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Abstract

The polyhedral model is a well developed formalism for the specification, analysis
and transformation of regular loop programs. The model has been extensively used in
a variety of contexts wiz. automatic parallelization of loop programs, locality, program
verification, hardware generation and more recently, automatic reduction of asymptotic
program complexity. Such analyses and transformations are based on certain closure
properties in the polyhedral model. However, the polyhedral model is limited in ex-
pressivity and the need for the extension to a more general class of programs is widely
known.

We provide the extension to Z-polyhedra which are the intersection of polyhedra and
lattices. We prove the required closure properties using a novel representation and inter-
pretation of Z-polyhedra. In addition, we also prove closure in the Z-polyhedral model
under images by dependence functions—thereby proving that unions of LBLs, widely as-
sumed to be a richer class, is equal to unions of Z-polyhedra. These closure properties
constitute the foundations of the Z-polyhedral model. As an example, we present the
automatic reduction of complexity in the Z-polyhedral model.

1 Introduction

The polyhedral model provides sophisticated analysis and transformations of the kernels of
many compute- and data- intensive applications. Programs in the polyhedral model essen-
tially comprise of (i) variables (and expressions) representing collections of values defined over
polyhedral domains, and (ii) affine dependences between computations. Feautrier [6] showed
that an important class of conventional imperative loop programs called affine control loops
(AcLs) can be transformed to programs in the polyhedral model. Significant parts of the
SpecFP and PerfectClub benchmarks are ACLs |2].

An intuitive and general way specifying these programs is through a finite list of high
level (mutually recursive) equations. For example, the following recurrence [3] for computing
the cost of optimal string parenthesization is a program in the polyhedral model (of course,
clothed in syntactic sugar).

i=j : 0
C; i = ) ) . o
i i<j o ig}glgj(ci,k + Chy1; + f(3,5,k))
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In the example, the dependence between computations is such that the variable C at the
iteration at (4, j) depends on a range of values: between the iterations (i, k) and (k+1, ), and
on the value of f at the iteration (¢,7,k). A complete description of the equational language
is presented in section 2.

Many computations can be expressed naturally in the polyhedral model, e.g., matrix mul-
tiplication, LU-decomposition, Cholesky factorization, Kalman filtering, as well as algorithms
arising in RNA secondary structure prediction.

The polyhedral model has been used for the automatic parallelization of ACLs because
it enables sophisticated analyses and transformations such as scheduling [4] and semantic-
preserving refinements into (sequential or parallel) code [15, 1]. One can also automatically
and optimally decrease the complexity of accumulations (called reductions) in the polyhedral
model [8].

In an ACL (or the corresponding program in the polyhedral model), statement level trans-
formations often yield better results than loop level transformations|?|. This relies on the
closure of (statement/equation) domains under images by (a restricted class of) affine func-
tions. Indeed, most analyses/transformations rely on closure properties in the polyhedral
model. Also, as a result of these closure properties, we may design the equational language
mentioned above such that the domain of every (sub)expression is of the same type as the
domains of variables, permitting a unified framework based on expressions defined over poly-
hedral domains'
requires the closure of domains of expressions under set difference.

The polyhedral model currently suffers from certain limitations (although partial solutions,
some ad-hoc, have been proposed for many of them).

. As a direct application, the reduction of asymptotic program complexity

e Loop programs with a non-unit stride, and non-unimodular transformations fall outside
the scope of the model. This is an important class of programs |17, 13, 21, 7| aris-
ing in situations such as the red-black SOR computation for solving partial differential
equations.

e Parallel architectures with periodic processor activity, such as multi-rate arrays [12] and
bidirectional systolic arrays, cannot be described in the model.

e Reduction operations with arbitrary projections cannot be expressed in the model (ex-
plained later).

As a simple example consider the following equation for ¢ > 1.

, ieven : Ali/2]
A[Z]:{z’odd .0

The two branches define the variable, each one on a subdomain that has holes, more pre-
cisely, on a Z-polyhedron which is the intersection of an integer polyhedron and an affine

'In fact variables may be treated simply as named expressions.



integer lattice. Unfortunately, there does not exist an equivalent program in the polyhe-
dral model (where variables have polyhedral domains, without holes) which captures such a
dependence pattern.

