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Abstract

We give anO(n) algorithm for finding the PQ tree
of a consecutive-ones matrix if a consecutive-ones
ordering is given, wheren is the number of columns
and anO(n)-space representation of the matrix is
given. We use this to obtain the modular decom-
position of permutation graphs and two-dimensional
partial orders inO(n) time when their compact rep-
resentation with two linear orders is given. More
generally, given a set ofk linear orders on a setV ,
we find a decomposition tree that gives a representa-
tion of all sets that form consecutive intervals in all
of the linear orders. There is a natural associative,
commutative intersection operator on such decom-
position trees and show how to evaluate it inO(|V |)
time. We use these results to obtain a linear time
bound for modular decomposition of 2-structures.

1 Introduction

A 0-1 matrix has theconsecutive-ones propertyif
there exists a permutation of the set of columns such
that the 1’s in each row occupy a consecutive block.
Such a permutation is called aconsecutive-ones or-
dering. (See Figure 1).

A family F of subsets of a setV has the
consecutive-ones property if there exists an order-
ing (x1,x2, ...,xn) of elements ofV such that ev-
ery member ofF consists of a consecutive interval
{xi,xi+1, ...,xj} of the ordering. This is equivalent
to the matrix formulation, where the columns of the
matrix denoteV and the rows are bit-vector repre-
sentations of the members ofF .

In general, the number of consecutive-ones order-
ings need not be polynomial; there may be|V |! of
them. However, thePQ treeof a family that has the
consecutive-ones property gives a way to represent
all of its consecutive-ones orderings usingO(|V |)
space, as in Figure 1. The PQ tree is a rooted or-
dered tree whose leaves are the elements ofV , and
∗Colorado State Universityrmm@cs.colostate.edu
†LIRMM, Montpellier, montgolfier@lirmm.fr

a     b     c

d e

h i

kg j

f

a    b     c    d    e    f    g    h    i    j    k

1 1 1 1 1
1 1 1 1 1 1

1 1
1 1

1

1 1 1 1
1 1 1 1

1 1

Figure 1: A consecutive-ones ordering of a matrix,
and the corresponding PQ tree. The zeros in the ma-
trix are omitted. The ordering of the columns is a
consecutive-ones ordering because the 1’s in each
row are consecutive. The left-to-right leaf order of
the PQ tree gives this ordering. Reversing the left-
to-right order of children of a Q node (rectangles) or
permuting arbitrarily the left-to-right order of chil-
dren of a P node (points) induces a new leaf order,
which is also a consecutive-ones ordering. For in-
stance, permuting the order of children of the left
child of the root and reversing the order of children
of the right child gives(d,a,b,c,e,f,k, j,h, i,g)
as a consecutive-ones ordering. An ordering of
columns of the matrix is a consecutive-ones order-
ing iff it is the leaf order of the PQ tree induced by
reversing the children of some set of Q nodes and
permuting the children of some set of P nodes.
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whose internal nodes are each labeled eitherP or
Q. The left-to-right leaf order gives a consecutive-
ones ordering, and any new leaf order that can be
obtained by permuting arbitrarily the children of a P
node or reversing the order of children of a Q node is
also a consecutive-ones ordering. There are no other
consecutive-ones orderings.

One of the most significant applications of PQ
trees is in finding planar embeddings of planar
graphs [18]. Booth and Lueker used PQ trees to de-
velop an algorithm for determining whether a fam-
ily of sets has the consecutive-ones property [2].
The algorithm runs inO(|V |+CardSum(F )) time,
whereCardSum(F ) is the sum of cardinalities of
members ofF

A set family F with the consecutive-ones prop-
erty gives rise to aninterval graph, which has one
vertex for each member ofF , and an adjacency be-
tween two vertices if and only if the correspond-
ing members ofF intersect. Booth and Lueker’s
result gave a linear-time algorithm for determining
whether a given graph is an interval graph, and, if
so, finding such a set familyF for it. This prob-
lem played a key role during the 1950’s in estab-
lishing that DNA has a linear topology [1], though
linear-time algorithms were unavailable at that time.
Variations on this problem come up in the assem-
bly of the genome of an organism from laboratory
data [26, 29].

A setX of vertices of a graphG= (V,E) is amod-
ule iff it satisfies the following conditions for to ev-
eryy ∈ V−X:

1. Either every element ofX is a neighbor ofy or
no element ofX is a neighbor ofy;

2. Eithery is a neighbor of every element ofX or
a neighbor of no element ofX.

The modular decompositionof a directed graph
G = (V,E) is a recursive decomposition of a graph
into modules(Figure 2). The decomposition is an
ordered, rooted tree. The nodes of the tree are each
a subset ofV that is equal to the union of its leaf
descendants. Each internal node is labeledlinear
(L), prime(P), ordegenerate(D). A subset ofV is a
module iff it is a node of the tree, the union of a set
of children of a degenerate node, or the union of a
set of children of a linear node that is consecutive in
the left-to-right order of its children.

