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ABSTRACT 

Aspect-oriented programming supports the separation of concerns 

into traditional core concerns and cross-cutting aspects.  Aspects 

typically contain new code fragments that are introduced to the 

system (such as advice or introductions) and a means of 

quantification that specifies where these code fragments are to be 

inserted. Although powerful, aspect-oriented programming 

includes new sources for program faults. These faults may be due 

to errors in the aspect-based code fragments or in the 

quantification directives. To address both sources of error, we 

propose combining two traditional techniques to adequately test 

aspect-oriented software: white box coverage and mutation 

testing. We use static analysis of an aspect within a system to 

guide in the selection of white box criteria for an aspect (such as 

statement coverage, context coverage, and def-use coverage) that 

will determine if a test suite is adequately testing the new code 

fragments.  In addition, we provide a set of mutation operators to 

evaluate if a test suite is sufficiently sensitive to find errors in 

pointcuts and aspect precedence. Together, coverage criteria and 

mutation testing provide a framework for defining adequate 

testing of aspect-oriented programs.  

Categories and Subject Descriptors 

D.2.5 [Testing and Debugging]: Testing tools  D.3.3 [Language 

Constructs and Features]: Control structures, Data types and 

structures, Inheritance, and Polymorphism. 

General Terms 

Reliability, Languages, Verification. 

Keywords 

Aspect-orientation, AspectJ, Coverage testing, Mutation testing 

1. INTRODUCTION 
Aspect-Oriented Programming supports separating concerns into 

traditional structures (classes, methods) and cross-cutting aspects 

[12]. Numerous examples have demonstrated the potential for 

reducing explicit coupling and increasing modularity of the core 

concerns in such areas as logging, persistence, and security. 

Aspect-oriented programming accomplishes this by modularizing 

code fragments with quantification over the underlying syntax tree 

[10] so that these fragments may be automatically inserted into a 

system using an aspect weaver. 

While providing great flexibility and power, both an aspect’s code 

fragments and its quantification directives are sources for new 

types of programming faults. Testing aspect-oriented systems 

must consider faults due to either the fragments or where they are 

inserted through pointcuts (the quantification). In addition, the 

types of code inserted by an aspect can be very different, so 

different aspects may require different testing strategies. For 

example, a method introduction is very different than before 

advice. 

Alexander, Bieman, and Andrews [2] point out the need for a 

systematic approach to testing aspects with the following 

questions: “How do we adequately test aspect-oriented programs? 

How do we know that our testing and quality objectives have been 

attained?” These questions are difficult, they point out, because of 

the following issues: 

• Aspects do not exist independently. We must analyze 

an aspect in the context of its use in a program. Even if 

a particular aspect has been used before, a new program 

supplies a new use context that must be re-verified, just 

as inheritance forces retesting of unchanged, inherited 

methods [17]. 

• Aspects can be tightly coupled to their woven 

context. Although systems can be designed so that core 

concerns are oblivious to aspects [10], aspects are often 

tightly coupled to properties of the underlying system, 

such as method names, class names, and return types 

[3]. This can complicate aspect comprehension and 

maintenance. 

• Control and data dependencies are not readily 

apparent from the source code of aspects or classes. 

Aspects may change existing dependencies as well as 

introducing new dependencies. 

• Faults may result from emergent properties arising 

from how the core concerns and aspects interact. 

Examples include side effects or aspect precedence. 

Many researchers are investigating techniques for reasoning about 

aspect-oriented systems, with the goal of understanding and 

verifying the effects of aspects on the underlying primary 

concerns as well as aspect interactions [3][5][7][9][19][21]. 

Although many types of errors can be detected, in general we 
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cannot prove an aspect-oriented program is correct, and so testing 

complements formal and informal approaches to verification. 

Fault-based testing focuses on testing specific kinds of faults that 

are more likely to exist. Two basic assumptions of fault-based 

testing are the Competent Programmer Hypothesis and the 

Coupling Effect [16]. The Competent Programmer Hypothesis 

assumes that the program may be incorrect, but will only differ by 

relatively simple faults. According to Offutt[16], the coupling 

effect states that a test suite that detects all simple faults is 

sensitive enough to detect more complex faults. 

We propose to apply fault-based testing to aspect-oriented 

programs using both coverage and mutation techniques. Coverage 

criteria provide a definition of test adequacy in terms of testing 

statements, branches, def-use pairs, etc, and are helpful in 

determining if testing has met a measurable goal of “enough 

testing”. Mutation testing injects faults into an existing system to 

see if the test suite is sensitive enough to detect common faults. 

While the ideas presented would be applicable to various aspect-

oriented programming languages, we will use AspectJ as the basis 

of discussion. 

The rest of the paper is organized as follows. Section 2 considers 

different types of coverage criteria and what AspectJ structures 

would motivate their use. Section 3 presents a mutation-based 

approach for assessing a test suite relative to where aspect code is 

inserted. Example applications of coverage and mutation testing 

are provided in section 4, followed by a discussion section. 

Conclusions and future work are discussed in section 6. 

2. COVERAGE CRITERIA FOR ASPECT-

ORIENTED PROGRAMS 
The primary goal of coverage criteria is to measure the amount of 

testing that has been done against some measure or goal. For 

aspect-oriented testing, coverage criteria is intended to ensure that 
aspect code fragments (e.g. advice statements) are tested. 

2.1 Coverage Criteria 
A test requirement is a specific feature to be satisfied or covered 

during testing, such as reaching a statement for statement 

coverage. A testing criterion is a rule or set of rules used to 

evaluate a set of test cases (known as a test suite). Testing can be 

evaluated in terms of coverage, which is the percentage of test 

requirements from a test criterion that are satisfied. The expected 

output of a test is the result if software behaves correctly. 

Expected outputs may be determined internally (such as the return 

value of a function) or externally (by examining the output or log 

file produced by a program) [1]. 