It has been long claimed that these limitations can be resolved through some (deceptively,
as it turns out) simple extensions to polyhedra. The first extension, proposed by Teich
and Thiele, was called Linearly Bounded Lattices (LBLs) [19] which are images of integer
polyhedra by arbitrary affine functions. The main motivation for L.BLs was that polyhedral
domains were not closed under images. Le Verge, in an unfinished manuscript [11] showed the
limitations of LBLs and promoted Z-polyhedra. He also showed that there is a strict inclusion:
Integer Polyhedra C Z—Polyhedra C LBL. Till date, previously known theory and techniques
of the polyhedral model most notably program analysis and precise determination of regions
of definition and usage of values—have not been extended to any of the richer models.

In this paper, we present the foundations of a simple and unified solution to all of these
limitations through the extension of the equational language to domains that are unions of
Z-polyhedra. Our key insight is a new representation of Z-polyhedra, and its associated inter-
pretation. Specifically, we view any point in a Z-polyhedra as the integer linear combinations
of the generators of the associated lattice. The coefficients of these linear combinations are
called coordinates which belong to a polyhedron. The critical hindrance in previous attempts
was that Z-polyhedra were either viewed as restricted images of integer polyhedra or as the
intersection of integer polyhedra and affine lattices, rather than the coordinate view proposed
here. Our key contributions are as follows.

e We present a novel representation for Z-polyhedra and an associated family of functions,
together with proofs of closure of unions of Z-polyhedra under intersection, finite union,
difference and preimage by the family of functions.

e We prove closure of unions of Z-polyhedra under image by the family of functions,
which had been a major limitation of the polyhedral model. This proves that unions
of LBLs, widely assumed to be a richer class of domains, are equivalent to unions of
Z-polyhedra. This result relies on our theorem that weakens the sufficient conditions
required to verify in polynomial time that an LBL is in fact a Z-polyhedron .

e As an example, we present the automatic decrease of complexity of programs in the
Z-polyhedralmodel. This is done by transforming the analysis to an equivalent analysis
on polyhedra. This shows that, often, tools and techniques developed for the polyhedral
model can be reused.

The remainder of this paper is organized as follows. In the following section, we describe
a generic equational language where expressions are associated with domains. The section
shows the precise closure properties needed to ensure the semantic soundness of the equational
language. The mathematical background on lattices, polyhedra, affine functions, etc., is
described in section 3. In section 4, we present the polyhedral model as an instance of the
generic equational language, and elaborate on the limitation on reductions. Our main results
about the new representation and closure properties are described in Section 5. All our proofs



Expression | Syntax Domain
Constants Constant name or symbol Dc
Variables \% Dy
M
Operators op(Expry,...,Expr,,) ﬂ Dexpr,
1;41
Case case Expry;...;Expr,, esac H—J DEXpri
1=1
Restriction | D’ : Expr D' N Dixpr
Dependence | Expr.(z — f(z)) " (Dexpr)
Reductions | reduce(®, (2 — f(2)),Expr) | f(Dgxpr)

Table 1: Expressions: Syntax and Domains. If op is a binary operator, it may be written in
infix notation. |4 denotes disjoint union and f~! denotes relational inverse.

are constructive, and should be accessible to a reader with a background in linear algebra,
and for this reason we have chosen not to relegate the proofs to an appendix, although they
may be skipped or skimmed on first reading. Then, we present the automatic and optimal
decrease of the complexity of reductions in the Z-polyhedral model. Finally, we discuss future
and related work and present our conclusions.

2 Equational Language

Programs are a finite list of equations of the form Var = Expr where Var and Expr denote
mappings from their domains to a set of values. The elements of a domain are called iteration
points.