A comparability relationis the symmetric closure
of a partial order. That is, ifR is a partial order, and
(a,b) ∈ R, then(b,a) is in its symmetric closure.
Thetransitive orientation problemis the problem of

{i}

{b}{a} {e,f,g}{d}{c}

{g}{e} {f}

{a,b}(P) {c,d,e,f,g,h}(P)

(D) {h}

{a,b,c,d,e,f,g,h,i}(L)

a

b

h

i

e f g
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Figure 2: The modular decomposition represents
the modules of a graph with an ordered tree whose
nodes are subsets ofV . Each internal node is labeled
linear (L), prime(P), ordegenerate(D). A subset of
the vertices is a module iff it is a node of the tree,
the union of a set of children of a degenerate node,
or the union of a set of children of a linear node that
is consecutive in the left-to-right order of its chil-
dren. The modules of the depicted graph that are not
nodes of the tree are unions of children of{e,f,g},
namely,{e,f}, {e,g}, and{f,g}, and unions of con-
secutive children of{a,b,c,d,e,f,g,h,i}, namely,
{a,b,c,d,e,f,g,h} and{c,d,e,f,g,h,i}. To repre-
sent the decomposition, it is not necessary to label
internal nodes with the set that they correspond to,
as this is given by the union of leaf descendants of
the node.
.
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inverting this closure operation: given a compara-
bility relation, one must find a partial order that has
the comparability relation as its symmetric closure.
It is often described as the problem of orienting the
edges of an undirected graph to obtain a transitive
digraph.

When such an orientation can be found, otherwise
NP-hard problems such as finding a maximal clique
can be solved in linear time. A transitive orientation
of a comparability relationR on a setV can be found
in linearO(|V |+ |R|) time [22]. The ability to find
the modular decomposition in linear time played a
key role in this result. It also played a key role in the
linear time bound for recognition ofcographs[5].

The modular decomposition also gives a means
of breaking down many NP-complete problems
in graphs into smaller subproblems, leading to
polynomial-time algorithms on graph classes, such
as cographs, which always have a nontrivial decom-
position tree.

A partial orderR on a setV is a linear order if
there exists an ordering(x1,x2, ...,xn) of the ele-
ments ofV such that(xi,xj) ∈ R iff 1 ≤ i ≤ j ≤ n.
The ordering(x1,x2, ...,xn) gives a compact repre-
sentation inO(|V |) space. A partial order isk di-
mensionalif it is the intersectionR1 ∩R2 ∩ ...∩Rk
of k linear orders, and the linear orders give a rep-
resentation inO(k|V |) space. Every partial order is
the intersection of a set of linear orders [10], so ev-
ery partial order has a dimension. If thek linear
orders are given, then the modular decomposition of
the partial order can be labeled to give an implicit
representation of all sets ofk linear orders whose
intersection is the partial order.

Fork> 2, it is NP-complete to determine wither a
given partial order isk-dimensional [28]. However,
two-dimensional partial orders can be decomposed
into two constituent linear orders in linear time [22],
hence they can be recognized in linear time. The
comparability relation of a two-dimensional partial
orderR is known as apermutation graph; these can
be recognized by transitively orienting them and de-
termining whether the result is two-dimensional.

A 2-structureis a complete graph, with edge set
{(a,b)|a,b ∈ V anda 6= b}, together with a color-
ing of its (directed) edges. It issymmetricif, for
everya,b ∈ V , (a,b) and(b,a) are the same color,
andantisymmetricif, whenevera,b ∈ V , (a,b) and
(b,a) are different colors.

Let H be a 2-structure on vertex setV . For
x,y,z ∈ V , let us say thatz distinguishesx andy if
(z,x) and(z,y) are of different colors, or(x,z) and
(y,z) are of different colors. A module ofH is a set
X of vertices such that noy ∈ V −X distinguishes

two members ofX. The modules of a 2-structure
can be represented in the same way as they are in
graphs, with a tree whose internal nodes are labeled
prime, degenerate, and linear. The modular decom-
position of a graph is just a special case: the modules
of a graph are the modules of of the 2-structure on
the same vertex set that has one color for edges ofG

and one color for edges of the complementG of G.
Therefore, everything we show about modules of a
2-structure applies to modules of graphs as a special
case.

To get a sparse representation of a 2-structure on
vertex setV , delete the edges of the most com-
mon color, and letE be the remaining set of colored
edges. The edges of the most common color are rep-
resented implicitly by their absence from this graph.
A 2-structure algorithm can only be considered lin-
ear if it runs inO(|V |+ |E|) time.

The modular decomposition is a device for rep-
resenting a potentially large family of subsets ofV
(the modules) with a tree whose nodes are labeled
degenerate, prime, and linear. Let apartitive family
be any family of subsets ofV that admits such a rep-
resentation. That is, letT be any rooted ordered tree
whose leaves areV , whose internal nodes each have
at least two children and a label that is eitherdegen-
erate, prime, or linear. Let F (T) denote the family
of sets whereX ∈ F iff it is the set of leaf descen-
dants of a node, the union of leaf descendants of a
set of children of a degenerate node, or the union of
leaf descendants of a set of consecutive children of
a linear node. ThenF = F (T) is a partitive family,
andT is F ’s (partitive) decomposition tree.

