L(x) is nonempty, ther'’s left par-
entis the member of_ (x) whose left endpoint is
2. U for some connected componenof #’s Ieﬂmogt. Theparent graphis the graph thse ver-
overlap graph; tex setis the intervals and whose edge setisone
of x andy is the left or right parent of the othler

1. V or a one-element subset ¢f

3. Ablock of a connected componentfos over-

Lemma 14. The connected components of the par-
lap graph.

ent graph are the same as the connected components
of the overlap graph.

2.2 Theorem 2 Proof. Each edge of the parent graph corresponds to
By Theorem 13, it suffices to find the connectedn overlap, so each component of the parent graph is
components offF’s overlap graph and, for eacha subset of a component of the overlap graphs. Let
component, find the component’s union and itss suppose that there are two componénitsand

blocks. The sum of cardinalities of these unions arigy of the parent graph that are subsets of the same



componeniC of the overlap graph. We may selecéndpoints of members of the component. We may
C; andC; such that there is an edge of the overlagbtain the blocks as follows. Treat a left endpoint
graph from a membet of C; to a membeb of C,. at positioni as occurring just beforé and a right
We will now derive a contradiction. endpoint as occurring just after it. Each block of

Suppose without loss of generality that the lethe component is a set of elements\othat occur

endpoint ofb is to the left ofa. Let x; = a and between consecutive endpoints of the sorted list.

y; = Db. Sincey; € L(x;), x, has a left parent, so

I_et x1 bex,’s Ie_ft parent. Similarly, lety; beyi’s 23 Theorems 3 and 4

right parent. Since; € Cq, X1 #y1, SOx1’s left

endpoint is to the left ofj;’s. Similarly, y,'s right We sketch the proof of Theorem 4, since Theorem 3
endpoint is to the right of,’s. If x; fails to overlap is a special case.

y1, then it contains it and overlaps. Similarly,y» If F is a partitive set family on sét, afactoriz-
overlaps one of; andx;. ing permutationof 7 is an ordering of elements of

This shows (for k = 2) that there exists V such thatthe setrepresented by each node’sf
a sequence(xi,y1,x2,Yz2,...,Xk,Yx) such that decomposition tree is consecutive [3]. Itdtong
x1,%2,....,x} € C1,{y1,Y2,...,yx} C Cz, theright if, wheneverCy,C,,...,Cy are children of a linear
endpoints of(x2,y2,...,xx,yx) are an increasinghode U, the intervals occupied by, Cy,...,Cx
sequenceyy overlaps a member dk;,x2,...,x}, Match the linear order of children &f. When¥ is
andxy overlaps a member ¢fj1,y>,...,yx). So let antisymmetric, a strong factorizing permutation is a
us select such a sequer(eg,y1,x2,Y2,...,xx,yx) CONsecutive-ones ordering.
of maximum size.

Let x; be a member ofx1,x3,...,xk} that over-
lapsyx. Sinceyy ¢ Cq, it is notx;’s right parent,
so letxy+1 bex;’s right parent, which must be i@,
and have its right endpoint to the rightgf. Since
xi41 € Ca, itis notyy’s right parent, so leg,. 1 be
yi's right parent. Thenyy; is in C, and its right
endpoint is to the right oty ;1. The new sequence
satisfies the conditions fde+ 1, contradicting our
choice ofk. O When# and ¥’ are as in Lemma 15, it is easy to

see thatf ' is a maximal consecutive-ones subfam-
To find the right parents, we create a sorted ligy of 7.