Testing criteria can be used to measure the quality of an existing 

test suite, or they can be used to guide the generation of test cases. 

Testing criteria can be compared using a subsumption hierarchy. 

Criterion A subsumes criterion B if each test set that satisfies A 

also satisfies B [1]. Criteria at higher levels in a subsumption 

hierarchy are viewed as having more testing power, but have a 

higher cost. In particular, more powerful criteria may have some 

test requirements that are not possible, such as infeasible def-use 

pairs or infeasible paths. 

Some common coverage criteria (in order of subsumption from 

least powerful to most powerful) include statement coverage 

(every statement in a program must be executed at least once), 

branch coverage (every branch of a program must evaluate to both 

true and false at least once), and condition coverage (each 

condition in a branch must also evaluate to both true and false at 

least once) [15].  

Dataflow testing focuses on testing subpaths between the 

definition of a variable to points where that variable is used. If the 

use is a predicate use, then tests must traverse subpaths to both 

branches of the predicate. Def-use coverage is a dataflow 

approach to testing. A def occurs when a variable is assigned a 

value. A use occurs when a variables is used as part of a 

computation or predicate. A def-use pair occurs when we have a 

path from a def to a use without an intervening def (the path is 

termed a def-clear path). Rapps and Weyuker show that All-Paths 

subsumes all-def-use paths, which subsumes all-branches [18].  

Harrold and Rothermel have extended dataflow testing for 

handling object-oriented classes, by testing def-use pairs at the 

method level, inter-method level, and class level [11]. With 

inheritance and polymorphism in object-oriented systems, the def-

use pairs that occur between method calls on an object can depend 

on which class in a class hierarchy an object is bound to. 

Alexander and Offutt [1] present a criteria for testing these 

indirect coupling relationships. For example, All-Coupling-

Sequences requires that if there is an object o in a client with 

methods m() and n() that could, depending on the type, have an 

indirect def-use coupling (that is, m() sets a state variable which 

n() uses), then we must test this sequence at least once. A stronger 

criterion is All-Poly-Classes, which requires that each class in a 

hierarchy that could have a def-use pair between the coupled 

methods be tested. 

2.2 Aspect Variations 
One challenge with selecting coverage criteria for aspects is that 

aspects can have very different effects on the core concerns and 

the system itself. Some aspects, such as logging, may be strongly 

orthogonal in that they do not interact with the behavior or state of 

the core concerns in any way [8]. Other aspects, such as 

introducing a data member that does not directly interact with the 

core concern, may be weakly orthogonal. Weakly orthogonal 

aspects may unnoticeable to clients of the core concern in some 

programs, but in some contexts (such as serialization) the extra 

data member may cause system changes [8].  

In addition, aspects may have internal state or utilize object state.  

An aspect can be considered stateful if it has its own state that is 

defined and used in join points, or if it modifies or uses the state 

of other objects during a sequence of join points [9]. Zhao and 

Rinard have extended existing system dependence analysis to 

AspectJ [22], and Zhao has used this as a basis to extend Harrold 

and Rothermel’s approach to handle dataflow testing of AspectJ 

programs [23]. 

Method introduction by an aspect into a class hierarchy can 

change the dynamic binding of an object’s call. Storzer and 

Krinke call this binding interference, and analyze the inheritance 

structure and method introductions to determine what calls could 

be potentially changed [19][20]. 

2.3 A candidate fault model for Aspect-

oriented programs 
Alexander, Bieman, and Andrews have defined an initial 

candidate fault model for AOPs with six classes of AOP-specific 

faults [2]. These are in addition to faults that can (previously) 
exist in object-oriented systems such as Java [13]. 



 

 

2.3.1 Incorrect strength in pointcut patterns 
If a pointcut is too weak, it will select unintended join points that 

should not have had aspect code fragments added. If a pointcut is 
too strong, some join points will be unintentionally missed. 

2.3.2 Incorrect aspect precedence 
For systems with multiple aspects, either the default or the 

specific aspect precedence may be incorrect, resuling in incorrect 

behavior. This can be problematic for stateful aspects that are 
reading or writing common state variables in the core concern. 

2.3.3 Failure to establish expected postconditions 
Clients of a system will expect postconditions to hold even in the 

presence of aspects, as is required for behavioral inheritance (sub-
typing). 

2.3.4 Failure to preserve state invariants 
Aspect-based changes introduced to the core concerns, either 
directly or indirectly, should not violate state invariants.  

2.3.5 Incorrect focus of control flow 
In addition to using pointcuts or introductions to statically 

determine where aspect code fragements are inserted, aspects can 

use dynamic context such as cflowbelow to specify when advice 

should be activated. Incorrect use of dynamic context can lead to 
errors or performance issues, such as jumping aspects [Brichau]. 

2.3.6 Incorrect changes in control dependencies 
Aspects may introduce dataflow or control flow changes in the 

primary concern, which can change control dependencies. While 

such changes are often the goal of the aspect, they are potential 
sources of faults. 

2.4 Aspect Coverage Criteria 
Based on the body of coverage criteria research overviewed thus 

far, we propose a set of coverage criteria as well as guidelines for 
when – depending on aspect structure – they are appropriate. 

2.4.1 Statement coverage 
An aspect code fragment is covered by statement coverage if 

every path through the fragment is executed at least once after 

being woven into a program. As with statement coverage for 

procedural and object-oriented programs, statement coverage is 

not particularly strong but serves as a lower bound of test 

coverage. Clearly we should strive to test all code, recognizing 
that exceptions to this should be rare. 

2.4.2 Insertion coverage 
Insertion coverage means testing each aspect code fragment at 

each point it is woven into the program. Before or after advice 

should be tested with each method with which it can be 

associated. An introduced data member should be tested with each 

method that sets or uses it. An introduced method should be tested 

with each class that could use it (either directly or through 

inheritance) in the same manner as all-poly-classes coverage [1]. 