Whenever a set family is partitive, its decomposi-
tion tree is unique up to labeling of nodes that have
only two children (the labeling is irrelevant in this
case), the ordering of children of degenerate and
prime nodes, and reversal of the order of children
of linear nodes.

The modules of a graph or two-structure are a par-
titive family [27, 13], and the modular decomposi-
tion is just their partitive decomposition tree. Other
partitive families have played a role in linear time
bounds for recognizing circular-arc graphs [19, 23],
O(n+m logn) bounds for recognizing probe inter-
val graphs [25], and finding a certificates for show-
ing that a set family does not have a consecutive-
ones ordering or that a graph is not a permutation
graph [17].

Two setsX andY overlap if they intersect, but
neither is a subset of the other.

Theorem 1. [4, 27, 12] A set familyF on domain
V is partitive iff it has the following properties:
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• V ∈ F , /0 6∈ F , and for allv ∈ V , {v} ∈ F

• For all X,Y ∈ F , if X andY overlap, thenX∩
Y ∈ F , X∪Y ∈ F , X−Y ∈ F , andY−X ∈ F .

Theorem 1 provides a useful test of whether a set
family has a partitive decomposition tree.

1.1 New results

Any algorithm can be made to run in time linear in
the size of its input simply by selecting a suitably
space-inefficient representation for the input. For in-
stance, many algorithms for NP-complete problems
can be made to run in “linear” time by choosing a
unary representation for integer inputs. Linearity of
an algorithm does not imply an optimal time bound
unless the representation of the input is also asymp-
totically optimal.

When Booth and Lueker’s algorithm [2] for find-
ing the PQ tree is applied to a set family that is not
known to have the consecutive-ones property, the al-
gorithm either returns the PQ tree, or else rejects the
family as not having the consecutive-ones property.
The running time ofO(|V |+CardSum(F )) is an
optimum time bound, since it uses a space-efficient
representation of arbitrary set families.

However, when it is applied to a set family that is
already known to have the consecutive-ones prop-
erty, the proof of optimality of the time bound
is no longer valid because it assumes an input of
size Θ(|V | + Cardsum(F )). Families with the
consecutive-ones property have a representation that
is more compact than the standard listing of ele-
ments of each member of the family. A consecutive-
ones familyF can be represented inO(|V | + |F |)
space by giving a consecutive-ones ordering, and
representing each memberX of F in O(1) space by
giving the first and last member of the interval oc-
cupied byX in this ordering. Our first result is the
following:

Theorem 2. It takesO(|V | + |F |) time to find the
PQ tree of a consecutive-ones familyF , given a
consecutive-ones ordering and, for eachX ∈ F , the
first and last element ofX in the ordering.

An O(|V | + |E|) bound for modular decomposi-
tion of arbitrary undirected graphs was first given
by the algorithm in [21, 22]; other algorithms with
a variety of desirable properties have since fol-
lowed [6, 8, 15]. The firstO(|V | + |E|) bound for
directed graphs is given in [9]; a simpler approach
is given in [24]. These are all linear in the size of
the input when it is given as a listing of elements

in each set in the set family of as an adjacency-list
representation of the graph. Since these are asymp-
totically space-optimal representations of arbitrary
graphs, these algorithms have provably optimal time
bounds.

However, when the input is a permutation graph
or two-dimensional partial order, optimality of the
time bound again does not follow, since these have
anO(|V |) representation in the form of two linear
orderings of the vertices. Our second result, which
we obtain using Theorem 2, is the following:

Theorem 3. Given anO(|V |) representation of a
two-dimensional partial order or permutation graph
using two ordered lists, it takesO(|V |) time to find
its modular decomposition.

If R1 and R2 are two linear orders on a
set V , their common factorsare those sub-
sets of V that are consecutive in each ofR1
and R2. For instance, ifR1 = (1,2,3, ...,12)
and R2 = (3,1,10,12,11,8,5,9,7,4,6,2), then
{4,5,6,7,8,9} is a factor, since it appears as the
interval (4,5,6,7,8,9) in R1 and as the interval
(8,5,9,7,4,6) in R2.

It is well-known that the modules of the two-
dimensional partial orderR1 ∩R2 are just the com-
mon factors ofR1 andR2. More generally, ifR =
{R1,R2, ...,Rk} are linear orders on on domainV ,
then those subsets ofV that are consecutive in all of
the linear orders are just the modules of a 2-structure
H = H(R1,R2, ...,Rk), where, forx,y,u,w ∈ V ,
(x,y) and (u,w) have the same color iff for all
i ∈ {1,2, ...,k}, (x precedesy in Ri) ⇐⇒ (u pre-
cedesw in Ri). That is, they have the same colors if
x precedesy andu precedesw in the same subset of
the linear orders. Therefore, the common factors of
R are a partitive family whose decomposition tree
is given by the modular decomposition ofH.

Using Theorem 2, we obtain the following gener-
alization of Theorem 3:

Theorem 4. If linear orders{R1,R2, ...,Rk} on do-
mainV are given withk ordered listings of elements
ofV , it takesO(k|V |) time to find the decomposition
tree of their common factors.