Expressions are constructed by the rules given in table 1 (column 2). The domains of
all variables and constants are declared and the domains of expressions are derived (table 1
column 3). We adopt the convention that the domain of an expression A is denoted by Dy,
and the function z — f(z) by f. The function specified in a dependence expression is called
the dependence function and the function specified in a reduction is called the projection
function.

For compound expressions to be defined over the same family of domains, say Fp, all
syntax rules must maintain closure with respect to Fp. Thus, Fp must be closed under
intersection, finite union, difference and image and preimage by the family of functions, say

Fr.

2.1 Semantics

Here, we provide the semantics of expressions over their domains of definition. At the iteration
point z in its domain, the value of

e a constant expression is the associated constant.



a variable is either provided as input or given by an equation; in the latter case, it is
the value, at z, of the expression on its rhs.

an operator expression is the result of applying op on the values, at z, of its expression
arguments.

a case expression is the value at z of that alternative, to whose domain z belongs.
Alternatives of a case expression are defined over disjoint domains. This can be derived
from a more general description in which the domains of the alternatives are non-disjoint,
but are evaluated one after the other, since Fp is closed under difference.

a restriction over E is the value of E at z.
the dependence expression E.f is the value of F at f(z).

reduce(®, f, F) is the application of @ on the values of E at all iteration points in Dg
that map to z by f. @ is an associative and commutative binary operator and therefore
we may choose any order of its application.

It is often convenient to have a variable defined either entirely as input, or only by an
equation. The former is called an input variable and the latter is a computed variable. Com-
puted variables are just names for valid expressions. Since Fp is closed under difference, it is
always possible to transform any specification to have only input and computed variables.

2.2

Context Domain

Consider the set of iteration points at which the value of an expression is needed. This set is
called the context domain of an expression |5, 8]. We can always transform an specification
by restricting any (sub)expression to its context domain. Therefore, for closure, we require
that the context domain also belongs to the family of domains.

The context domain of an expression is calculated from its parent expression by the fol-
lowing rules. The context domain Xg of the expression E is

Dy NDg in the equation V = E.

Xp if ENisop(..., E,...).

Dg N Xg when E' is case..., FE,...esac.
Xrr when B is D' : E.

F(Xw) if B is E.f.

fp_l(XE/) NDg if E' is reduce(a, fp, E).

The notion of context domains is important in the automatic simplification of algorithmic
complexity [8], since we may have expressions that are defined on a much larger domain than
needed. An isolated study of such expressions occurring in the rhs of an equation may provide
us with an incorrect estimate of the complexity of the equation.



3 Mathematical Background

In this section, we will provide the required mathematical background on linear algebra over
integers.

3.1 DMatrices

As a convention, we will denote matrices with the upper-case letters and vectors with the
lower-case. Unless specifically mentioned, all matrices and vectors have integer elements. We
will denote the identity matrix by I.

We will use the following concepts and properties of matrices

e The kernel of a matrix 7', written as ker(7’) is the set of all vectors z such that Tz = 0.
e A matrix is unimodular if it is square and its determinant is either 1 or —1.

e Two matrices L and L’ are said to be column equivalent or right equivalent if there exists
a unimodular matrix U such that L = L'U.

e A unique representative element in each set of matrices that are column equivalent is
the one in Hermite normal form [9].

Definition 1 An n x m matriz H with rank d is in Hermite Normal Form (HNF) , if
1.V1<j<d Jiy,... 0q with1 <1 <...<ig<n:H;;>0.
2.V1<j<d,1<i<ij: H;; =0.

3 Vd+1<j<m,1<i<n: H; ;=0
4. V1<l<j<d:0< HW < Hj, ;.

Remark 1 For every matriz A, there exists a unique matriz H that is in HNF and column
equivalent to A i.e., there exists a unimodular matriz U such that A = HU.

Note that the provided definition of the Hermite normal form does not require the matrix
A to have full row rank.

There is a related normal form called the Smith normal form |18] that we will use in the
presentation of this paper.

Definition 2 An n x m matriz S with rank d is in Smith Normal Form (SNF) , if
1. S is a diagonal matriz.
2.V1<i<d:S;; >0.
3. V1<i<d—1:85;; divides Sit1,i4+1-
4. Yd+1 <i<min(n,m): S;; =0

Remark 2 For every matriz, A, there exists a unique matriz S that is in SNF such that
A=V SU where V and U are unimodular matrices.