This is particularly important for advice or introductions that can 

modify program state or affect control or data dependencies.  

2.4.3 Context  coverage 
Context coverage extends insertion coverage to test an aspect 

code fragment in each place it is used. For a piece of before or 

after advice, for example, this ensures that the advice is tested 

wherever the associated method is called. This level of coverage, 

while expensive, is appropriate for advice that not only changes 

state, but makes changes depending on the current program state 

or context in which it is called. For a method introduction, this 

means testing the method with each class in each place in which it 

can be used, which is equivalent to all-poly-uses coverage in OO 
testing. 

2.4.4 Def-use coverage 
For aspects, def-use coverage depends on the type of aspect code 

fragment. For a data member introduction, this would be testing 

def-use pairs within methods or advice or between methods and 

advice. For method introduction, this means testing indirect def-

use pairs between the introduced method and other methods 

where both def and use the same state variable. For advice, this 

means testing def/use pairs within advice, between different 

advice fragments, between advice and methods, and between 

methods where the control flow has changed due to advice control 

flow changes (such as around advice). Def-use coverage is not 

meaningful for aspects (such as logging) that do not def any 
aspect or core concern state variables. 

2.5 Selecting coverage criteria for aspects 
Statement coverage would be at the ‘bottom’ of the subsumption 

hierarchy, and would be subsumed by insertion coverage, which is 

likewise subsumed by context coverage. Since an introduced 

method or advice may define a variable that is not used, in some 

cases def-use coverage of interactions between aspects and core 

concerns may not subsume all context coverage (e.g. focusing on 

testing only def-use pairs may omit valid paths unrelated to the 

aspect code). However, an aspect code fragment that defines a 

variable but does not use it should be investigated as a potential 

anomaly. Traditionally def-use coverage subsumes branch testing 

because all variables are included in the analysis, whereas here we 

are focusing on variables from aspect code fragments. 

For the purpose of selecting an appropriate coverage criterion, it is 

necessary to first perform static analysis on the aspect and system 

in which it is used. Selecting test criteria is always a trade-off 

between confidence in our testing and the cost of that testing. 

Designating an appropriate criterion is not meant to imply 

exhaustive coverage, but rather to match the relative complexity 

(or amount of possible interaction) of an aspect with a level of 
testing that will provide confidence in the tests performed. 

Based on existing research in aspect-oriented progamming and 
analysis [8][9], we categorize aspects as follows: 

• Orthogonal (either dependent or independent) 

• Altering (whether directly or indirectly) 

• Stateful 

Orthogonal aspects do not change control or data dependencies in 

the system; an example would be logging [8]. After weaving, 

orthogonal aspects may be (control or data) dependent on primary 

concerns or independent if the inserted statements execute without 
regard to core concern state.  

An altering aspect changes control flow or data flow of a system. 

Directly altering aspects include around advice and dynamic 

binding interference (which can occur due to method introduction 

or class hierarchy changing). Indirectly altering aspects introduce 

dataflow changes that may change state variables or predicate 

values that affect control flow. For example, before advice may 

modify an object that is passed as a parameter to a method in a 
way that changes method behavior. 



 

 

A stateful aspect has behavior that depends on one or more state 

variables, such as an aspect data member or introduced object 

state variable [9]. A stateful aspect can be orthogonal (if the state 

is internal to the aspect or does not interact with the core concern), 
or can be altering. 

We propose that testing criteria for an aspect be selected based on 

the properties identified above (orthogonal, altering, and stateful). 

Since testing resources (time, effort) are finite, a goal of testing is 

to identify a criteria that will not be too difficult while still testing 
the code in a meaningful way. 

Because they do not interact directly with the core concern and 

don’t depend on state, aspects that are orthogonal and non-stateful 

are adequately tested with statement coverage. Orthogonal aspects 

with state should use insertion coverage to ensure that aspect code 
fragments are tested with each program location.  

A minimum baseline for altering aspects should be insertion 

coverage, but more appropriate choices would be either context 

coverage or def-use coverage. Aspects with complex dataflow 

interactions might seem best suited for def-use coverage, but 

complex dataflow interactions may lead to infeasible or difficult 

to execute def/use pairs. Simpler dataflow relationships such as 

caching method return values to improve efficiency can be easily 

tested with def-use coverage to validate that both inserting and 

retrieving a value into the aspect cache work together 
appropriately.  

2.5.1 Coverage criteria and the fault model 
The first two faults in the AOP fault model presented earlier 

related to pointcut strength and aspect precedence, which govern 

where code is woven in. Coverage testing cannot test for missing 

code  and may not detect code that is inserted in the wrong place 
(e.g. through incorrect pointcut strength). 

The other four faults can be the result of incorrect aspect code 

fragments (such as faulty advice). The different coverage criteria 

provide a means for testing these fragments in an appropriately for 
a given aspect. 

Statement coverage is the weakest, and may only find faults if the 

fault occurs in all weave contexts. Insertion coverage, context 

coverage, and def-use coverage provide progressively stronger 

coverage criteria for testing for the presence of faults. 

Context coverage could detect incorrect focus of control flow, but 

to be complete def-use coverage ensure that context considered all 

state-based decisions through def-use pairs. Def-use testing also 
corresponds best to incorrect changes in control dependencies. 

3. ASPECT MUTATION TESTING 
Mutation testing is used to insert faults and evaluate the 

effectiveness of a test suite. For aspect-oriented programs, we use 

mutation testing to focus on faults related to advice fragment 

insertion. By mutating pointcuts and precedence, we can evaluate 

the effectiveness of the testsuite at finding the first two faults: 

incorrect strength in pointcut patterns and incorrect aspect 
precedence. 