By Theorem 1, the intersection of two partitive
set families is a partitive set family. This suggests
the problem of finding the decomposition treeT of
the intersectionF1 ∩F2, given the decomposition
treesT1 andT2 of F1 andF2. We can refer to this
asfinding the intersection of two partitive decompo-
sition trees, which defines an associative, commuta-
tive operatorT = T1∩T2 on partitive decomposition
trees.
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The following is given in [24], and plays a key
role in the linear time bound for modular decompo-
sition of digraphs:

Theorem 5. Given partitive decomposition treesT1,
T2 on a setV , whereT1 andT2 have no linear nodes,
T1∩T2 can be found in time proportional to the sum
of cardinalities of their nodes.

The difficulties posed by linear nodes are illus-
trated by the simple case of two treesT1 andT2 that
each haveV as their only internal node. IfV is lin-
ear in at most one ofT1 andT2, T1∩T2 hasV as its
only internal node, so findingT1∩T2 is trivial. If V
is linear in both, thenT1∩T2 can have a large num-
ber of internal nodes. However, given Theorem 4,
we can now solve this problem inO(|V |) time, since
T1∩T2 is just the decomposition tree of the common
factors of the two linear orders on children ofV in
the two trees. Using a generalization of this trick,
we obtain the following:

Theorem 6. Given arbitrary partitive decomposi-
tion treesT1 and T2 on domainV , it takesO(|V |)
time to findT1∩T2.

Details are given below, but it is instructive to see
how it can be proven in the case where there are no
degenerate nodes inT1 or T2. For eachTi|i ∈ {1,2},
it is easy to construct three orderings ofV whose
common factors haveTi as their decomposition tree.
This gives6 linear orders altogether, and the com-
mon factors of these6 linear orders haveT = T1∩T2
as their decomposition tree. The time bound follows
from Theorem 4.

The best published bound for modular decompo-
sition of arbitrary 2-structures isO(|V |2) [11]. How-
ever, anO(|V | + |E|) bound for the special case of
a symmetric 2-structure withO(1) colors is given
in [24], and this is a key element in the the linear
time bound for modular decomposition of directed
graphs given in that paper. Due to Theorem 4, we
can now get a more general bound:

Corollary 7. It takesO(k|V |+ |E|) time to find the
modular decomposition of a 2-structure that hask
colors.

Proof. LetGi denote the graph onV given by edges
of color i, and supposeGk is the graph of the color
class given implicitly by the edges that are absent
from E. Find the modular decompositionTi of each
Gi for each i from 1 to k− 1 using the linear-
time modular decomposition algorithm for directed
graphs given in [24]. Since the edge sets are dis-
joint, this takes a total ofO(k|V | + |E|) time. The

modular decomposition of the 2-structure is given
by T1∩T2∩ ...∩Tk−1, which takesO(k|V |) time to
find, by Theorem 6.

Using somewhat more careful methods, we refine
these methods to obtain a linear time bound:

Theorem 8. Let T1, T2, ...,Tk be partitive trees on
domainV , let s be the sum of cardinalities of their
non-root internal nodes, and letl be the number of
thek roots that are linear nodes. Given the non-root
internal nodes, it takesO(s+(l+1)|V |) time to find
T1∩T2∩ ...∩Tk.

Using Theorem 8, and linear-time modular de-
composition of directed graphs, it is easy to obtain
the following corollary.

Corollary 9. It takesO(|V | + |E|) time to find the
modular decomposition of a 2-structure.

The proof is similar to that of Corollary 7, but
avoids touching isolated vertices in eachGi.

It is worth noting that Theorem 8 gives the fol-
lowing remarkably simple alternative to Booth and
Lueker’s algorithm for finding the PQ tree of a
consecutive-ones family when a consecutive-ones
ordering is not given. LetF = {X1,X2, ...,Xm}

be a set family on domainV , and let Ti denote
the trivial PQ tree of the one-member set family
{Xi}. The only non-leaf, non-root internal node of
Ti is Xi. By Theorem 12 (below), the PQ tree
of F is given by T1 ∩ T2 ∩ ... ∩ Tm, which takes
O(|V |+Cardsum(F )) time to compute, by Theo-
rem 8. This is somewhat surprising, since this prob-
lem does not assume that the consecutive-ones or-
dering is already given, yet the algorithm is derived
indirectly from Theorem 2, which assumes that it is.

Theorems 3, 4, 6 and Corollary 9 give applica-
tions of Theorem 2. We hope that others will arise.
Theorem 4, in particular, gives an optimal bound for
finding the factors of a set of linear orders. These
factors are natural combinatorial objects, and they
might have applications in scheduling theory, for ex-
ample.