L of left endpoints. We label each of these with the

matching right endpoint. For each interVal b, the Definition 16. [3] Let (x1,x2,...,xn) be a factor-

set of left endpoints ifia, b] defines an interval df, 129 permutation of the modgles of a 2-structure.

which is easily found off-line for all intervals in thel€t Xi,xi+1 be two consecutive elements. ¥

set of intervals. The right parent &f, b] is just the and Xit1 are dlstmgwshed by an elgment ec_';lrller

maximum right endpoint that occurs in this intervafh@n t in the ordering, letp be the minimum in-

By Theorem 10, this may be found for all interval§€x such thak,, distinguishesc; andx;.;. Then

in O(|V|+|7|) time. The left parents can be foundXp,Xp+1,--,Xi} is afracture fori. Similarly, if x;

by a symmetric operation. andx,, are distinguished by elements greater than
This gives the connected components of the ovért |- then letq be the maximal index such thay,

lap graph of ¥ in O(|V|+|¥]|) time. To get the distinguishes them(x;,1,xi+2,...,xq} is a fracture

blocks of the components, we may number tfar i. Thefracturesof the factorizing permutation

O(|#]) components, label each member®bfwith are just the family of sets that are fractures for any

its component number, and then radix sort all begiff the indices from 1 tav.

ning and ending positions of members 5fusing Theorem 17. LetH be a 2-structure oV andR =
component number as primary sort' key and positiq;;g1 ,X2,...,xn) be a strong factorizing permutation
as the secondary sortkey. As a tertiary key, use 0 g its modules. Then the modular decomposition of
a left endpoint and 1 for a right endpoint; this eny js given by the PQ tree of the fractures, where the

sures that when a set of endpoints in the compongejing of internal nodes is given by the following
are tied, the left endpoints in the set come before thge-

right endpoints in the sort. This tak€y|V|+|F]|)
time and gives, for each component, a sorted list ofe The Q nodes are interpreted as prime nodes.

Lemma 15. If ¥ is a partitive family on domain

V andR = (x1,x2,...,Xn ) is a factorizing permuta-
tion, then the subfamil¥’ of members of that are
consecutive iR is a partitive family, and its decom-
position tree is obtained frorft 's decompaosition by
relabeling each degenerate node as linear, and mak-
ing the order of its children consistent with the order
in which they appear iR.



e A P node is interpreted as a degenerate node To find the maximum- such thatx, lies between
if the edges oH that go between its childrenx; andx;, in R,,, we useL; to look up the positions
are symmetric, and it is interpreted as a lineapq,pv of x; andx; 1 in R,. This takesO(1) time
node otherwise. if Ly is implemented with an array. We then find the
maximum value that lies in the intervgl ., py] of
Proof. The PQ tree of the familyf; of the frac- L,, and this gives the indexof x,.. By Theorem 10,
tures is the partitive decomposition tree of the famve can perform this last lookup for allfrom 1 to
ily AL(#1) of subsets oV that overlap no fracture,n in O(n) time. Repeating this for ak,, such that
by Theorem 13. To get the decomposition tree @f<p < nyieldsk— 1 suchr’s for each pair;, x; 1
the subfamily, of A((#) consisting of membersin O(nk) time. The maximum of these is the index
of A((#1) that are consecutive i, we must change s of the rightmost vertex, in Ry that distinguishes
the order the children of each degenerate node of thex; ;. If s > i+ 1, then{xi;1,xi12,...,Xs} IS
decomposition tree af\((F;) to be consistent with one of at most two possible fractures generated by
R, and change their label to linear, by Lemma 1%x;,x;,1}.
Therefore, the partitive decomposition treebfis The other fracture generated by edeh,x;i 1}
the PQ tree of the factors, except for the relabelingin be found by symmetry, inverting the rolesiof
of P nodes as linear and Q nodes as prime. andi+ 1 and min and max. This also tak€gnk)
Let 73 be the modules dfl. The subfamily?, of time. Therefore the fractures inducedRa by H
modules ofH that are consecutive Ris a maximal can be found irO(nk) time.
consecutive-ones subfamily &%, so its decompo-  This proves Theorem 4, and Theorem 3 follows
sition tree is the same as that $f except that de- as a special case, since the factors are the same as
generate nodes are relabeled linear, by Lemma #%e modules when the relation is two-dimensional.
It is easy to see that a consecutive seR ifhat over- This gives modular decomposition of permutation
laps a factor cannot be a module, and that a consgeaphs in the same time bound, since the modular
utive set inR that overlaps no factor is a moduledecomposition of a permutation graph is obtained
Therefore, 74 = #,. The modular decompositionfrom that of its transitive orientation by relabeling
of H must be the PQ tree of the factors, except thiiiear nodes as degenerate.
Q nodes are relabeled prime and P nodes are rela-
beled deggnerate or Ilqear. A node of_the rr_loduléur Theorem 6
decomposition of that is known to be either linear
or prime must be linear iff the edges bf that go Let us first consider the case whérgandT, have
between the children are antisymmetric, and degere degenerate or prime internal nodes. For egch
erate iff the edges dfl that go between the childrerwe may construct three linear orders ¥nwhose