3.1 Mutation Testing 
Mutation testing takes a program and test suite, and introduces 

faults via mutation operators. The resulting, modified programs 

are referred to as mutants. A mutant is considered dead if a test 

from the test suite distinguishes the output from the expected 

output. A test that does so is termed effective and is said to kill the 
mutant [16].  

If some mutants are still alive, a tester can attempt to kill them by 

introducing new tests to the suite. If a mutant can be shown to be 

functionally equivalent to the original program, it is not counted in 

the mutation score. Functional equivalence is usually shown by 

hand, during the process of trying to kill mutants. A mutation 

score is calculated as the ratio of dead mutants over the total 

number of (non-equivalent) mutants [16]. The mutation score 

provides a measure of the extent of testing; while the live mutants 
pinpoint specific inadequacies in the test suite [14]. 

3.2 Mutation Faults and Operators 
We focus mutation operators only on the process of inserting 

aspect code fragments. Thus, these operators are related to the 

first two faults from the fault model presented earlier. Mutation 

operators are inserted using static analysis of the aspect code 

fragments, pointcuts, and the resultant weave. We list the 

operators along with short abbreviations for reference. Note that 

one thing that we do not mutate is the presence or absence of 

dynamic context operators such as cflowbelow, since that can lead 
to infinite recursion in some aspects. 

3.2.1 Pointcut strengthening (PCS) 
This operator decreases the number of matched join pointjoin 

points by strengthening the pointcut. This can be done in several 

ways. For class hierarchy operators (such as Type+.method()), we 

can change the name of Type to a child type. For a pointcut name 

that matches multiple methods (such as get*(..) ) we can change it 

to one of the matched methods (e.g. getX(..) ). For a pointcut 

name that matches on multiple argument types, we can select the 

argument type of one of the matches. In addition, we can 

strengthen the pointcut so that it matches no join points (or 

equivalently make the advice empty). One benefit of this last 

mutation is that we validate if the test suite is sensitive to this 
pointcut at all. 

3.2.2 Pointcut weakening (PCW) 
The PCW operator is the oppositve of pointcut strengthening. For 

class hierarchy operators we can move the name of the Type up in 

the hierarchy. For pointcut names, we can change the pointcut 

name or type matching to be less restrictive. We can also perform 

the most extreme PCW operation: making the pointcut match all 

possible join points in a class or package. As with strengthening a 

pointcut to match nothing, this detects if the test suite is sensitive 
at all to the pointcut. 

3.2.3 Precedence changing (PRC) 
By changing the aspect precedence, we can determine the test 

suite (and system) sensitivity to aspect advice orderings. In order 

to maximize benefits, mutation testing typically selectively 

applies operators to only some parts of the system [14]. For PRC, 

we propose that this operator only be used with mutually 

interfering aspects [7] since we would not expect aspect 

precedence to matter otherwise. 

4. APPLYING COVERAGE AND 

MUTATION TESTING 
In order to illustrate the aspect coverage criteria and aspect 

mutation operators, we present several examples drawn from 

existing research. These examples have been modified to focus on 



 

 

the coverage or mutation operators. We use a numbering scheme 
that spans all examples so that we simply indicate a line number. 

In addition, we have added a test suite for each test case and, if 

needed, a static main method. For simplicity, we assume that the 

test correctness is determined by examining the program output. 

For simplicity of demonstration our test suites are simply a 

sequence of calls in main rather than multiple invocations of the 

program with different values. 

4.1 Optimizing using a caching aspect 
We have adapted the factorial optimizer example presented by 

Alexander, Bieman, and Andrews [2], and put it in the context of 

a larger class (more than one static method) in order to 

demonstrate pointcut faults. The static method 

MathFunctions.main provides a simple test suite. The 
MathFunctions class is shown in Figure 1. 

1. public class MathFunctions { 

2.  public static long factorial (int n) { 

3.  if(n==0) {  

4.    return 1; 

5.  } 

6.  else { 

7.    return n* factorial(n-1); 

8.  } 

9.  public static long random_seed(int  n) {…} 

10.  public static long random(long n) { 

11.    //body omitted, returns a number in the range [0,n-1] 

12.    //according to a pseudo-random algorithm that is  

13.    //deterministic based on a seed value passed in 

14.    //with random_seed() 

15.  } 

16.  public static main(String[] args) { 

17.    System.out.println(“3! Is “ + factorial(3)); 

18.    System.out.println(“5! Is “ + factorial(5)); 

19.    System.out.println(“2! Is “ + factorial(2)); 

20.  

21.    random_seed(5); 

22.    System.out.println(“ random = “ + random(50000)); 

23.    System.out.println(“ random = “ + random(50000)); 

24.  } 

25. } 

    Figure 1. MathFunctions class and suite 

The expected output (assuming some pseudorandom values for 

the random call based on the seed) for the program when 

executing the test suite embedded in MathFunctions.main is: 

3! Is 6 

5! Is 120 

2! Is 2 

random = 223202 

random = 437293 

The aspect for optimizing the factorial call is shown in Figure 2. It 

uses cflowbelow so that it only caches values around the top level 

call and not to lower level recursive calls. 

26. public aspect OptimizeFactorial { 

27.    private Map _factorialCache = new HashMap(); 

28.    pointcut factorialOp(int n) : 

29.        call(long *.factorial(int)) && args(n); 

30.    pointcut topLevelFactorialOp(int n) : 

31.         factorialOp(n) && !cflowbelow(factorialOp); 

32.    long around(int n) : factorialOp(n) { 

33.       Object cachedValue =  

34.         _factorialCache.get(new Integer(n)); 

35.      if(cachedValue != null) { 

36.           return ((Long) cachedValue).longValue(); 

37.      } 

38.      return proceed(n); 

39.    } 

40.    after(int n) returning(long result)  

41.         : topLevelFactorialOp(n) { 

42.       _factorialCache.put(new Integer(n),  

43.                                 new Long(result)); 

44.    } 

45. } 

46.   
    Figure 2. Factorial Optimizer Aspect 

Weaving in the aspect in Figure 2 and rerunning 

MathFunctions.main results in the same output. Since the 

OptimizeFactorial aspect isn’t supposed to change behavior, this 

is a good start. However, analysis of the code for this test suite 

indicates that the around advice never uses a cachedValue, since 

no top level factorial calls were repeated with the same value. The 
after advice does get executed each factorial call (on lines 17-19). 