2 Sketches of proofs

2.1 Additional background

Our algorithms make extensive use of the following:

Theorem 10. [14] Given a length-n list
L of real values and a set ofp intervals
{[i1, j1], [i2, j2], ..., [ip, jp]} of L, it takesO(n+ p)
time to find a maximum element ofL in each of the
intervals.
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A partitive family is symmetricif, in addition to
the properties given in Theorem 1, it has the prop-
erty that wheneverX andY are overlapping mem-
bers, then theirsymmetric differenceX∆Y is also a
member. It isantisymmetricif this is never the case.
It is not hard to show that the modules of a sym-
metric 2-structure are a symmetric partitive family,
and that those of an antisymmetric 2-structure are an
antisymmetric partitive family. A partitive family is
symmetric iff its decomposition tree has no linear
nodes with at least three children, and antisymmet-
ric if it has no degenerate nodes with at least three
children.

If F is a family of subsets of a universeV , then
F ’s non-overlapping family, denotedN (F ) is the
family of nonempty subsets ofV that do not overlap
with any member ofF .

Theorem 11. [16] If F is an arbitrary set family,
thenN (F ) is a symmetric partitive family.

Theorem 12. [16] If F has the consecutive-ones
property, the PQ tree is the decomposition tree of
N (F ), where the prime nodes are interpreted as the
Q nodes and the degenerate nodes are interpreted as
the P nodes.

If F is a set family, let itsoverlap graphGo(F )
be the graph that has one vertex for each member of
F and an edge between two vertices iff the corre-
sponding members ofF overlap.

Given a connected componentC of Go(F ), let
≡C be an equivalence relation on

⋃
C , where if

x,y∈
⋃

C , thenx≡C y iff the family of members of
C that containx is the same as the family of mem-
bers ofC that containsy. Let C ’s blocksbe the
equivalence classes of≡C .

Theorem 13. [20] If F is a set family on domain
V , thenX ⊆ V is a node of the decomposition tree
of N (F ) iff it is one of the following:

1. V or a one-element subset ofV ;

2.
⋃

C for some connected componentC of F ’s
overlap graph;

3. A block of a connected component ofF ’s over-
lap graph.

2.2 Theorem 2

By Theorem 13, it suffices to find the connected
components ofF ’s overlap graph and, for each
component, find the component’s union and its
blocks. The sum of cardinalities of these unions and

blocks is notO(|V |+ |F |), but, since they each cor-
respond to intervals in the consecutive-ones order-
ing, we can represent each of them inO(1) space
by giving the starting and ending position of the in-
terval it occupies in the consecutive-ones ordering.
Since the decomposition tree has|V | leaves and each
node of the decomposition tree ofN (F ) has at least
two children, this takesO(|V |) space.

The overlap graph does not haveO(|V | + |F |)
size. However, to find the overlap components, it
suffices to find a subgraphH of the overlap graph
whose connected components are the same as the
connected components of the overlap graph, but
whose size isO(|F |). This subgraph will be the
union of two spanning forests.

Each block of ones in a consecutive-ones order-
ing of a matrix can be viewed as an interval on
the real line whose endpoints happen to be integers,
namely, the column numbers of the first and last in-
terval. Assume that no two rows are identical. It is
easy to radix sort the endpoints of the intervals in
O(|V |+ |F |) time, and then perturb them by epsilon
amounts to obtain a list of endpoints where no two
endpoints coincide, without disturbing the overlap
relation among the intervals. For instance, subtract-
ing 1/4 from each left endpoint and adding 1/4 to
each right endpoint. It is then easy to add epsilon
values to a set of coinciding right endpoints without
disburbing the containment relation among the inter-
vals. Coinciding left endpoints can be handled sim-
ilarly. The result is a sorted list of endpoints, where
no two endpoints coincide and where the original
overlap relation is preserved.

Next, if x is an interval, letR(x) denote the set
of intervals that overlap withx and whose right end-
points lie to the right ofx. If R(x) is nonempty,
let x’s right parentbe the member ofR(x) with the
rightmost right endpoint. It’sleft parentis defined
symmetrically: letL(x) denote the set of intervals
that overlap withx and whose left endpoints lie to
the left ofx. If L(x) is nonempty, thenx’s left par-
ent is the member ofL(x) whose left endpoint is
leftmost. Theparent graphis the graph whose ver-
tex set is the intervals and whose edge set is{xy| one
of x andy is the left or right parent of the other}.

Lemma 14. The connected components of the par-
ent graph are the same as the connected components
of the overlap graph.

Proof. Each edge of the parent graph corresponds to
an overlap, so each component of the parent graph is
a subset of a component of the overlap graphs. Let
us suppose that there are two componentsC1 and
C2 of the parent graph that are subsets of the same
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componentC of the overlap graph. We may select
C1 andC2 such that there is an edge of the overlap
graph from a membera of C1 to a memberb of C2.
We will now derive a contradiction.

Suppose without loss of generality that the left
endpoint ofb is to the left ofa. Let x2 = a and
y1 = b. Sincey1 ∈ L(x2), x2 has a left parent, so
let x1 bex2’s left parent. Similarly, lety2 bey1’s
right parent. Sincex1 ∈ C1, x1 6= y1, sox1’s left
endpoint is to the left ofy1’s. Similarly, y2’s right
endpoint is to the right ofx2’s. If x1 fails to overlap
y1, then it contains it and overlapsy2. Similarly,y2
overlaps one ofx1 andx2.