3.2 Affine Lattices

The lattice generated by a matrix L is the set of all integer linear combinations of the columns
of L. If the columns of a matrix are linearly independent, they constitute a basis of the
generated lattice. The lattices generated by two matrices are equal #ff the submatrices corre-
sponding to the non-zero columns in their Hermite normal forms are equal. As a special case,
the lattices generated by two n x m matrices are equal iff the matrices are column equivalent.

In this paper, we will use a generalization of the lattices generated by a matrix, additionally
allowing offsets by constant vectors. These are called affine lattices. An affine lattice is a
subset of Z" and can be represented as {Lz + 1|z € Z™} where L and [ are an n X m matrix
and n-vector respectively. We call z the coordinates in the particular representation of the
affine lattice. Representations of affine lattices will be denoted by L.

The affine lattices represented by {Lz + l|z € Z™} and {L'2' + I'|z’ € Z™} are equal
iff the matrices generated by L and L’ are equal and I’ = Lz + [ for some constant vector
zo € Z™.

3.3 Integer Polyhedra

An integer polyhedron, P is a subset of Z™, the elements of which satisfy a finite number of
affine inequalities (also called affine constraints or just constraints when there is no ambiguity)
with integer coefficients. We follow the convention that the affine constraint ¢; is given as
(aFz + a; > 0) where z,a; € Z",o;; € Z. The integer polyhedron, P, satisfying the set of
constraints C = {c1,..., ¢y} is often written as {z € Z"|Qz +q > 0} where Q = (a1 ...a)" is
an b x n matrix? and ¢ = (o ... )7 is an b-vector.

We shall use the following properties and notation.

e The constraint ¢ = (e’ z+a > 0) of P is said to be saturated iff (a”z+a =0)NP = P.

e The lineality space of P is defined as the linear part of the largest affine subspace
contained in P. It is given by ker(Q).

e The context of P is defined as the linear part of the smallest affine subspace that contains
P. If the saturated constraints of P in C, are the rows of {Qoz + qo > 0}, then it is

keI‘(Qo).

3.4 Affine Images of Integer Polyhedra

Consider the integer polyhedron P = {z € Z™|Qz + ¢ > 0} and the affine function f : (z —
Tz +t) where @ and T are b x m and n X m matrices respectively and ¢ and t are a b-vector
and n vector respectively. The image of P under f is of the form {Tz+t|Qz+q > 0,z € Z™}.
These are the so called linearly bound lattices (or LBLs) [19].

*When @ and/or q is rational, we can appropriately multiply the constraints to get integer elements.



4 The Polyhedral Model

The polyhedral model is a concrete instance of the equational language presented in section
2. As we have already mentioned, the polyhedral model has the family of unions of integer
polyhedra as Fp and the family of affine functions of the form (z — T'2+41t) as F;. Recall that
all matrices and vectors have integer elements. Since such affine functions are a mapping on
z which is the vector of coordinates on the standard basis, we will refer to them as standard
affine functions. Variables in the polyhedral model may be seen as multi-dimensional arrays.

Our presentation of the language specification in section 2 is based on the ALPHA language
[14, 10] and the MMALPHA framework for manipulating ALPHA programs, which relies on a
library for manipulating polyhedra [20].

4.1 Limitations

As mentioned in the introduction, the polyhedral model suffers from the following limitations.

e Loop programs with non-unit stride, and non-unimodular transformations fall outside
the scope of the model.

e Parallel architectures with periodic processor activity, such as multi-rate arrays [12] and
bidirectional systolic arrays, cannot be described in the model.

e Reduction operations with arbitrary projections cannot be expressed in the model.

Here, we will elaborate the limitation on reductions. This limitation, in essence, arises as a
result of image by the family of functions. The family of unions of integer polyhedra is not
closed under image by the family of standard affine functions. To account for this shortcoming,
projection functions in a reduction have been limited to those valid functions, the image by
which, of the particular domain is also a valid domain.