The inadequacy of the existing tests illustrates how an aspect that 

does not change the observed behavior may need additional tests. 

To achieve statement coverage of the around advice, we can add a 

single statement to line 20: 

System.out.println(“3! Is “ + factorial(3)); 

One of the benefits of coverage analysis is that we are able to gain 

a measure of observability not available by observing program 

outputs. For this simple example, no additional tests are required 

to test insertion coverage or context coverage. Insertion coverage 

is only meaningful if a pointcut selects multiple methods (from 

one or more classes). Context coverage is only meaningful is a 

method that has associated aspect code is called in different 
contexts. 

This aspect is stateful, and we can apply def-use coverage. Each 

method call to factorial has both around and after advice, so that 

the woven code of a factorial call has – to the caller -- this 
structure (but not this actual representation in AspectJ): 

long NewFactorial(int n) { 

  Object cachedValue =  

    _factorialCache.get(new Integer(n)); 

  if(cachedValue!=null) { 

   return ((Long) cachedValue).longValue(); 

  long result = factorial(n); 

  _factorialCache.put(new Integer(n),new Long(result)); 

  return result; 

} 

A sequence of calls to factorial can have a def-use pair between 

the put from one call to the get of a subsequent call. One 

challenge with def-use testing is that there will be chains of 

potential def-use pairs for the simple program of Figure 1 (with 

the added line 20). For example, if we treat factorialCache as a 

single def-use variable (which is a common, but pessimistic 

approach for collections and arrays), line 17 triggers a def to 

factorialCache that may be used on lines 18, 19, and 20. Only the 

def-use pair between the call on line 17 and the call on line 20 
actually occurs. 



 

 

Now that we have updated the test suite based on coverage 

analysis, we consider mutation analysis. Precedence changing 

does not apply to this example, because there is only one aspect. 

Pointcut strengthening (PCS) and pointcut weakening (PCW) can 
be used to generate mutants. 

We apply PCS by creating mutant M1, which changes the 

factorialOp pointcut so that it no longer matches any code (this is 

straightforward to do, since we can change the class name or 

method name to something that does not exist in the program). No 

test call to factorial can detect the change to M1; however, this is 

because M1 is functionally equivalent (since the absence of the 
advice doesn’t change behavior).  

For mutant M2, we apply PCW by changing the pointcut to match 
any name with the required signature for the around: 

pointcut factorialOp(int n) : 

   call(* *.*(int)) && args(n); 

We made as much of the pointcut specifier ‘*’ as possible, but the 

argument (int n) is used by the advice, so we left its type and 

name intact. This pointcut does not match the call to random, 

because random has a long parameter, but it does match the call to 

random_seed. The result will be that the around advice will 

already have a cached value for the parameter 5, and will 

therefore not proceed with the actual call to random_seed, which 

will result in the calls to random giving different values. Mutant 

M2 is dead because it the test suite will detect the change. Had the 

parameter types been identical for random and factorial, they also 
could have interacted in a detectable way. 

4.2 Enforcing constraints with an aspect 
The next example is adapted from an example by Zhao and  

Rinard [21] of using aspects to enforce constraints on a Point 

class. We have made slight changes to the code, omitted the Pipa 
annotations, and added a main method that serves as the test suite. 

47. public class Point { 

48.    int x,y; 

49.    public Point(int _x, int _y) {x = _x; y = _y;} 

50.    public void setX(int newx) 

51.    {        x = newx;     } 

52.    public void setY(int newy) 

53.    {       y = newy;      } 

54.    public int getX() { return x;} 

55.    public int getY() { return y;} 

56.    public void printPosition() { 

57.       System.out.println(“Point at (“+x+”,”+y+”)”); 

58.    } 

59.    public static main(String[] args) { 

60.       Point p1 = new Point(3,3); 

61.       p1.setX(5); 

62.       p1.setY(0); 

63.       Point p2 = new Point(-1,-1); 

64.       p2.setX(3); 

65.       p2.setY(-1); 

66.       p1.printPosition(); 

67.       p2.printPosition(); 

68.    } 

    Figure 3. Simple Point class 

The PointBoundsConditions aspect is a combination of two 

aspects in Zhao and Rinard’s paper and provides pre-condition 

(before) checks and a post-condition (after) check. It is shown in 

Figure 4. We assume that MIN_X and MIN_Y are 0, and that 

MAX_X and MAX_Y are some large value, such as the max int 
value. 

69. aspect PointBoundsConditions { 

70.    before(int x) : call( void Point.setX(int)) && args(x)  

71.    { 

72.        if(x < MIN_X || x > MAX_X)  

73.           throw new RunTimeException(); 

74.     } 

75.     before(int y) : call( void Point.setY(int)) && args(y)  

76.    { 

77.        if(y < MIN_Y || y > MAX_Y)  

78.           throw new RunTimeException(); 

79.     } 

80.     after(Point p, int x) : call( void Point.setX(int)) 

81.        && target(p) && args(x) { 

82.        if(p.getX() != x) 

83.           throw new RunTimeException(); 

84.     } 

85.     after(Point p, int x) : call( void Point.setY(int)) 

86.        && target(p) && args(y) { 

87.        if(p.getY() != y) 

88.           throw new RunTimeException(); 

89.     } 

90. } 

       Figure 4. PointBoundsConditions aspect 

The PointBoundsConditions aspect does not maintain state (either 

directly or indirectly) but it does check the internal object state 

after each setX and setY method call. It alters the behavior as seen 

by the client or program output, since it prevents some method 
calls from completing, throwing a RunTimeException instead. 

