

*Cite as: Michael Mortensen and Roger T. Alexander. Adequate Testing of Aspect-Oriented Programs, Department of Computer Science,

Colorado State University, Fort Collins, Colorado, USA, Technical report CS 04-110, December 2004.

Adequate Testing of Aspect-Oriented Programs*
Michael Mortensen

Hewlett-Packard, Colorado State University
3404 E. Harmony Rd MS 32
Fort Collins, CO 80528 USA

1-970-898-0686

mmo@fc.hp.com

Roger T. Alexander
Colorado State University

Department of Computer Science
601 S. Howes Street

Fort Collins, Colorado 80523 USA
1-970-491-7026

rta@cs.colostate.edu

ABSTRACT

Aspect-oriented programming supports the separation of concerns

into traditional core concerns and cross-cutting aspects. Aspects

typically contain new code fragments that are introduced to the

system (such as advice or introductions) and a means of

quantification that specifies where these code fragments are to be

inserted. Although powerful, aspect-oriented programming

includes new sources for program faults. These faults may be due

to errors in the aspect-based code fragments or in the

quantification directives. To address both sources of error, we

propose combining two traditional techniques to adequately test

aspect-oriented software: white box coverage and mutation

testing. We use static analysis of an aspect within a system to

guide in the selection of white box criteria for an aspect (such as

statement coverage, context coverage, and def-use coverage) that

will determine if a test suite is adequately testing the new code

fragments. In addition, we provide a set of mutation operators to

evaluate if a test suite is sufficiently sensitive to find errors in

pointcuts and aspect precedence. Together, coverage criteria and

mutation testing provide a framework for defining adequate

testing of aspect-oriented programs.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Testing tools D.3.3 [Language

Constructs and Features]: Control structures, Data types and

structures, Inheritance, and Polymorphism.

General Terms

Reliability, Languages, Verification.

Keywords

Aspect-orientation, AspectJ, Coverage testing, Mutation testing

1. INTRODUCTION
Aspect-Oriented Programming supports separating concerns into

traditional structures (classes, methods) and cross-cutting aspects

[12]. Numerous examples have demonstrated the potential for

reducing explicit coupling and increasing modularity of the core

concerns in such areas as logging, persistence, and security.

Aspect-oriented programming accomplishes this by modularizing

code fragments with quantification over the underlying syntax tree

[10] so that these fragments may be automatically inserted into a

system using an aspect weaver.

While providing great flexibility and power, both an aspect’s code

fragments and its quantification directives are sources for new

types of programming faults. Testing aspect-oriented systems

must consider faults due to either the fragments or where they are

inserted through pointcuts (the quantification). In addition, the

types of code inserted by an aspect can be very different, so

different aspects may require different testing strategies. For

example, a method introduction is very different than before

advice.

Alexander, Bieman, and Andrews [2] point out the need for a

systematic approach to testing aspects with the following

questions: “How do we adequately test aspect-oriented programs?

How do we know that our testing and quality objectives have been

attained?” These questions are difficult, they point out, because of

the following issues:

• Aspects do not exist independently. We must analyze

an aspect in the context of its use in a program. Even if

a particular aspect has been used before, a new program

supplies a new use context that must be re-verified, just

as inheritance forces retesting of unchanged, inherited

methods [17].

• Aspects can be tightly coupled to their woven

context. Although systems can be designed so that core

concerns are oblivious to aspects [10], aspects are often

tightly coupled to properties of the underlying system,

such as method names, class names, and return types

[3]. This can complicate aspect comprehension and

maintenance.

• Control and data dependencies are not readily

apparent from the source code of aspects or classes.

Aspects may change existing dependencies as well as

introducing new dependencies.

• Faults may result from emergent properties arising

from how the core concerns and aspects interact.

Examples include side effects or aspect precedence.

Many researchers are investigating techniques for reasoning about

aspect-oriented systems, with the goal of understanding and

verifying the effects of aspects on the underlying primary

concerns as well as aspect interactions [3][5][7][9][19][21].

Although many types of errors can be detected, in general we

© COPYRIGHT 2004. ALL RIG?HTS RESERVED.

cannot prove an aspect-oriented program is correct, and so testing

complements formal and informal approaches to verification.

Fault-based testing focuses on testing specific kinds of faults that

are more likely to exist. Two basic assumptions of fault-based

testing are the Competent Programmer Hypothesis and the

Coupling Effect [16]. The Competent Programmer Hypothesis

assumes that the program may be incorrect, but will only differ by

relatively simple faults. According to Offutt[16], the coupling

effect states that a test suite that detects all simple faults is

sensitive enough to detect more complex faults.

We propose to apply fault-based testing to aspect-oriented

programs using both coverage and mutation techniques. Coverage

criteria provide a definition of test adequacy in terms of testing

statements, branches, def-use pairs, etc, and are helpful in

determining if testing has met a measurable goal of “enough

testing”. Mutation testing injects faults into an existing system to

see if the test suite is sensitive enough to detect common faults.

While the ideas presented would be applicable to various aspect-

oriented programming languages, we will use AspectJ as the basis

of discussion.

The rest of the paper is organized as follows. Section 2 considers

different types of coverage criteria and what AspectJ structures

would motivate their use. Section 3 presents a mutation-based

approach for assessing a test suite relative to where aspect code is

inserted. Example applications of coverage and mutation testing

are provided in section 4, followed by a discussion section.

Conclusions and future work are discussed in section 6.

2. COVERAGE CRITERIA FOR ASPECT-

ORIENTED PROGRAMS
The primary goal of coverage criteria is to measure the amount of

testing that has been done against some measure or goal. For

aspect-oriented testing, coverage criteria is intended to ensure that
aspect code fragments (e.g. advice statements) are tested.

2.1 Coverage Criteria
A test requirement is a specific feature to be satisfied or covered

during testing, such as reaching a statement for statement

coverage. A testing criterion is a rule or set of rules used to

evaluate a set of test cases (known as a test suite). Testing can be

evaluated in terms of coverage, which is the percentage of test

requirements from a test criterion that are satisfied. The expected

output of a test is the result if software behaves correctly.