Nevertheless, even with this condition, some problems persisted (not explained before).
Recall that the context domain of a (sub)expression in a dependence expression requires the
image of a valid domain by the dependence function which is not necessarily a valid domain.
This is handled in a ad-hoc manner by taking the closure (convex hull) of the image in Fp.

A key contribution of this paper is the proof that the family of unions of Z-polyhedra is
closed under images by the family of functions. The precise characterization of the family of
functions will be presented in section 5. Nevertheless, we wish to mention that all standard
affine functions are elements of this family.

5 The Z-Polyhedral Model

In this section we will present extensions to the polyhedral model. We will start by studying
more general mathematical objects than polyhedra called Z-polyhedra . A Z-polyhedron
is the intersection of an integer polyhedron and an affine lattice. When the affine lattice is
the canonical lattice, Z", the obtained Z-polyhedron is also an integer polyhedron. Since



a Z-polyhedron cannot be expressed as a finite union of integer polyhedra, the family of
finite unions of Z-polyhedra strictly contains the family of unions of integer polyhedra. Also,
as we have previously mentioned the associated family of functions contains the family of
standard affine functions. Both these containments are strict, therefore, upon showing the
required closure properties, we will have the Z-polyhedral model as a strict generalization of
the polyhedral model.

Moreover, we will also show that the family of unions of Z-polyhedra is closed under
images by the family of functions. This avoids the irregularities of the polyhedral model, as
seen in the previous section.

5.1 Representation of Z-Polyhedra

The key insight into proving the required closure properties on unions of Z-polyhedra is a
certain form of representation. We represent the Z-polyhedra in the following form, say Z

{Lz+1|Qz+q> 0,z € Z™} (1)

where L has full column rank and P§ = {2|Qz 4+ ¢ > 0,z € Z™} has a context that is
the universe, Z™. 'P% is called the coordinate polyhedron associated with the particular
representation®, Z, of the Z-polyhedron. The Z-polyhedron for which L has no columns has
a coordinate polyhedron in Z°. The empty Z-polyhedron is denoted by {|}.

The conditions on L and P% in the representation guarantee the following three critical
properties

1. Every point in the coordinate polyhedron maps to a unique iteration point of the Z-
polyhedron.

2. Two representations with the same affine image, Lz+1, are equivalent iff their coordinate
polyhedra are equal.

3. Two representations, {Lz+1|Qz+q > 0,z € Z™} and {L'Z +U'|Q'2' +¢ > 0,2 € Z™'},
are not equivalent if the affine lattices represented by {Lz+1|z € Z™} and {L'2'+1'|' €
Z™'} are not equal.

Two representations are said to be equivalent if they correspond to the same set. Naturally,
two domains are equal if they have equivalent representations. In the set of properties given
above, property 1 and 2 are a consequence of the fact that L has full column rank. Property
3 is a consequence of the fact that the context of P% is the universe, Z™.

We will make extensive use of some the results presented by Le Verge [11] who showed
that the family of polyhedra is strictly contained in the family of Z-polyhedra which is turn in
strictly contained in the family of L.BLs. He proved that membership testing in LBLs is N'P-
complete. In addition, he proved that it is at least an NP-complete problem to determine if

3Note that we have denoted particular representations with the symbol Z. Later, ZP will denote the set
of iterations.



an LBL is a Z-polyhedronand gave sufficient conditions for an L.BL to be a Z-polyhedron . We
will study these conditions in depth and provide extensions to his result. Finally, he provided
a representation of arbitrary LBLs as the canonic projection of an integer polyhedron along a
single canonic vector.

Note that Z is in the form of an affine image of an integer polyhedron (an LBL) and we
have mentioned that the family of LBLs is a more general class of objects than the family
of Z-polyhedra. However, Le Verge showed that the LBL is a Z-polyhedron when L has full
column rank in the context, ker(Qo), of P%. Mathematically, L has full column rank in the

context of Pg, iff A= ( 612;0

it satisfies an even stricter condition L has full column rank. We have imposed such a
requirement since under the conditions of Le Verge, properties 2 and 3 given above fails i.e.,
it is possible for two Z-polyhedra with the same affine image, Lz + [, to be equivalent even
when their coordinate polyhedra differ and two representations may be equivalent even when
the affine lattices in the representation are not equal.