The output of the program before the aspects are added is: 

Point at (5,0) 

Point at (3,-1) 

After aspect weaving, the output is: 

Point at (5,0) 

Run Time Exception at line…. 

In this case the default test cases provide statement coverage for 

the advice lines 72-73. The setY method never throws an 

exception, so line 77 is covered by not line 78. Lines 87-88 are 

not executed. We can analyze the code and determine that these 

lines are not reachable (we can never have the after exception in 

this program since setX and setY either set the value correctly or 

the program throws an exception). Automatically determining 

unreachability is an undecidable problem in general, and is one of 

the challenges of coverage testing (and why 100% coverage is not 
always achievable). 

As before, insertion coverage and context coverage do not add to 

statement coverage due to the simplicity of the system. Each time 

setX or setY is called, we have a def-use pair, from the setting of 

the Point data member (x or y) to the use of the Point data 

member in the advice. The def-use pair is always covered by the 

same tests that provide statement coverage, so def-use coverage 
does not add to the strength of testing that advice fragment. 

With only one aspect, we can apply both pointcut strengthening 

(PCS) and weakening (PCW) operators. We generate the 
following mutants: 

M1 – by removing the before setX() advice using PCS 

M2 – by removing the before setY() advice using PCS 



 

 

M3 – by removing the after setX() advice using PCS 

M4 – by removing the after setY() advice using PCS 

We do not apply PCW because the advice uses the method 

argument and object state, which makes it difficult to apply the 

advice to other methods. Mutants M2 and M4 are killed by the test 

program since it calls setY with a negative value. Mutants M1 and 

M3 are not functionally equivalent to the original program, and 

indicate an insufficient test suite, which can be remedied by 
adding addition method calls to the end of the main method. 

        p2.setX(-3); 

       p1.printPosition(); 

       p2.printPosition(); 
 

An interesting alternative to the before advice is to ensure that the 

x and y values are in a designated range instead of throwing an 
exception, as shown in Figure 5. 

91. aspect PointBoundsConditions { 

92.    before(int x) : call( void Point.setX(int)) && args(x)  

93.    { 

94.        if(x < MIN_X) x = MIN_X; 

95.        if(x > MAX_X) x = MAX_X; 

96.     } 

97.     before(int y) : call( void Point.setY(int)) && args(y)  

98.    { 

99.        if(y < MIN_Y) y = MIN_Y; 

100.        if(y > MAX_Y) y = MAX_Y; 

101.     } 

102.     // after advice as previously defined on lines 80-89 

103.     after(Point p, int x) : call( void Point.setX(int)) 

104.        && target(p) && args(x) { 

105.        if(p.getX() != x) 

106.           throw new RunTimeException(); 

107.     } 

108.     after(Point p, int x) : call( void Point.setY(int)) 

109.        && target(p) && args(y) { 

110.        if(p.getY() != y) 

111.           throw new RunTimeException(); 

112.     } 

113. } 
       Figure 5. Revised PointBoundsConditions aspect 

The program output is now different, since the before advice for 

the setY() method does not throw exceptions, but now the after 

advice for the setY() method throws an exception at a different 

location because the result of setY() did not set the data value to 
the parameter. 

This changes coverage testing in several ways. Previously, the 

before setY() advice was covered by a single out of range test 

case, but now we must test a value below MIN_Y and a value 

above MAX_Y. In addition, the after advice is now reachable and 

needs to be tested for methods setX() and setY().  

These two versions of PointsBoundsChecking show that advice 

bodies can interact through the state of a common object method 

call. Changes in advice may require changes to test suites in order 
to achieve adequate testing. 

4.3 Testing aspect introduction 
The third example is from Zhao and Rinard [22] and uses the 

same Point class but a PointShadowProtocal aspect, which uses a 
Shadow object that is introduced. 

114. class Shadow { 

115.    public static final int offset = 10; 

116.    public int x,y; 

117.    Shadow(int _x, int _y) { 

118.      x = _x; 

119.      y = _y; 

120.    } 

121.    public void printPosition() { 

122.      System.out.println(“Shadow at (“+x+”,”+y+”)”); 

123.    } 

124.  } 

125.  aspect PointShadowProtocol { 

126.    private int shadowCount = 0; 

127.    public static int getShadowCount() { 

128.        return PointShadowProtocol.  

129.            aspectOf().shadowCount; 

130.    } 

131.    private Shadow Point.shadow; 

132.    public static void associate(Point p, Shadow s) { 

133.       p.shadow = s; 

134.    } 

135.    public static Shadow getShadow(Point p) { 

136.       return p.shadow; 

137.    } 

138.     

139.    pointcut setting(int x, int y, Point p) : 

140.        args(x,y) && call(Point.new(int,int)); 

141.    pointcut settingX(Point p) : 

142.        target(p) && call(void Point.setX(int)); 

143.    pointcut settingY(Point p) : 

144.        target(p) && call(void Point.setY(int)); 

145.  

146.    after(int x, int y, Point p) returning : setting(x,y,p) { 

147.        associate(p,s); 

148.        shadowCount++; 

149.    } 

150.    after(Point p) : settingX(p) { 

151.       Shadow s = getShadow(p); 

152.        s.x = p.getX() + Shadow.offset; 

153.    } 

154.    after(Point p) : settingY(p) { 

155.       Shadow s = getShadow(p); 

156.       s.y = p.getY() + Shadow.offset; 

157.    } 

158.    after(Point) : call( void Point.printPosition()) 

159.        && target(p) { 

160.        Shadow s = getShadow(p); 

161.        s.printPosition(); //print the shadow info too 

162.    } 

163. } 
    Figure 6. PointShadowProtocal aspect 

The PointShadowProtocol aspect is stateful since it modifies and 

uses the Shadow object that it introduces to all Point objects. It 

does change the output of a program after weaving, since any call 

to Point.printPosition() will then call the associated Shadow 

object’s printPosition() as well. For testing Point and Shadow 
together we re-show Point.main() below. 