Expected outputs may be determined internally (such as the return

value of a function) or externally (by examining the output or log

file produced by a program) [1].

Testing criteria can be used to measure the quality of an existing

test suite, or they can be used to guide the generation of test cases.

Testing criteria can be compared using a subsumption hierarchy.

Criterion A subsumes criterion B if each test set that satisfies A

also satisfies B [1]. Criteria at higher levels in a subsumption

hierarchy are viewed as having more testing power, but have a

higher cost. In particular, more powerful criteria may have some

test requirements that are not possible, such as infeasible def-use

pairs or infeasible paths.

Some common coverage criteria (in order of subsumption from

least powerful to most powerful) include statement coverage

(every statement in a program must be executed at least once),

branch coverage (every branch of a program must evaluate to both

true and false at least once), and condition coverage (each

condition in a branch must also evaluate to both true and false at

least once) [15].

Dataflow testing focuses on testing subpaths between the

definition of a variable to points where that variable is used. If the

use is a predicate use, then tests must traverse subpaths to both

branches of the predicate. Def-use coverage is a dataflow

approach to testing. A def occurs when a variable is assigned a

value. A use occurs when a variables is used as part of a

computation or predicate. A def-use pair occurs when we have a

path from a def to a use without an intervening def (the path is

termed a def-clear path). Rapps and Weyuker show that All-Paths

subsumes all-def-use paths, which subsumes all-branches [18].

Harrold and Rothermel have extended dataflow testing for

handling object-oriented classes, by testing def-use pairs at the

method level, inter-method level, and class level [11]. With

inheritance and polymorphism in object-oriented systems, the def-

use pairs that occur between method calls on an object can depend

on which class in a class hierarchy an object is bound to.

Alexander and Offutt [1] present a criteria for testing these

indirect coupling relationships. For example, All-Coupling-

Sequences requires that if there is an object o in a client with

methods m() and n() that could, depending on the type, have an

indirect def-use coupling (that is, m() sets a state variable which

n() uses), then we must test this sequence at least once. A stronger

criterion is All-Poly-Classes, which requires that each class in a

hierarchy that could have a def-use pair between the coupled

methods be tested.

2.2 Aspect Variations
One challenge with selecting coverage criteria for aspects is that

aspects can have very different effects on the core concerns and

the system itself. Some aspects, such as logging, may be strongly

orthogonal in that they do not interact with the behavior or state of

the core concerns in any way [8]. Other aspects, such as

introducing a data member that does not directly interact with the

core concern, may be weakly orthogonal. Weakly orthogonal

aspects may unnoticeable to clients of the core concern in some

programs, but in some contexts (such as serialization) the extra

data member may cause system changes [8].

In addition, aspects may have internal state or utilize object state.

An aspect can be considered stateful if it has its own state that is

defined and used in join points, or if it modifies or uses the state

of other objects during a sequence of join points [9]. Zhao and

Rinard have extended existing system dependence analysis to

AspectJ [22], and Zhao has used this as a basis to extend Harrold

and Rothermel’s approach to handle dataflow testing of AspectJ

programs [23].

Method introduction by an aspect into a class hierarchy can

change the dynamic binding of an object’s call. Storzer and

Krinke call this binding interference, and analyze the inheritance

structure and method introductions to determine what calls could

be potentially changed [19][20].

2.3 A candidate fault model for Aspect-

oriented programs
Alexander, Bieman, and Andrews have defined an initial

candidate fault model for AOPs with six classes of AOP-specific

faults [2]. These are in addition to faults that can (previously)
exist in object-oriented systems such as Java [13].

2.3.1 Incorrect strength in pointcut patterns
If a pointcut is too weak, it will select unintended join points that

should not have had aspect code fragments added. If a pointcut is
too strong, some join points will be unintentionally missed.

2.3.2 Incorrect aspect precedence
For systems with multiple aspects, either the default or the

specific aspect precedence may be incorrect, resuling in incorrect

behavior. This can be problematic for stateful aspects that are
reading or writing common state variables in the core concern.

2.3.3 Failure to establish expected postconditions
Clients of a system will expect postconditions to hold even in the

presence of aspects, as is required for behavioral inheritance (sub-
typing).

2.3.4 Failure to preserve state invariants
Aspect-based changes introduced to the core concerns, either
directly or indirectly, should not violate state invariants.

2.3.5 Incorrect focus of control flow
In addition to using pointcuts or introductions to statically

determine where aspect code fragements are inserted, aspects can

use dynamic context such as cflowbelow to specify when advice

should be activated. Incorrect use of dynamic context can lead to
errors or performance issues, such as jumping aspects [Brichau].

2.3.6 Incorrect changes in control dependencies
Aspects may introduce dataflow or control flow changes in the

primary concern, which can change control dependencies. While

such changes are often the goal of the aspect, they are potential
sources of faults.

2.4 Aspect Coverage Criteria
Based on the body of coverage criteria research overviewed thus

far, we propose a set of coverage criteria as well as guidelines for
when – depending on aspect structure – they are appropriate.

2.4.1 Statement coverage
An aspect code fragment is covered by statement coverage if

every path through the fragment is executed at least once after

being woven into a program. As with statement coverage for

procedural and object-oriented programs, statement coverage is

not particularly strong but serves as a lower bound of test

coverage. Clearly we should strive to test all code, recognizing
that exceptions to this should be rare.

2.4.2 Insertion coverage
Insertion coverage means testing each aspect code fragment at

each point it is woven into the program. Before or after advice

should be tested with each method with which it can be

associated. An introduced data member should be tested with each

method that sets or uses it. An introduced method should be tested

with each class that could use it (either directly or through

inheritance) in the same manner as all-poly-classes coverage [1].

This is particularly important for advice or introductions that can

modify program state or affect control or data dependencies.

2.4.3 Context coverage
Context coverage extends insertion coverage to test an aspect

code fragment in each place it is used. For a piece of before or

after advice, for example, this ensures that the advice is tested

wherever the associated method is called. This level of coverage,

while expensive, is appropriate for advice that not only changes

state, but makes changes depending on the current program state

or context in which it is called. For a method introduction, this

means testing the method with each class in each place in which it

can be used, which is equivalent to all-poly-uses coverage in OO
testing.