are symmetric [13]. OO0 common factors havg as their decomposition tree,
as follows. Arrange each node’s children according
2.3.1 The algorithm to their implied linear order. Get the first linear or-

der by listing the elements in the leaves according
Given k linear orders{R;,Rz,...,Ry}, recall that to their left-to-right order in this ordered tree. Then,
their common factors are the modules Bf = reverse the order of children at each node that is at
H(Ry,Rz,...,Rk), defined in Section 1.1R; is a odd depth in the tree and once again list the order-
strong factorizing permutation for the common fadng of elements in the leaves to obtain the second
tors. By Theorem 17, to obtain ad(k|[V|) bound linear order. Finally, reverse the order of children at
for finding the common factors ¢Ry,Rz,...,Ry}, it each node that is at even depth, and repeat the oper-
suffices to give an algorithm for find the fractuids ation to obtain the third linear order. (This last step

induces inRy in O(k|V]) time. is unnecessary, but convenient when we generalize
Let Ry = (x1,X2,...,Xn)- Then for x; ¢ to trees that have nodes that are not linear.)
{xi,xi+1}, x; distinguishesx; and x;7 in H iff It is easy to see that a subset¥éfis a common

there existR,, such tha2 <p < k wherex; falls factor of these three linear orders iff it is a union of
betweerx; andx;;1. FOrR, = (y1,u2,...,yn), we consecutive children of a linear nodeTn There-
create a lisLy = (p1,p2,...,Pn), Wherep; denotes fore, T; is the the decomposition tree of the common
the positionj of x; in R,. That isp; =j such that factors. It follows thail = T; N T, is the decompo-
y; =x4. We also create a lidt, = (q1,492,...,qn), Sition tree of the common factors of theSdinear
where q; denotes the index aof; in R;. That is, orders, and it can be obtained @(|V|) time with

qi =j such that; =y;. the algorithm of Theorem 4.



Next, let us consider what happens when prini®y T, so its decomposition tree’ = T{ N T, is the
nodes are allowed. Once again we obtain three lisame ad except that some degenerate nodes have
ear orders to represent eaGhand findT =T; N T, been relabeled linear. Sind¢ and T, have no de-
by applying Theorem 4 to the resultigginear or- generate nodes, =T, N'T, can be found irfO(|V|)
ders. To find three linear orders fdg, we once time by the tree intersection algorithm given above
again order children of internal nodes three timder this case. Detecting nodes that must be relabeled
and read an ordering from the leaves. The orddinear to obtainT is easily accomplished by finding
ings of children of linear nodes are handled as btheir least common ancestorsTin andT, using the
fore. At each prime nod@, permute the order of marking algorithm; the maximal nodes ®f or T,
children as follows. LetC;,C,,...,C,, be an ar- that are subsets of a nodeTfare the least common
bitrary ordering of children of; this is their or- ancestor or a set of children of the least common an-
dering used in obtaining the first linear order. loestor.
the second iteration, concatenate the even-numbere@he bottleneck is applying the marking algo-
children, followed by the odd-numbered childrenjthm on T, repeatedly for each node @, which
as follows: (C2,C4,...,Cp_(p moda 2),C1,C3,..., takes time proportional to the sum of cardinalities
Cp—(1—(p mod 2))) to obtain the new order-of nodes inT,. However, we can get this down to
ing of children. For the third iteration, re-O(|V|) by observing that wheilf is the parent oK
verse the roles of the odd- and even-number&dT,, performing the marking operation withre-
children: (Cq,C3,...,Cp—(1—(p mod2)),C2,C4,..., peats all of the marking operations performed with
Cho—(p modz2)). Itis easy to see that the three lineaX. Therefore, as we work inductively Up process-
orders again havég, as their decomposition tree. ing nodes, we can continue the marking operation of