164. public static main(String[] args) { 

165.     Point p1 = new Point(3,3); 

166.     p1.setX(5); 

167.     p1.setY(0);  



 

 

168.     Point p2 = new Point(-1,-1); 

169.     p2.setX(3); 

170.     p2.setY(-1);  

171.     p1.printPosition(); 

172.     p2.printPosition(); 

173. } 
    Figure 7. Point.main method 

With just the PointShadowProtocol woven in, we consider 

coverage and mutation. The after setX(), after setY(), after 

construction advice, and after Shadow.printPosition() are all 

covered by this simple set of test calls. This test case does not 

have a complex enough structure for the insertion or context 
criteria to be different. 

There are def-use pairs that occur through the advice, as well as 
between advice and methods. These include: 

 A shadow def occurs after a Point constructor (e.g. line 2) 

and a use of that shadow occurs whenever the point’s setX() 
or setY() methods are called (e.g. lines 3-4). 

 A call to a setX() followed by a call to printPosition() on the 

same object results in a definition from the setting method 

being used in the printPosition, of both the Point’s internal 
state and the Shadow’s internal state. 

These def-use pairs are a subset of the def-use pairs identified by 

Zhao and Rinard [23], since we only consider def-use pairs 

between actual method sequences in a client program, while they 

consider all def-use pairs based on all possible method sequences. 

From a testing point of view, considering all possible method 

sequence calls is more powerful, but may result in many 

sequence calls that are semantically invalid (such as popping an 
empty stack). 

We can apply mutation testing to the pointcut of each advice 
fragment, resulting in the following mutants: 

M1 –by removing the after setting advice using PCS 

M2 –by removing the after settingX advice using PCS 

M3 –by removing the after settingY advice using PCS 

M4 –by removing the after printPosition advice using 
PCS 

Mutant M1 will result in subsequence advice calls attempting to 

reference a null Shadow variable, which will result in early 

termination and an exception being thrown.  Mutant M2 will 

cause the shadow to have an incorrect x value, which will be 

visible in the output. Mutant M3 will likewise cause the shadow 

to have an incorrect y value. The effect of M4 will be no shadow 

output that will also be detectable. All four mutants are killed by 
the existing test suite. 

4.4 Interfering aspects and aspect precedence 
If the PointShadowProtocol aspect were combined with an aspect 

similar to PointBoundsConditions, but which used after advice to 

set the values of a Point’s x and y values to be within a range 
(0…MAX), then aspect precedence becomes an issue. 

If the PointShadowProtocol after advice is executed before 

PointBoundsCondition advice that changes the Point x and y 

values, then the Shadow x and y values will be based on a 
different set of Point values than the final point. 

Statement coverage will still measure if both aspect’s after advice 

is executed. In this case, neither insertion advice or context 

advice will be stronger, but what we really want to test is if both 

advice fragments were activated for the same method call. This is 
an area for further research. 

Mutation testing will include the precedence changing operator 

(PRC), and will create two mutants to represent the two orders of 

these two aspects. One mutant will match the default behavior 

(since it will be functionally equivalent), while the other mutant 

will be killed. Regardless of which behavior turns out to be the 

default, one value of this set of mutants is that it shows that, for 

this system, aspect precedence does matter. Besides evaluating 

the test suite, this will likely result the expected aspect 
precedence being added to the system. 

4.5 Calling Context 
To demonstrate the effects of calling context, consider a slightly 

different math library, with a static Factorial method, a static 

Permute method that uses Factorial, and a static Root method that 
returns a square root. 

174.   public class MathLib { 

175.   public static long Factorial(long n) 

176.   { 

177.      if(n==1) return 1; 

178.      else return n*Factorial(n-1); 

179.   } 

180.   public static double Root(long n) 

181.   { 

182.      // return the square root by some method… 

183.      return root; 

184.   } 

185.   public static long Permute(long n, long r) 

186.   { 

187.      // P(n,r) = n! / (n-r)! 

188.      return Factorial(n) / Factorial(n-r); 

189.   } 

190.  

191.   public static void main(String[] args) 

192.   { 

193.      System.out.println("3!  is " + Factorial(3)); 

194.      System.out.println("P(3,2) is " + Permute(3,2)); 

195.      System.out.println("Root of 6 is " + Root(6)); 

196.  

197.      System.out.println("P(2,3) is " + Permute(2,3)); 

198.   } 

199. } 
    Figure 8. Another MathLib class 

For the given test suite defined in MathLib.main, the Factorial 

static method gets called at three locations: recursively at line 178, 

twice from Permute at line 188, and by the test harness (acting as 
a client) at line 193. 

Suppose that the Factorial and Root method do not handle 

negative inputs, and a client wishes to do that using an aspect 
rather than directly modifying code. One approach could be: 

200. aspect Bounds { 

201.     pointcut FactOrRootOp(long n) : 

202.      (call(* *.Factorial(long)) ||  

203.        call(* *.Root(long))) && args(n); 

204.  

205.   long around(long n) : FactOrRootOp(n) { 

206.       if(n<0) { 

207.          return 0; 



 

 

208.       } 

209.       return proceed(n); 

210.  } 

211. } 
    Figure 9. Bounds aspect for MathLib 

 

The pointcut will match two methods, Factorial and Root. 