2.4.4 Def-use coverage
For aspects, def-use coverage depends on the type of aspect code

fragment. For a data member introduction, this would be testing

def-use pairs within methods or advice or between methods and

advice. For method introduction, this means testing indirect def-

use pairs between the introduced method and other methods

where both def and use the same state variable. For advice, this

means testing def/use pairs within advice, between different

advice fragments, between advice and methods, and between

methods where the control flow has changed due to advice control

flow changes (such as around advice). Def-use coverage is not

meaningful for aspects (such as logging) that do not def any
aspect or core concern state variables.

2.5 Selecting coverage criteria for aspects
Statement coverage would be at the ‘bottom’ of the subsumption

hierarchy, and would be subsumed by insertion coverage, which is

likewise subsumed by context coverage. Since an introduced

method or advice may define a variable that is not used, in some

cases def-use coverage of interactions between aspects and core

concerns may not subsume all context coverage (e.g. focusing on

testing only def-use pairs may omit valid paths unrelated to the

aspect code). However, an aspect code fragment that defines a

variable but does not use it should be investigated as a potential

anomaly. Traditionally def-use coverage subsumes branch testing

because all variables are included in the analysis, whereas here we

are focusing on variables from aspect code fragments.

For the purpose of selecting an appropriate coverage criterion, it is

necessary to first perform static analysis on the aspect and system

in which it is used. Selecting test criteria is always a trade-off

between confidence in our testing and the cost of that testing.

Designating an appropriate criterion is not meant to imply

exhaustive coverage, but rather to match the relative complexity

(or amount of possible interaction) of an aspect with a level of
testing that will provide confidence in the tests performed.

Based on existing research in aspect-oriented progamming and
analysis [8][9], we categorize aspects as follows:

• Orthogonal (either dependent or independent)

• Altering (whether directly or indirectly)

• Stateful

Orthogonal aspects do not change control or data dependencies in

the system; an example would be logging [8]. After weaving,

orthogonal aspects may be (control or data) dependent on primary

concerns or independent if the inserted statements execute without
regard to core concern state.

An altering aspect changes control flow or data flow of a system.

Directly altering aspects include around advice and dynamic

binding interference (which can occur due to method introduction

or class hierarchy changing). Indirectly altering aspects introduce

dataflow changes that may change state variables or predicate

values that affect control flow. For example, before advice may

modify an object that is passed as a parameter to a method in a
way that changes method behavior.

A stateful aspect has behavior that depends on one or more state

variables, such as an aspect data member or introduced object

state variable [9]. A stateful aspect can be orthogonal (if the state

is internal to the aspect or does not interact with the core concern),
or can be altering.

We propose that testing criteria for an aspect be selected based on

the properties identified above (orthogonal, altering, and stateful).

Since testing resources (time, effort) are finite, a goal of testing is

to identify a criteria that will not be too difficult while still testing
the code in a meaningful way.

Because they do not interact directly with the core concern and

don’t depend on state, aspects that are orthogonal and non-stateful

are adequately tested with statement coverage. Orthogonal aspects

with state should use insertion coverage to ensure that aspect code
fragments are tested with each program location.

A minimum baseline for altering aspects should be insertion

coverage, but more appropriate choices would be either context

coverage or def-use coverage. Aspects with complex dataflow

interactions might seem best suited for def-use coverage, but

complex dataflow interactions may lead to infeasible or difficult

to execute def/use pairs. Simpler dataflow relationships such as

caching method return values to improve efficiency can be easily

tested with def-use coverage to validate that both inserting and

retrieving a value into the aspect cache work together
appropriately.

2.5.1 Coverage criteria and the fault model
The first two faults in the AOP fault model presented earlier

related to pointcut strength and aspect precedence, which govern

where code is woven in. Coverage testing cannot test for missing

code and may not detect code that is inserted in the wrong place
(e.g. through incorrect pointcut strength).

The other four faults can be the result of incorrect aspect code

fragments (such as faulty advice). The different coverage criteria

provide a means for testing these fragments in an appropriately for
a given aspect.

Statement coverage is the weakest, and may only find faults if the

fault occurs in all weave contexts. Insertion coverage, context

coverage, and def-use coverage provide progressively stronger

coverage criteria for testing for the presence of faults.

Context coverage could detect incorrect focus of control flow, but

to be complete def-use coverage ensure that context considered all

state-based decisions through def-use pairs. Def-use testing also
corresponds best to incorrect changes in control dependencies.

3. ASPECT MUTATION TESTING
Mutation testing is used to insert faults and evaluate the

effectiveness of a test suite. For aspect-oriented programs, we use

mutation testing to focus on faults related to advice fragment

insertion. By mutating pointcuts and precedence, we can evaluate

the effectiveness of the testsuite at finding the first two faults:

incorrect strength in pointcut patterns and incorrect aspect
precedence.

3.1 Mutation Testing
Mutation testing takes a program and test suite, and introduces

faults via mutation operators. The resulting, modified programs

are referred to as mutants. A mutant is considered dead if a test

from the test suite distinguishes the output from the expected

output. A test that does so is termed effective and is said to kill the
mutant [16].

If some mutants are still alive, a tester can attempt to kill them by

introducing new tests to the suite. If a mutant can be shown to be

functionally equivalent to the original program, it is not counted in

the mutation score. Functional equivalence is usually shown by

hand, during the process of trying to kill mutants. A mutation

score is calculated as the ratio of dead mutants over the total

number of (non-equivalent) mutants [16]. The mutation score

provides a measure of the extent of testing; while the live mutants
pinpoint specific inadequacies in the test suite [14].

3.2 Mutation Faults and Operators
We focus mutation operators only on the process of inserting

aspect code fragments. Thus, these operators are related to the

first two faults from the fault model presented earlier. Mutation

operators are inserted using static analysis of the aspect code

fragments, pointcuts, and the resultant weave. We list the

operators along with short abbreviations for reference. Note that

one thing that we do not mutate is the presence or absence of

dynamic context operators such as cflowbelow, since that can lead
to infinite recursion in some aspects.