This shows (for k = 2) that there exists
a sequence(x1,y1,x2,y2, ...,xk,yk) such that
{x1,x2, ...,xk}⊆C1, {y1,y2, ...,yk}⊆C2, the right
endpoints of(x2,y2, ...,xk,yk) are an increasing
sequence,yk overlaps a member of{x1,x2, ...,xk},
andxk overlaps a member of{y1,y2, ...,yk}. So let
us select such a sequence(x1,y1,x2,y2, ...,xk,yk)
of maximum size.

Let xi be a member of{x1,x2, ...,xk} that over-
lapsyk. Sinceyk 6∈ C1, it is not xi’s right parent,
so letxk+1 bexi’s right parent, which must be inC1
and have its right endpoint to the right ofyk. Since
xk+1 6∈C2, it is notyk’s right parent, so letyk+1 be
yk’s right parent. Thenyk+1 is in C2 and its right
endpoint is to the right ofxk+1. The new sequence
satisfies the conditions fork+ 1, contradicting our
choice ofk.

To find the right parents, we create a sorted list
L of left endpoints. We label each of these with the
matching right endpoint. For each interval[a,b], the
set of left endpoints in(a,b] defines an interval ofL,
which is easily found off-line for all intervals in the
set of intervals. The right parent of[a,b] is just the
maximum right endpoint that occurs in this interval.
By Theorem 10, this may be found for all intervals
in O(|V |+ |F |) time. The left parents can be found
by a symmetric operation.

This gives the connected components of the over-
lap graph ofF in O(|V | + |F |) time. To get the
blocks of the components, we may number the
O(|F |) components, label each member ofF with
its component number, and then radix sort all begin-
ning and ending positions of members ofF using
component number as primary sort key and position
as the secondary sort key. As a tertiary key, use 0 for
a left endpoint and 1 for a right endpoint; this en-
sures that when a set of endpoints in the component
are tied, the left endpoints in the set come before the
right endpoints in the sort. This takesO(|V |+ |F |)
time and gives, for each component, a sorted list of

endpoints of members of the component. We may
obtain the blocks as follows. Treat a left endpoint
at positioni as occurring just beforei and a right
endpoint as occurring just after it. Each block of
the component is a set of elements ofV that occur
between consecutive endpoints of the sorted list.

2.3 Theorems 3 and 4

We sketch the proof of Theorem 4, since Theorem 3
is a special case.

If F is a partitive set family on setV , a factoriz-
ing permutationof F is an ordering of elements of
V such that the set represented by each node ofF ’s
decomposition tree is consecutive [3]. It isstrong
if, wheneverC1,C2, ...,Ck are children of a linear
nodeU, the intervals occupied byC1, C2, ...,Ck
match the linear order of children ofU. WhenF is
antisymmetric, a strong factorizing permutation is a
consecutive-ones ordering.

Lemma 15. If F is a partitive family on domain
V andR = (x1,x2, ...,xn) is a factorizing permuta-
tion, then the subfamilyF ′ of members ofF that are
consecutive inR is a partitive family, and its decom-
position tree is obtained fromF ’s decomposition by
relabeling each degenerate node as linear, and mak-
ing the order of its children consistent with the order
in which they appear inR.

WhenF andF ′ are as in Lemma 15, it is easy to
see thatF ′ is a maximal consecutive-ones subfam-
ily of F .

Definition 16. [3] Let (x1,x2, ...,xn) be a factor-
izing permutation of the modules of a 2-structure.
Let xi,xi+1 be two consecutive elements. Ifxi
and xi+1 are distinguished by an element earlier
than i in the ordering, letp be the minimum in-
dex such thatxp distinguishesxi andxi+1. Then
{xp,xp+1, ...,xi} is a fracture for i. Similarly, if xi
andxi+1 are distinguished by elements greater than
i+ 1, then letq be the maximal index such thatxq
distinguishes them;{xi+1,xi+2, ...,xq} is a fracture
for i. The fracturesof the factorizing permutation
are just the family of sets that are fractures for any
of the indices from 1 ton.

Theorem 17. LetH be a 2-structure onV andR =
(x1,x2, ...,xn) be a strong factorizing permutation
for its modules. Then the modular decomposition of
H is given by the PQ tree of the fractures, where the
labeling of internal nodes is given by the following
rule:

• The Q nodes are interpreted as prime nodes.
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• A P node is interpreted as a degenerate node
if the edges ofH that go between its children
are symmetric, and it is interpreted as a linear
node otherwise.

Proof. The PQ tree of the familyF1 of the frac-
tures is the partitive decomposition tree of the fam-
ily N (F1) of subsets ofV that overlap no fracture,
by Theorem 13. To get the decomposition tree of
the subfamilyF2 of N (F1) consisting of members
of N (F1) that are consecutive inR, we must change
the order the children of each degenerate node of the
decomposition tree ofN (F1) to be consistent with
R, and change their label to linear, by Lemma 15.
Therefore, the partitive decomposition tree ofF2 is
the PQ tree of the factors, except for the relabeling
of P nodes as linear and Q nodes as prime.