However, our stricter requirement does not mean that we accept a restricted set of objects
or limit the expressibility provided to the programmer. We will first show that every Z-
polyhedron has a representation that satisfies the condition that L has full column rank.
Then, we will present a transformation that converts representations in which L has full
column rank but the coordinate polyhedron does not have the entire universe as its context
to the required form presented in (1).

We will then extend the result of Le Verge by weakening his conditions even further; in-
stead of requiring A to have full column rank which implies that ker(A) = {0}, we will require
ker(A) C ker(Q). Thus, we provide the programmer with even greater expressivity than was
available previously. That LBLs satisfying our weaker conditions are also Z-polyhedra will be
shown by providing a transformation that converts representations satisfying ker(A) C ker(Q)
to equivalent representations satisfying ker(A4) = {0}. Finally, we will provide a transfor-
mation that converts these representations satisfying ker(A) = {0} to the form satisfying
ker(L) = {0} that can be brought to the final required form by the transformation mentioned
previously.

Since it is at least an NP-complete problem to determine if an LBL is a Z-polyhedron
and all the conditions presented above take polynomial time to verify, these are just sufficient
conditions.

> has full column rank. The LBL in (1) is a Z-polyhedron since

5.1.1 Completeness of the Representation

Here we will show that every Z-polyhedron can be represented in the required form presented
in (1). Consider the Z-polyhedron, ZP say, which is the intersection of the integer polyhedron
P ={y € Z"|Qy + q > 0} and the affine lattice represented by £ = {Lz + 1|z € Z™} where Q
and L are b x n and n x m matrices respectively and g and [ are an b-vector and a n-vector
respectively. Note that both P and the affine lattice represented by L lie in Z™.

We will show the completeness of the representation in two steps, first by showing that
any Z-polyhedron can be represented in a form where L has full column rank. Then, we will

10



transform this representation to the required form.

Step 1: Let L have rank d and H = ( H' 0 ) be its Hermite normal form such that H’
is a n X d matrix of full column rank and L. = HU where U is a unimodular matrix. The
representation £ can be written as {HUz +1|z € Z™}. Since U is unimodular, £ is equivalent
to {HZ' + 1|2/ € Z™} where 2/ = Uz .

Now consider ZP, the intersection of the affine lattice represented by £ and the polyhedron
P.

ZP = {HZ+1 eZ™}n{ye€Z"|Qy+q>0}
{HZ +1|QHZ +1)+q¢>0,2 € 2™}
{(H 0)Z+1Q(H 0)z+
(¢+Ql) =0,z €Z™}
— {H’z”—i—l!Q’z”—deO,z”GZd}

where Q' = QH', ¢ = ¢+ Ql and 2" = (I 0 )2z Since, H' has full column rank, the
representation can be brought to the final required form using the following transformation.

Step 2: 'To show the completeness of our representation scheme, we need to prove that every
representation of the form

{Lz+1Qz4+¢q¢>0,z€ Z™} (2)

satisfying ker(L) = {0} can be transformed to the final required form.

Let PS¢ = {2|Qz+ ¢ > 0,z € Z™} be the coordinate polyhedron associated to the rep-
resentation. Let the smallest affine subspace that contains P be {z|Tz = t} where T' is an
n x m matrix and ¢ is an n-vector. The context of P% is given by ker(7'). Let T" have rank
d and let S be its Smith normal form such that T'= V.SU, where V and U are unimodular
matrices. We have V.SUz = t. Since, U is unimodular, we may change the coordinates to
2 = Uz to get the following equivalent representation of the Z-polyhedron

{L'2 +1Q7 +q>0,2 €Z2™} (3)

where L' = LU ! and Q' = QU .