3.2.1 Pointcut strengthening (PCS)
This operator decreases the number of matched join pointjoin

points by strengthening the pointcut. This can be done in several

ways. For class hierarchy operators (such as Type+.method()), we

can change the name of Type to a child type. For a pointcut name

that matches multiple methods (such as get*(..)) we can change it

to one of the matched methods (e.g. getX(..)). For a pointcut

name that matches on multiple argument types, we can select the

argument type of one of the matches. In addition, we can

strengthen the pointcut so that it matches no join points (or

equivalently make the advice empty). One benefit of this last

mutation is that we validate if the test suite is sensitive to this
pointcut at all.

3.2.2 Pointcut weakening (PCW)
The PCW operator is the oppositve of pointcut strengthening. For

class hierarchy operators we can move the name of the Type up in

the hierarchy. For pointcut names, we can change the pointcut

name or type matching to be less restrictive. We can also perform

the most extreme PCW operation: making the pointcut match all

possible join points in a class or package. As with strengthening a

pointcut to match nothing, this detects if the test suite is sensitive
at all to the pointcut.

3.2.3 Precedence changing (PRC)
By changing the aspect precedence, we can determine the test

suite (and system) sensitivity to aspect advice orderings. In order

to maximize benefits, mutation testing typically selectively

applies operators to only some parts of the system [14]. For PRC,

we propose that this operator only be used with mutually

interfering aspects [7] since we would not expect aspect

precedence to matter otherwise.

4. APPLYING COVERAGE AND

MUTATION TESTING
In order to illustrate the aspect coverage criteria and aspect

mutation operators, we present several examples drawn from

existing research. These examples have been modified to focus on

the coverage or mutation operators. We use a numbering scheme
that spans all examples so that we simply indicate a line number.

In addition, we have added a test suite for each test case and, if

needed, a static main method. For simplicity, we assume that the

test correctness is determined by examining the program output.

For simplicity of demonstration our test suites are simply a

sequence of calls in main rather than multiple invocations of the

program with different values.

4.1 Optimizing using a caching aspect
We have adapted the factorial optimizer example presented by

Alexander, Bieman, and Andrews [2], and put it in the context of

a larger class (more than one static method) in order to

demonstrate pointcut faults. The static method

MathFunctions.main provides a simple test suite. The
MathFunctions class is shown in Figure 1.

1. public class MathFunctions {

2. public static long factorial (int n) {

3. if(n==0) {

4. return 1;

5. }

6. else {

7. return n* factorial(n-1);

8. }

9. public static long random_seed(int n) {…}

10. public static long random(long n) {

11. //body omitted, returns a number in the range [0,n-1]

12. //according to a pseudo-random algorithm that is

13. //deterministic based on a seed value passed in

14. //with random_seed()

15. }

16. public static main(String[] args) {

17. System.out.println(“3! Is “ + factorial(3));

18. System.out.println(“5! Is “ + factorial(5));

19. System.out.println(“2! Is “ + factorial(2));

20.

21. random_seed(5);

22. System.out.println(“ random = “ + random(50000));

23. System.out.println(“ random = “ + random(50000));

24. }

25. }

 Figure 1. MathFunctions class and suite

The expected output (assuming some pseudorandom values for

the random call based on the seed) for the program when

executing the test suite embedded in MathFunctions.main is:

3! Is 6

5! Is 120

2! Is 2

random = 223202

random = 437293

The aspect for optimizing the factorial call is shown in Figure 2. It

uses cflowbelow so that it only caches values around the top level

call and not to lower level recursive calls.

26. public aspect OptimizeFactorial {

27. private Map _factorialCache = new HashMap();

28. pointcut factorialOp(int n) :

29. call(long *.factorial(int)) && args(n);

30. pointcut topLevelFactorialOp(int n) :

31. factorialOp(n) && !cflowbelow(factorialOp);

32. long around(int n) : factorialOp(n) {

33. Object cachedValue =

34. _factorialCache.get(new Integer(n));

35. if(cachedValue != null) {

36. return ((Long) cachedValue).longValue();

37. }

38. return proceed(n);

39. }

40. after(int n) returning(long result)

41. : topLevelFactorialOp(n) {

42. _factorialCache.put(new Integer(n),

43. new Long(result));

44. }

45. }

46.
 Figure 2. Factorial Optimizer Aspect

Weaving in the aspect in Figure 2 and rerunning

MathFunctions.main results in the same output. Since the

OptimizeFactorial aspect isn’t supposed to change behavior, this

is a good start. However, analysis of the code for this test suite

indicates that the around advice never uses a cachedValue, since

no top level factorial calls were repeated with the same value. The
after advice does get executed each factorial call (on lines 17-19).

The inadequacy of the existing tests illustrates how an aspect that

does not change the observed behavior may need additional tests.

To achieve statement coverage of the around advice, we can add a

single statement to line 20:

System.out.println(“3! Is “ + factorial(3));

One of the benefits of coverage analysis is that we are able to gain

a measure of observability not available by observing program

outputs. For this simple example, no additional tests are required

to test insertion coverage or context coverage. Insertion coverage

is only meaningful if a pointcut selects multiple methods (from

one or more classes). Context coverage is only meaningful is a

method that has associated aspect code is called in different
contexts.

This aspect is stateful, and we can apply def-use coverage. Each

method call to factorial has both around and after advice, so that

the woven code of a factorial call has – to the caller -- this
structure (but not this actual representation in AspectJ):

long NewFactorial(int n) {

 Object cachedValue =

 _factorialCache.get(new Integer(n));

 if(cachedValue!=null) {

 return ((Long) cachedValue).longValue();

 long result = factorial(n);

 _factorialCache.put(new Integer(n),new Long(result));

 return result;

}

A sequence of calls to factorial can have a def-use pair between

the put from one call to the get of a subsequent call. One

challenge with def-use testing is that there will be chains of

potential def-use pairs for the simple program of Figure 1 (with

the added line 20). For example, if we treat factorialCache as a

single def-use variable (which is a common, but pessimistic

approach for collections and arrays), line 17 triggers a def to

factorialCache that may be used on lines 18, 19, and 20. Only the

def-use pair between the call on line 17 and the call on line 20
actually occurs.