Let F3 be the modules ofH. The subfamilyF4 of
modules ofH that are consecutive inR is a maximal
consecutive-ones subfamily ofF3, so its decompo-
sition tree is the same as that ofF3 except that de-
generate nodes are relabeled linear, by Lemma 15.
It is easy to see that a consecutive set inR that over-
laps a factor cannot be a module, and that a consec-
utive set inR that overlaps no factor is a module.
Therefore,F4 = F2. The modular decomposition
of H must be the PQ tree of the factors, except that
Q nodes are relabeled prime and P nodes are rela-
beled degenerate or linear. A node of the modular
decomposition ofH that is known to be either linear
or prime must be linear iff the edges ofH that go
between the children are antisymmetric, and degen-
erate iff the edges ofH that go between the children
are symmetric [13].

2.3.1 The algorithm

Given k linear orders{R1,R2, ...,Rk}, recall that
their common factors are the modules ofH =
H(R1,R2, ...,Rk), defined in Section 1.1.R1 is a
strong factorizing permutation for the common fac-
tors. By Theorem 17, to obtain anO(k|V |) bound
for finding the common factors of{R1,R2, ...,Rk}, it
suffices to give an algorithm for find the fracturesH
induces inR1 in O(k|V |) time.

Let R1 = (x1,x2, ...,xn). Then for xj 6∈
{xi,xi+1}, xj distinguishesxi and xi+1 in H iff
there existsRp such that2 ≤ p ≤ k wherexj falls
betweenxi andxi+1. ForRp = (y1,y2, ...,yn), we
create a listL1 = (p1,p2, ...,pn), wherepi denotes
the positionj of xi in Rp. That ispi = j such that
yj = xi. We also create a listL2 = (q1,q2, ...,qn),
whereqi denotes the index ofyi in R1. That is,
qi = j such thatxj = yi.

To find the maximumr such thatxr lies between
xi andxi+1 in Rp, we useL1 to look up the positions
pa,pb of xi andxi+1 in Rp. This takesO(1) time
if L1 is implemented with an array. We then find the
maximum value that lies in the interval[pa,pb] of
L2, and this gives the indexr of xr. By Theorem 10,
we can perform this last lookup for alli from 1 to
n in O(n) time. Repeating this for allRp such that
2≤p≤n yieldsk−1 suchr’s for each pairxi,xi+1
in O(nk) time. The maximum of these is the index
s of the rightmost vertexxs in R1 that distinguishes
xi,xi+1. If s > i+ 1, then {xi+1,xi+2, ...,xs} is
one of at most two possible fractures generated by
{xi,xi+1}.

The other fracture generated by each{xi,xi+1}

can be found by symmetry, inverting the roles ofi
andi+ 1 and min and max. This also takesO(nk)
time. Therefore the fractures induced inR1 by H
can be found inO(nk) time.

This proves Theorem 4, and Theorem 3 follows
as a special case, since the factors are the same as
the modules when the relation is two-dimensional.
This gives modular decomposition of permutation
graphs in the same time bound, since the modular
decomposition of a permutation graph is obtained
from that of its transitive orientation by relabeling
linear nodes as degenerate.

2.4 Theorem 6

Let us first consider the case whereT1 andT2 have
no degenerate or prime internal nodes. For eachTi,
we may construct three linear orders onV whose
common factors haveTi as their decomposition tree,
as follows. Arrange each node’s children according
to their implied linear order. Get the first linear or-
der by listing the elements in the leaves according
to their left-to-right order in this ordered tree. Then,
reverse the order of children at each node that is at
odd depth in the tree and once again list the order-
ing of elements in the leaves to obtain the second
linear order. Finally, reverse the order of children at
each node that is at even depth, and repeat the oper-
ation to obtain the third linear order. (This last step
is unnecessary, but convenient when we generalize
to trees that have nodes that are not linear.)

It is easy to see that a subset ofV is a common
factor of these three linear orders iff it is a union of
consecutive children of a linear node inTi. There-
fore,Ti is the the decomposition tree of the common
factors. It follows thatT = T1∩T2 is the decompo-
sition tree of the common factors of these6 linear
orders, and it can be obtained inO(|V |) time with
the algorithm of Theorem 4.
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Next, let us consider what happens when prime
nodes are allowed. Once again we obtain three lin-
ear orders to represent eachTi, and findT = T1∩T2
by applying Theorem 4 to the resulting6 linear or-
ders. To find three linear orders forTi, we once
again order children of internal nodes three times
and read an ordering from the leaves. The order-
ings of children of linear nodes are handled as be-
fore. At each prime nodeP, permute the order of
children as follows. LetC1,C2, ...,Cp be an ar-
bitrary ordering of children ofP; this is their or-
dering used in obtaining the first linear order. In
the second iteration, concatenate the even-numbered
children, followed by the odd-numbered children,
as follows: (C2,C4, ...,Cp−(p mod 2),C1,C3, ...,

Cp−(1−(p mod 2))) to obtain the new order-
ing of children. For the third iteration, re-
verse the roles of the odd- and even-numbered
children: (C1,C3, ...,Cp−(1−(p mod2)),C2,C4, ...,

Cp−(p mod2)). It is easy to see that the three linear
orders again haveTi as their decomposition tree.