We have Sz’ = t/ where ¢/ = V~!t. If any of the (d + l)th,...,nth component of ¢ is
non-zero then the coordinate polyhedron is empty implying the corresponding Z-polyhedron
is empty. If S’ is the top-left d x d submatrix of S, t” is the vector constructed from the first

"
d elements of ¢ and 2/ = < z/ll >,Wehave ( S0 ) < j’l’ > - ( to > o

(2)-()

11



These give us d equalities for the first d elements of z’. Again, if any elements of the vector
(S")~1¢" are rational, then the coordinate polyhedron is empty and therefore the correspond-

IN—=141
ing Z-polyhedron is empty. Otherwise, substituting ( ( i,, t ) for 2/ in (3), we get the
following equivalent representation
{L”z” + l/|Q//z// + q/ >0, S e Zm_d} (4)

where L' = ( Ly L"), U'=1+Li ()", Q' = ( @1 Q" )and ¢ =q+Q1(5")""". Note,
the T" was of rank d and therefore P5 had to be a m — d dimensional polyhedron embedded in
Z™. Recall that L has full column rank and therefore the iteration domain has a one-to-one
mapping with points in the coordinate domain in (2). The coordinate polyhedron in (4) is
embedded in Z™~¢. Therefore, it necessarily must have a context that is the entire universe.

5.1.2 Expressivity

Here, we will present the expressivity available to the programmer and the transformations
needed to convert user specifications to the required form.

Relaxation of the Sufficient Condition Le Verge proved that an LBL of the form {Lz +

l|Qz+q >0,z € Z™} is a Z-polyhedron when ker(A) = {0} where A = < 65 > and ker(Qo)
0

is the context of the polyhedron {z|Qz + ¢ > 0,z € Z™}. We will present a relaxation
of this sufficient condition, only requiring ker(A4) C ker(Q), by providing a transformation
that converts such representations to equivalent representations satisfying ker(A) = {0}. In
addition to providing greater expressivity to the programmer, this theorem is crucial to prove
closure of unions of Z-polyhedra under image.

We will use the results of Le Verge’s proposition 4.4 [11]. It is repeated here for conve-
nience.

Proposition 1 Let M be an integral matriz. The following properties are equivalent:
1. there ewists an integral matriz M’ such that M'M = I;
2. there exists an integral matriz N such that ( M N ) 18 unimodular;

3. The Hermite normal form of M7 is ( I 0 )

The following theorem claims the equivalence of LBLs resulting from our more general
representations to those satisfying Le Verge’s sufficient condition.

Theorem 1 A representation {Lz +1|Qz + q > 0,z € Z™} of an LBL satisfying ker(A) C
ker(Q), where A = < L
Qo

be transformed to an equivalent representation of the form {L'z' +1|Q'2' +q > 0,2 € Z™'}
where L' has full column rank in the context of its coordinate polyhedron.

and the context of its coordinate polyhedron given by ker(Qq), can

12



Proof Let the A be of rank d and H = ( H' 0 ) be its Hermite normal form such that H’ is
the submatrix of full column rank corresponding to the first d columns of H. From definition,
there exists a unimodular matrix U such that A = HU. We have AU~ = ( H 0 ) where

U~! is the unimodular inverse of U. Let U = ( “;1 > and U~" = ((V{ V; ) where V5 is
2

the column submatrix of U~! corresponding to the zero-columns of ( H 0 ), wv) =1,
ViVy =0, Va3V = 0 and VoV = I. Let us construct a matrix, W such that W ( V{ Vj ) =
(V] 0)or W= (V] 0)UorW=VWVVW.