Now that we have updated the test suite based on coverage

analysis, we consider mutation analysis. Precedence changing

does not apply to this example, because there is only one aspect.

Pointcut strengthening (PCS) and pointcut weakening (PCW) can
be used to generate mutants.

We apply PCS by creating mutant M1, which changes the

factorialOp pointcut so that it no longer matches any code (this is

straightforward to do, since we can change the class name or

method name to something that does not exist in the program). No

test call to factorial can detect the change to M1; however, this is

because M1 is functionally equivalent (since the absence of the
advice doesn’t change behavior).

For mutant M2, we apply PCW by changing the pointcut to match
any name with the required signature for the around:

pointcut factorialOp(int n) :

 call(* *.*(int)) && args(n);

We made as much of the pointcut specifier ‘*’ as possible, but the

argument (int n) is used by the advice, so we left its type and

name intact. This pointcut does not match the call to random,

because random has a long parameter, but it does match the call to

random_seed. The result will be that the around advice will

already have a cached value for the parameter 5, and will

therefore not proceed with the actual call to random_seed, which

will result in the calls to random giving different values. Mutant

M2 is dead because it the test suite will detect the change. Had the

parameter types been identical for random and factorial, they also
could have interacted in a detectable way.

4.2 Enforcing constraints with an aspect
The next example is adapted from an example by Zhao and

Rinard [21] of using aspects to enforce constraints on a Point

class. We have made slight changes to the code, omitted the Pipa
annotations, and added a main method that serves as the test suite.

47. public class Point {

48. int x,y;

49. public Point(int _x, int _y) {x = _x; y = _y;}

50. public void setX(int newx)

51. { x = newx; }

52. public void setY(int newy)

53. { y = newy; }

54. public int getX() { return x;}

55. public int getY() { return y;}

56. public void printPosition() {

57. System.out.println(“Point at (“+x+”,”+y+”)”);

58. }

59. public static main(String[] args) {

60. Point p1 = new Point(3,3);

61. p1.setX(5);

62. p1.setY(0);

63. Point p2 = new Point(-1,-1);

64. p2.setX(3);

65. p2.setY(-1);

66. p1.printPosition();

67. p2.printPosition();

68. }

 Figure 3. Simple Point class

The PointBoundsConditions aspect is a combination of two

aspects in Zhao and Rinard’s paper and provides pre-condition

(before) checks and a post-condition (after) check. It is shown in

Figure 4. We assume that MIN_X and MIN_Y are 0, and that

MAX_X and MAX_Y are some large value, such as the max int
value.

69. aspect PointBoundsConditions {

70. before(int x) : call(void Point.setX(int)) && args(x)

71. {

72. if(x < MIN_X || x > MAX_X)

73. throw new RunTimeException();

74. }

75. before(int y) : call(void Point.setY(int)) && args(y)

76. {

77. if(y < MIN_Y || y > MAX_Y)

78. throw new RunTimeException();

79. }

80. after(Point p, int x) : call(void Point.setX(int))

81. && target(p) && args(x) {

82. if(p.getX() != x)

83. throw new RunTimeException();

84. }

85. after(Point p, int x) : call(void Point.setY(int))

86. && target(p) && args(y) {

87. if(p.getY() != y)

88. throw new RunTimeException();

89. }

90. }

 Figure 4. PointBoundsConditions aspect

The PointBoundsConditions aspect does not maintain state (either

directly or indirectly) but it does check the internal object state

after each setX and setY method call. It alters the behavior as seen

by the client or program output, since it prevents some method
calls from completing, throwing a RunTimeException instead.

The output of the program before the aspects are added is:

Point at (5,0)

Point at (3,-1)

After aspect weaving, the output is:

Point at (5,0)

Run Time Exception at line….

In this case the default test cases provide statement coverage for

the advice lines 72-73. The setY method never throws an

exception, so line 77 is covered by not line 78. Lines 87-88 are

not executed. We can analyze the code and determine that these

lines are not reachable (we can never have the after exception in

this program since setX and setY either set the value correctly or

the program throws an exception). Automatically determining

unreachability is an undecidable problem in general, and is one of

the challenges of coverage testing (and why 100% coverage is not
always achievable).

As before, insertion coverage and context coverage do not add to

statement coverage due to the simplicity of the system. Each time

setX or setY is called, we have a def-use pair, from the setting of

the Point data member (x or y) to the use of the Point data

member in the advice. The def-use pair is always covered by the

same tests that provide statement coverage, so def-use coverage
does not add to the strength of testing that advice fragment.

With only one aspect, we can apply both pointcut strengthening

(PCS) and weakening (PCW) operators. We generate the
following mutants:

M1 – by removing the before setX() advice using PCS

M2 – by removing the before setY() advice using PCS

M3 – by removing the after setX() advice using PCS

M4 – by removing the after setY() advice using PCS

We do not apply PCW because the advice uses the method

argument and object state, which makes it difficult to apply the

advice to other methods. Mutants M2 and M4 are killed by the test

program since it calls setY with a negative value. Mutants M1 and

M3 are not functionally equivalent to the original program, and

indicate an insufficient test suite, which can be remedied by
adding addition method calls to the end of the main method.

 p2.setX(-3);

 p1.printPosition();

 p2.printPosition();

An interesting alternative to the before advice is to ensure that the

x and y values are in a designated range instead of throwing an
exception, as shown in Figure 5.

91. aspect PointBoundsConditions {

92. before(int x) : call(void Point.setX(int)) && args(x)

93. {

94. if(x < MIN_X) x = MIN_X;

95. if(x > MAX_X) x = MAX_X;

96. }

97. before(int y) : call(void Point.setY(int)) && args(y)

98. {

99. if(y < MIN_Y) y = MIN_Y;

100. if(y > MAX_Y) y = MAX_Y;

101. }

102. // after advice as previously defined on lines 80-89

103. after(Point p, int x) : call(void Point.setX(int))

104. && target(p) && args(x) {

105. if(p.getX() != x)

106. throw new RunTimeException();

107. }

108. after(Point p, int x) : call(void Point.setY(int))

109. && target(p) && args(y) {

110. if(p.getY() != y)

111. throw new RunTimeException();

112. }

113. }
 Figure 5. Revised PointBoundsConditions aspect

The program output is now different, since the before advice for

the setY() method does not throw exceptions, but now the after

advice for the setY() method throws an exception at a different

location because the result of setY() did not set the data value to
the parameter.