Let us now allow degenerate nodes. We assign an
order to the children of each degenerate node and
treat it as a linear node. The problem of intersect-
ing these trees reduces to the foregoing case. When
we are done, the intersection of the trees has some
nodes wrongly labeled as linear nodes, when they
should be degenerate, and we detect these cases and
relabel them.

If X ⊆ V , we can find the maximal nodes ofT1
that are subsets ofX in O(|X|) time, by marking all
nodes that are subsets ofX. When a node is marked,
it increments amarked-childrencounter in its parent
that tells how many marked children the parent has.
When a node’s marked-children counter reaches its
degree, the node is marked. Marking the leaves
while observing these rules causes all nodes ofT1
that are subsets ofX to be marked. Any marked
nodeU with an unmarked parentW is a maximal
node ofT1 that is a subset ofX. Since each inter-
nal node has at least two children, this takes time
proportional to the number of marked leaves, which
is O(|X|). Moreover, for each unmarked node with
marked children, we can obtain a list of its marked
children.

For each nodeU of T2, we may perform this op-
eration onT1, by lettingX = U. We may do the
same forT2 using nodes ofT1. The results of these
markings allows us to order the children of degener-
ate nodes ofT1 and andT2 and relabel them linear,
obtainingT ′1 andT ′2, so that some maximal antisym-
metric subfamilyF ′ common toT1 andT2 retains
this status forT ′1 and T ′2. Then F ′ is a maximal
antisymmetric subfamily of the family represented

by T , so its decomposition treeT ′ = T ′1 ∩ T ′2 is the
same asT except that some degenerate nodes have
been relabeled linear. SinceT ′1 andT ′2 have no de-
generate nodes,T ′ = T ′1∩T ′2 can be found inO(|V |)
time by the tree intersection algorithm given above
for this case. Detecting nodes that must be relabeled
linear to obtainT is easily accomplished by finding
their least common ancestors inT1 andT2 using the
marking algorithm; the maximal nodes ofT1 or T2
that are subsets of a node ofT ′ are the least common
ancestor or a set of children of the least common an-
cestor.

The bottleneck is applying the marking algo-
rithm on T1 repeatedly for each node ofT2, which
takes time proportional to the sum of cardinalities
of nodes inT2. However, we can get this down to
O(|V |) by observing that whenY is the parent ofX
in T2, performing the marking operation withY re-
peats all of the marking operations performed with
X. Therefore, as we work inductively upT2 process-
ing nodes, we can continue the marking operation of
each nodeY at the points inT1 where the marking of
the children left off. The marking proceeds mono-
tonically upT1, and takesO(|V |) time. Similarly, we
get anO(|V |) bound when markingT2 with nodes of
T1, or when markingT1 andT2 with nodes ofT ′.

2.5 Theorem 8

Let T1,T2, ...,Tk be as in Theorem 8.

Lemma 18. For eachTi and every non-prime node
Z of T = T1∩T2∩ ...∩Tk, there exists a non-prime
nodeXi of Ti such that each child ofZ in T is a
union of one or more children ofXi.

For Theorem 8, we find the connected compo-
nents of the overlap graph of the set of non-root
internal nodes ofT1, ...,Tk, using the algorithm for
overlap components given in [7]. This takes time
proportional to|V | plus the sum of cardinalities of
non-root internal nodes inT1, ...,Tk.

We then find the unions of these connected com-
ponents and their blocks, just as in Theorem 13. The
Hasse diagram of the containment relation onV , the
unions of connected components, their blocks, and
the singleton subsets ofV is a tree, which we may
find in time proportional to|V | plus the sum of car-
dinalities of non-root internal nodes ofT1 through
Tk. The main technique is radix sorting.

Up to here, the algorithm is a straightforward gen-
eralization of the one for symmetric partitive fami-
lies given in [24]; this is the result of relabeling each
linear node as degenerate and finding the intersec-
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tion T ′. We must now reflect the additional con-
straints imposed by linear nodes inT1 throughTk.

To do this, we assign each degenerate nodeZ of
T ′ a representative elementz ∈ Z. We then identify
for each nodeZ of this treeT ′ the nodeXi of eachTi
given by Lemma 18. IfXi is linear, the linear order
on its children imposes linear order on representa-
tives of children ofZ, which implies a linear order
on children ofZ. We collect all such linear orders
on children ofZ.

This is where Theorem 4 plays a critical role: we
use its algorithm to find the decomposition tree of
the common factors of these linear orders. The inter-
nal nodes of this decomposition tree can be spliced
into T ′ betweenZ and its children to reflect the con-
straints imposed by linear nodes ofT1...Tk on what
unions of children ofZ can be members ofF . Since
the representatives of children ofZ are members of
each linear node that contributes a linear order, it is
easy to see that this can be accomplished at all nodes
of T ′ while staying within a time bound proportional
to the the sum of cardinalities of linear nodes in
T1, ...,Tk.
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