Statement coverage would simply require that the around advice 

code fragment be tested once, with either method. Insertion 

coverage would require testing it with each associated method 

(Factorial and Root) but at any call site. Context coverage would 

require testing the around advice fragment at each call site in the 

program, which would be four calls for Factorial listed above and 

the call to Root on line 195. The value of a stronger criteria 

(context coverage) is shown by the fact that the around advice 

fixes some possible program errors, but having Factorial return 0 

can still lead to errors in some contexts – such as the denominator 

of Permute. This could be handled by changing the advice to 

return 1 or by modifying the pointcut to be sensitive to call 
location (e.g. using cflowbelow). 

The mutation operators PCW and PCS can sometimes be 

performed as text manipulations on the class type or method type, 

but this example illustrates that another possible aplication would 

be removing part of a complex logical statement. In this case we 

create four mutants – one whose pointcut matches all MathLib 

methods, one whose pointcut matches only Factorial, one whose 

pointcut matches only Root, and one whose pointcut matches no 

methods. 

5. DISCUSSION 
The preceding examples demonstrate possible benefits from both 

coverage testing and mutation testing. Adequate coverage testing 

can be used to ensure advice that is semantics preserving is 

actually executing. In addition, coverage shows what advice is not 
getting used in a particular context. 

Mutation testing can determine if a test suite is sufficiently 

sensitive to faults in pointcut strength and aspect precedence. 

Mutants that cannot be killed point to weaknesses in the test suite 

or aspects that may (regardless of intent) be orthogonal (since 
omitting them does not affect the system).  

5.1 Tool Support 
Although small examples can be examined by hand, clearly tool 

support is needed to help automate coverage testing. This will 

allow larger systems to be analyzed, and will allow developers to 
evaluate the effectiveness of such techniques. 

Analysis of the Java core concerns, AspectJ aspects, and the 

resulting weave are necessary for steps in order to analyze and 

instrument AspectJ programs for coverage testing. While 

statement coverage is straightforward, insertion coverage, context 

coverage, and def-use coverage will require more detailed 
analysis of system traces to consider call stacks. 

5.2 Aspect Coverage 
We have only briefly considered dynamic interference due to 

hierarchy changes, method introduction, and interface 

introduction. Dynamic interference can lead to the same types of 
indirect def-use coupling as inheritance and polymorphism [1].  

Another extension of def-use coverage would be to focus on defs 

and uses in the primary concern that occur due to aspect-induced 

control flow changes [2]. We also need to evaluate additional 

coverage criteria, such as executing all associated advice 

statements (from the same or multiple aspects) on a single method 
call. 

5.3 Aspect Mutation 
Two primary challenges for mutation testing are accurately 

simulating realistic faults, and limiting the number of mutants 

generated in large systems. Offutt [14] summarizes some common 

approaches: selective mutation to generate fewer mutants; mutant 

sampling to reduce how many mutants are actually run; and weak 

mutation that looks at internal state rather than program state to 
detect mutants. 

The mutation operators presented focus on advice pointcut 

strength and aspect precedence. There are many different ways to 

mutate a pointcut beyond simple name changes, such as changing 

the logical operators (||, &&) and argument type changes. Another 

mutation approach might be to swap before and after advice that 

are associated with a common pointcut. Additionally, developing 

an approach to mutating pointcuts that uses target objects, 

arguments, and object state in a semantically meaningfully way 
would provide a richer set of mutants. 

For aspects that change class hierarchy, we can perform mutation 

by changing aspect to move the class to a different level. We can 

also remove the operator so that the class is at its original 

hierarchy level. 

Member introduction mutation was not considered in this paper, 

but one approach might be apply traditional scalar mutation 

operators (add 1, subtract 1, etc.). For introduction of Java 

collections, we can apply the five mutation operators described in 
by Bieman, Ghosh, and Alexander [4]: 

1. Make the collection empty. 

2. Remove an element from the collection. 

3. Add an element to the collection. 

4. Mutate elements within the collection. 

5. Reorder some elements within the collection. 

 

5.4 Experimental Validation 
With adequate tool support, we can test many different aspect-

oriented systems to experimentally measure the effectiveness of 

these criteria for particular systems. Since results from small 

programs created by hand for the purpose of testing and analysis 

may not have wide applicability, we need to apply our framework 
to a wide range or larger aspect-oriented systems. 

Unlike procedural and object-oriented systems, we don't have a 

large repository of large AspectJ systems. However, as more 

researchers and practictioners develop systems in AspectJ, more 
and larger systems will be available for analysis.  

This will be important for evaluating coverage testing. In large 

industrial systems, 100% statement coverage is rarely achieved. In 

addition, we will want to understand the overhead of measuring 
coverage with an aspect-oriented language. 

Mutation testing has had limited use in part because of the large 

number of possible mutants to test [14]. Our approach applies 

mutation to only part of the system (such as pointcut strength and 

precedence), which may help mitigate this.  Experimental studies 

and additional research in aspect-oriented systems can be used to 



 

 

validate our fault model, identify other mutation operators based 

on additional faults, and measure the cost of applying these 
mutation operators to large systems. 

6. CONCLUSIONS AND FUTURE WORK 
We have presented a new framework for aspect-oriented test 

adequacy that combines coverage testing and mutation testing.  

While our research is early – that is, it has not been 

experimentally validated – our proposed approach is novel in 

testing based on faults that can occur in both aspect code 

fragments and the quantification statements. We have 

demonstrated the application and benefits of this new approach on 
small AspectJ programs. 

We have identified the need for an integrated set of tools to 

analyze AspectJ programs, instrument and gather coverage 

criteria, and generate and test program mutants. Our current and 

future work include developing these tools and using them as the 

basis for experimental validation of the proposed framework. 

Based on experimental validation and continued research, we plan 

to further refine and develop coverage criteria and mutation 

operators. We also want to explore the application of existing 

techniques for achieving testing goals with smaller mutant sets 
[14] to our aspect-specific mutation operators.  
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