This changes coverage testing in several ways. Previously, the

before setY() advice was covered by a single out of range test

case, but now we must test a value below MIN_Y and a value

above MAX_Y. In addition, the after advice is now reachable and

needs to be tested for methods setX() and setY().

These two versions of PointsBoundsChecking show that advice

bodies can interact through the state of a common object method

call. Changes in advice may require changes to test suites in order
to achieve adequate testing.

4.3 Testing aspect introduction
The third example is from Zhao and Rinard [22] and uses the

same Point class but a PointShadowProtocal aspect, which uses a
Shadow object that is introduced.

114. class Shadow {

115. public static final int offset = 10;

116. public int x,y;

117. Shadow(int _x, int _y) {

118. x = _x;

119. y = _y;

120. }

121. public void printPosition() {

122. System.out.println(“Shadow at (“+x+”,”+y+”)”);

123. }

124. }

125. aspect PointShadowProtocol {

126. private int shadowCount = 0;

127. public static int getShadowCount() {

128. return PointShadowProtocol.

129. aspectOf().shadowCount;

130. }

131. private Shadow Point.shadow;

132. public static void associate(Point p, Shadow s) {

133. p.shadow = s;

134. }

135. public static Shadow getShadow(Point p) {

136. return p.shadow;

137. }

138.

139. pointcut setting(int x, int y, Point p) :

140. args(x,y) && call(Point.new(int,int));

141. pointcut settingX(Point p) :

142. target(p) && call(void Point.setX(int));

143. pointcut settingY(Point p) :

144. target(p) && call(void Point.setY(int));

145.

146. after(int x, int y, Point p) returning : setting(x,y,p) {

147. associate(p,s);

148. shadowCount++;

149. }

150. after(Point p) : settingX(p) {

151. Shadow s = getShadow(p);

152. s.x = p.getX() + Shadow.offset;

153. }

154. after(Point p) : settingY(p) {

155. Shadow s = getShadow(p);

156. s.y = p.getY() + Shadow.offset;

157. }

158. after(Point) : call(void Point.printPosition())

159. && target(p) {

160. Shadow s = getShadow(p);

161. s.printPosition(); //print the shadow info too

162. }

163. }
 Figure 6. PointShadowProtocal aspect

The PointShadowProtocol aspect is stateful since it modifies and

uses the Shadow object that it introduces to all Point objects. It

does change the output of a program after weaving, since any call

to Point.printPosition() will then call the associated Shadow

object’s printPosition() as well. For testing Point and Shadow
together we re-show Point.main() below.

164. public static main(String[] args) {

165. Point p1 = new Point(3,3);

166. p1.setX(5);

167. p1.setY(0);

168. Point p2 = new Point(-1,-1);

169. p2.setX(3);

170. p2.setY(-1);

171. p1.printPosition();

172. p2.printPosition();

173. }
 Figure 7. Point.main method

With just the PointShadowProtocol woven in, we consider

coverage and mutation. The after setX(), after setY(), after

construction advice, and after Shadow.printPosition() are all

covered by this simple set of test calls. This test case does not

have a complex enough structure for the insertion or context
criteria to be different.

There are def-use pairs that occur through the advice, as well as
between advice and methods. These include:

 A shadow def occurs after a Point constructor (e.g. line 2)

and a use of that shadow occurs whenever the point’s setX()
or setY() methods are called (e.g. lines 3-4).

 A call to a setX() followed by a call to printPosition() on the

same object results in a definition from the setting method

being used in the printPosition, of both the Point’s internal
state and the Shadow’s internal state.

These def-use pairs are a subset of the def-use pairs identified by

Zhao and Rinard [23], since we only consider def-use pairs

between actual method sequences in a client program, while they

consider all def-use pairs based on all possible method sequences.

From a testing point of view, considering all possible method

sequence calls is more powerful, but may result in many

sequence calls that are semantically invalid (such as popping an
empty stack).

We can apply mutation testing to the pointcut of each advice
fragment, resulting in the following mutants:

M1 –by removing the after setting advice using PCS

M2 –by removing the after settingX advice using PCS

M3 –by removing the after settingY advice using PCS

M4 –by removing the after printPosition advice using
PCS

Mutant M1 will result in subsequence advice calls attempting to

reference a null Shadow variable, which will result in early

termination and an exception being thrown. Mutant M2 will

cause the shadow to have an incorrect x value, which will be

visible in the output. Mutant M3 will likewise cause the shadow

to have an incorrect y value. The effect of M4 will be no shadow

output that will also be detectable. All four mutants are killed by
the existing test suite.

4.4 Interfering aspects and aspect precedence
If the PointShadowProtocol aspect were combined with an aspect

similar to PointBoundsConditions, but which used after advice to

set the values of a Point’s x and y values to be within a range
(0…MAX), then aspect precedence becomes an issue.

If the PointShadowProtocol after advice is executed before

PointBoundsCondition advice that changes the Point x and y

values, then the Shadow x and y values will be based on a
different set of Point values than the final point.

Statement coverage will still measure if both aspect’s after advice

is executed. In this case, neither insertion advice or context

advice will be stronger, but what we really want to test is if both

advice fragments were activated for the same method call. This is
an area for further research.

Mutation testing will include the precedence changing operator

(PRC), and will create two mutants to represent the two orders of

these two aspects. One mutant will match the default behavior

(since it will be functionally equivalent), while the other mutant

will be killed. Regardless of which behavior turns out to be the

default, one value of this set of mutants is that it shows that, for

this system, aspect precedence does matter. Besides evaluating

the test suite, this will likely result the expected aspect
precedence being added to the system.