Let us now allow degenerate nodes. We assign each nodé&’ at the points inl; where the marking of
order to the children of each degenerate node ahé children left off. The marking proceeds mono-
treat it as a linear node. The problem of interseatnically upT;, and take®©(|V/|) time. Similarly, we
ing these trees reduces to the foregoing case. Whgn anO(|V|) bound when marking, with nodes of
we are done, the intersection of the trees has some or when markingl; andT, with nodes ofT’.
nodes wrongly labeled as linear nodes, when they
should be degenerate, and we detect these cases
relabel them. Za%d Theorem 8

If XCV, we can_ find the r_naximal nodgs of LetT;,Ts, ..., Tx be as in Theorem 8.
that are subsets &f in O(|X|) time, by marking all
nodes that are subsetsXif When a node is marked,_Lemma 18. For eachT; and every non-prime node
itincrements anarked-childrercounter inits parent 7 of T = T; N T, N...N Ty, there exists a non-prime
that tells how many marked children the parent hasode X; of T; such that each child of in T is a
When a node’s marked-children counter reaches ifion of one or more children of;.
degree, the node is marked. Marking the leaves
while observing these rules causes all node3;of For Theorem 8, we find the connected compo-
that are subsets of to be marked. Any markednents of the overlap graph of the set of non-root
nodeU with an unmarked pareld is a maximal internal nodes offy, ..., Ty, using the algorithm for
node ofT; that is a subset oK. Since each inter- overlap components given in [7]. This takes time
nal node has at least two children, this takes tinfesoportional to|V| plus the sum of cardinalities of
proportional to the number of marked leaves, whidtpn-root internal nodes ify, ..., T.
is O(|X]). Moreover, for each unmarked node with We then find the unions of these connected com-
marked children, we can obtain a list of its markeponents and their blocks, just as in Theorem 13. The
children. Hasse diagram of the containment relatior\qrthe

For each nod&! of T,, we may perform this op- unions of connected components, their blocks, and
eration onTy, by letting X = U. We may do the the singleton subsets &f is a tree, which we may
same forT, using nodes ofl;. The results of thesefind in time proportional taV| plus the sum of car-
markings allows us to order the children of degenetinalities of non-root internal nodes d@§ through
ate nodes of; and andTl, and relabel them linear, Tx. The main technique is radix sorting.
obtainingT{ andT}, so that some maximal antisym- Up to here, the algorithm is a straightforward gen-
metric subfamily¥’ common toT; andT, retains eralization of the one for symmetric partitive fami-
this status forT{ andT,. Then ¥’ is a maximal lies given in [24]; this is the result of relabeling each
antisymmetric subfamily of the family representetinear node as degenerate and finding the intersec-
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tion T’. We must now reflect the additional con-[7] E. Dahlhaus. Parallel algorithms for hierarchi-

straints imposed by linear nodesTin throughT;,.
To do this, we assign each degenerate noad

T’ a representative element Z. We then identify

for each nodé& of this treeT’ the nodeX; of eachT;

given by Lemma 18. IX; is linear, the linear order

on its children imposes linear order on representa-
tives of children ofZ, which implies a linear order
on children ofZ. We collect all such linear orders
on children ofZ.

This is where Theorem 4 plays a critical role: we 9]
use its algorithm to find the decomposition tree 01[
the common factors of these linear orders. The inter-
nal nodes of this decomposition tree can be spliced
into T” betweerZ and its children to reflect the con-
straints imposed by linear nodes®f... T, on what [10]
unions of children ofZ can be members ¢f. Since
the representatives of children Afare members of
each linear node that contributes a linear order, itli51]
easy to see that this can be accomplished at all nodes
of T while staying within a time bound proportional
to the the sum of cardinalities of linear nodes in

Tiyee Tk
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