4.5 Calling Context
To demonstrate the effects of calling context, consider a slightly

different math library, with a static Factorial method, a static

Permute method that uses Factorial, and a static Root method that
returns a square root.

174. public class MathLib {

175. public static long Factorial(long n)

176. {

177. if(n==1) return 1;

178. else return n*Factorial(n-1);

179. }

180. public static double Root(long n)

181. {

182. // return the square root by some method…

183. return root;

184. }

185. public static long Permute(long n, long r)

186. {

187. // P(n,r) = n! / (n-r)!

188. return Factorial(n) / Factorial(n-r);

189. }

190.

191. public static void main(String[] args)

192. {

193. System.out.println("3! is " + Factorial(3));

194. System.out.println("P(3,2) is " + Permute(3,2));

195. System.out.println("Root of 6 is " + Root(6));

196.

197. System.out.println("P(2,3) is " + Permute(2,3));

198. }

199. }
 Figure 8. Another MathLib class

For the given test suite defined in MathLib.main, the Factorial

static method gets called at three locations: recursively at line 178,

twice from Permute at line 188, and by the test harness (acting as
a client) at line 193.

Suppose that the Factorial and Root method do not handle

negative inputs, and a client wishes to do that using an aspect
rather than directly modifying code. One approach could be:

200. aspect Bounds {

201. pointcut FactOrRootOp(long n) :

202. (call(* *.Factorial(long)) ||

203. call(* *.Root(long))) && args(n);

204.

205. long around(long n) : FactOrRootOp(n) {

206. if(n<0) {

207. return 0;

208. }

209. return proceed(n);

210. }

211. }
 Figure 9. Bounds aspect for MathLib

The pointcut will match two methods, Factorial and Root.

Statement coverage would simply require that the around advice

code fragment be tested once, with either method. Insertion

coverage would require testing it with each associated method

(Factorial and Root) but at any call site. Context coverage would

require testing the around advice fragment at each call site in the

program, which would be four calls for Factorial listed above and

the call to Root on line 195. The value of a stronger criteria

(context coverage) is shown by the fact that the around advice

fixes some possible program errors, but having Factorial return 0

can still lead to errors in some contexts – such as the denominator

of Permute. This could be handled by changing the advice to

return 1 or by modifying the pointcut to be sensitive to call
location (e.g. using cflowbelow).

The mutation operators PCW and PCS can sometimes be

performed as text manipulations on the class type or method type,

but this example illustrates that another possible aplication would

be removing part of a complex logical statement. In this case we

create four mutants – one whose pointcut matches all MathLib

methods, one whose pointcut matches only Factorial, one whose

pointcut matches only Root, and one whose pointcut matches no

methods.

5. DISCUSSION
The preceding examples demonstrate possible benefits from both

coverage testing and mutation testing. Adequate coverage testing

can be used to ensure advice that is semantics preserving is

actually executing. In addition, coverage shows what advice is not
getting used in a particular context.

Mutation testing can determine if a test suite is sufficiently

sensitive to faults in pointcut strength and aspect precedence.

Mutants that cannot be killed point to weaknesses in the test suite

or aspects that may (regardless of intent) be orthogonal (since
omitting them does not affect the system).

5.1 Tool Support
Although small examples can be examined by hand, clearly tool

support is needed to help automate coverage testing. This will

allow larger systems to be analyzed, and will allow developers to
evaluate the effectiveness of such techniques.

Analysis of the Java core concerns, AspectJ aspects, and the

resulting weave are necessary for steps in order to analyze and

instrument AspectJ programs for coverage testing. While

statement coverage is straightforward, insertion coverage, context

coverage, and def-use coverage will require more detailed
analysis of system traces to consider call stacks.

5.2 Aspect Coverage
We have only briefly considered dynamic interference due to

hierarchy changes, method introduction, and interface

introduction. Dynamic interference can lead to the same types of
indirect def-use coupling as inheritance and polymorphism [1].

Another extension of def-use coverage would be to focus on defs

and uses in the primary concern that occur due to aspect-induced

control flow changes [2]. We also need to evaluate additional

coverage criteria, such as executing all associated advice

statements (from the same or multiple aspects) on a single method
call.

5.3 Aspect Mutation
Two primary challenges for mutation testing are accurately

simulating realistic faults, and limiting the number of mutants

generated in large systems. Offutt [14] summarizes some common

approaches: selective mutation to generate fewer mutants; mutant

sampling to reduce how many mutants are actually run; and weak

mutation that looks at internal state rather than program state to
detect mutants.

The mutation operators presented focus on advice pointcut

strength and aspect precedence. There are many different ways to

mutate a pointcut beyond simple name changes, such as changing

the logical operators (||, &&) and argument type changes. Another

mutation approach might be to swap before and after advice that

are associated with a common pointcut. Additionally, developing

an approach to mutating pointcuts that uses target objects,

arguments, and object state in a semantically meaningfully way
would provide a richer set of mutants.

For aspects that change class hierarchy, we can perform mutation

by changing aspect to move the class to a different level. We can

also remove the operator so that the class is at its original

hierarchy level.

Member introduction mutation was not considered in this paper,

but one approach might be apply traditional scalar mutation

operators (add 1, subtract 1, etc.). For introduction of Java

collections, we can apply the five mutation operators described in
by Bieman, Ghosh, and Alexander [4]:

1. Make the collection empty.

2. Remove an element from the collection.

3. Add an element to the collection.

4. Mutate elements within the collection.

5. Reorder some elements within the collection.

5.4 Experimental Validation
With adequate tool support, we can test many different aspect-

oriented systems to experimentally measure the effectiveness of

these criteria for particular systems. Since results from small

programs created by hand for the purpose of testing and analysis

may not have wide applicability, we need to apply our framework
to a wide range or larger aspect-oriented systems.

Unlike procedural and object-oriented systems, we don't have a

large repository of large AspectJ systems. However, as more

researchers and practictioners develop systems in AspectJ, more
and larger systems will be available for analysis.

This will be important for evaluating coverage testing. In large

industrial systems, 100% statement coverage is rarely achieved. In

addition, we will want to understand the overhead of measuring
coverage with an aspect-oriented language.

Mutation testing has had limited use in part because of the large

number of possible mutants to test [14]. Our approach applies

mutation to only part of the system (such as pointcut strength and

precedence), which may help mitigate this. Experimental studies

and additional research in aspect-oriented systems can be used to

validate our fault model, identify other mutation operators based

on additional faults, and measure the cost of applying these
mutation operators to large systems.

6. CONCLUSIONS AND FUTURE WORK
We have presented a new framework for aspect-oriented test

adequacy that combines coverage testing and mutation testing.

While our research is early – that is, it has not been

experimentally validated – our proposed approach is novel in

testing based on faults that can occur in both aspect code

fragments and the quantification statements. We have

demonstrated the application and benefits of this new approach on
small AspectJ programs.

We have identified the need for an integrated set of tools to

analyze AspectJ programs, instrument and gather coverage

criteria, and generate and test program mutants. Our current and

future work include developing these tools and using them as the

basis for experimental validation of the proposed framework.

Based on experimental validation and continued research, we plan

to further refine and develop coverage criteria and mutation

operators. We also want to explore the application of existing

techniques for achieving testing goals with smaller mutant sets
[14] to our aspect-specific mutation operators.

7. REFERENCES
[1] R. Alexander and J. Offutt. Criteria for Testing Polymorphic

Relationships. in Eleventh IEEE International Symposium on

Software Reliability Engineering (ISSRE '00). 2000. San
Jose CA.

[2] R Alexander, J. Bieman, and A. Andrews. Towards the

Systematic Testing of Aspect-Oriented Programs, AOSD
2005, submitted.

[3] L. Bergmans, Towards the Detection of Semantic Conflicts

between Crosscutting Concerns, AAOS 2003 (Analysis of
Aspect-Oriented Software), July 2003.

[4] J. Bieman, S. Ghosh, and R. Alexander, A Technique for

Mutation of Java Objects, Proceedings of the 16th IEEE

International Conference on Automated Software

Engineering (ASE'2001) , IEEE Computer Society, San
Diego CA, November 26-29 2001.

[5] L. Blair and M. Monga, Reasoning on AspectJ Programmes,
GI-AOSDG 2003, Germany.

[6] H. Brichau, W. Meuter, and K. DeVolder, Jumping Aspects,

Workshop on Advanced Separation of Concerns, ECOOP
2000, Cannes, France, 2000.

[7] L. Bussard, , L. Carver, E. Ernst, M. Jung, M. Robillard and

A. Speck. "Safe Aspect Composition." Workshop on Aspects

and Dimensions of Concern at ECOOP'2000, Cannes,
France, June 2000.

[8] A. Colyer, A. Rashid, G. Blair, On the Separation of

Concerns in Program Families. Technical Report Number:

COMP-001-2004,

http://www.comp.lancs.ac.uk/computing/aop/papers/COMP-

001-2004.pdf.

[9] R. Douence, P. Fradet, and M. Sudholt, Composition, Reuse

and Interaction Analysis of Stateful Aspects. AOSD 04,
March 2004.

[10] R. Filman and D. Friedman, "Aspect-Oriented Programming

is Quantification and Obliviousness", Workshop on

Advanced Separation of Concerns, OOPSLA 2000, October
2000, Minneapolis.

[11] M. Harrold and G. Rothermel. Performing Data Flow Testing

on Classes. Proc. ACM SIGSOFT Foundation of Software
Engineering, pp. 154-163, December 1994.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. Griswold. An Overview of AspectJ. In 15
th

 European

Conference on Object-Oriented Programming, Budapest,

Hungary, 2001.

[13] J. Offutt, R. Alexander, Y. Wu, Q. Xiao, and C. Hutchinson,

A Fault Model for Subtype Inheritance and Polymorphism,

Proceedings of the 12
th

 International Symposium on

Software Reliability and Engineering (ISSRE01), IEEE
Computer Society, Hong Kong, Nov 2001.

[14] J. Offutt and R. Untch, Mutation 2000: Uniting the

Orthogonal. Mutation 2000: Mutation Testing in the

Twentieth and the Twenty First Centuries, 45--55, San Jose,
CA, October 2000.

[15] J. Offutt and J. Voas. Subsumption of Condition Coverage

Techniques by Mutation Testing. January 1996, ISSE-TR-

96-01,
http://www.isse.gmu.edu/techrep/1996/96_01_offutt.pdf.

[16] J. Offutt. Investigations of the software testing coupling

effect. ACM Transactions on Software Engineering
Methodology, 1(1):3--18, January 1992.

[17] D. Perry and G. Kaiser, Adequate Testing and Object-

Oriented Programming. Journal of Object-oriented
Programming, 1990: p. 13-19.

[18] S. Rapp and E. Weyuker. Selecting software test data using

data flow information. IEEE Transactions on Software
Engineering, SE-11(4):367-375, Apr. 1985.

[19] M. Storzer, and J. Krinke, Inteference Analysis for AspectJ.

Workshop on Foundations of Aspect-Oriented Languages
(FOAL 2003) as part of AOSD 2003, March 2003.

[20] M. Storzer, Analysis of AspectJ Programs, 3rd German

Workshop on Aspect-Oriented Software Development,
Essen, Germany, March 2003.

[21] J. Zhao and M. Rinard, "Pipa: A Behavioral Interface

Specification Language for AspectJ," Proceedings of

Fundamental Approaches to Software Engineering

(FASE'2003), LNCS 2621, pp.150-165, Springer-Verlag,

April 2003.

[22] J. Zhao and M. Rinard, System Dependence Graph

Construction for Aspect-Oriented Programs, MIT LCS Tech

Report 891, March 2003,
http://www.fit.ac.jp/~zhao/pub/ps/mit-lcs-tr-891.pdf.

[23] J. Zhao, Data-Flow-Based Unit Testing of Aspect-Oriented

Programs. Proc. 27th Annual IEEE International Computer

Software and Applications Conference (COMPSAC'2003),
pp.188-197. Dallas, Texas, USA, November 2003.