Since, ker(A) C ker(L), LVy = 0 and therefore Lz +1 = LWz + [. Also since, ker(A4) C
ker(Q) we get Qz+ q = QW z+ ¢q. With this, the representation {Lz +1|Qz+q > 0,z € Z™}
is equivalent to {LWz +1|QWz+¢q >0,z € Z™} or

{LVIViz+1|QV{Viz+q¢> 0,2 € Z™} (5)

The Hermite normal form for Vi is ( I 0 ) by proposition 1 since ViV{ = V{TV{I = I.
For unimodular matrix U’, we have

(VizlzezZ™} = {(I 0)U'z|]zeZ™}
= {(I 0)|Fezm™}
— {Z”’Z” c Zd}
Denoting Vi z by 2” in (5), we get the following equivalent representation
{LV]Z" +1|QV]2" 4+ q¢>0,2" € 2%} (6)

We will now show that (6) is the transformed equivalent representation where LV has
full column rank in the context, say ker(Qy), of its coordinate polyhedron {z”|QV{z" + ¢ >
0,2" € Z}. Note, ker(QoVY) is a superset ker(Qp).

LVl’ LVl’
C
ker( Q6 ) - ker< QOVf

(49

= ker(AVY)
= ker(H)
= {0}

since H' has full column rank. |

Although Le Verge has already been proved that representations satisfying ker(A) = {0}
are Z-polyhedra which can be expressed in the required form presented in (1), for the sake
of completeness, we present the following transformation that converts these representations
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to an equivalent representation satisfying ker(L) = {0} which can be brought to the final
required form using the transformation in step 2 presented in section 5.1.1.
Consider a representation, Z, of the form {Lz+1|Qz+q > 0,z € Z™} satisfying ker(A4) =

{0} where A — < L

Qo
0,2 € Z™).

Le Verge showed in [11] that the condition ker(A) = {0} holds iff there exists an affine
function, f'(y) = Ky + k, with rational elements such that f'(f(z)) = z for all z € P where
f(z) = Lz + 1. With the presence of such a “restricted inverse”, the Z-polyhedron can be
equivalently represented as {Lz + l|Q(K(Lz + 1) + k) +q > 0,z € Z™}. Simplifying the
representation, we get the form

> and ker(Qo) is the context of the polyhedron P§ = {z|Qz + ¢ >

{Lz+I1|QKLz+ (¢+ QKIl+ Qk) >0,z € Z™} (7)

Since, K and k are rational, we may need to multiply the constraints of the coordinate
polyhedron by appropriate constants to get integer elements for all matrices and vectors. We
will hereafter assume that such a transformation has been performed.

Let L have rank d and H = ( H' 0 ) be its Hermite normal form such that H' is a n x d
matrix of full column rank and L = HU where U is a unimodular matrix. The representation
in (7) is equivalent to

{HUz +1|Q HUz+q >0,z € Z"}

where Q' = QK and ¢ = ¢+ QKI + Qk. Since U is unimodular, we have an equivalent
representation given by

{HZ +1|Q'HZ +¢ > 0,2/ € 2"}
={(H 0)Z+UQ(H 0)Z+¢=>07ezm}

where 2’ = Uz . Finally by changing to coordinates 2" = ( I 0 )2/, we get
{H/z// +l|Q”z" + q/ >0, e Zd}

where Q" = Q'H’. Since, H' has full column rank, the representation can be brought to the
final required form using the transformation in step 2 presented in section 5.1.1.

Henceforth we will assume that all representations of Z-polyhedra conform to our repre-
sentation scheme presented in (1).

5.1.3 Interpretation

The conventional way to interpret our representation of Z-polyhedra as {Lz+1|Qz+¢q > 0,z €
Z™} is similar to the definition of an LBL, as an affine image of an integer polyhedron. We wish
to motivate an alternate view in which {Lz + |z € Z™} in the Z-polyhedral representation
is interpreted as a representation of an affine lattice. The Z-polyhedral representation is said
to be based on the representation of the affine lattice. The set of valid coordinates is given
by the coordinate polyhedron. Iteration points of the Z-polyhedral domain are points of the
affine lattice in the particular representation corresponding to valid coordinates.
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5.1.4 Equivalence

Our representation for Z-polyhedra is such that any two Z-polyhedral representations based
on the same representation of an affine lattice are equivalent iff their corresponding coordinate
polyhedra are equal. We will now study the equivalence of Z-polyhedral representations based
on different representations of the same affine lattice. Recall that in our representation scheme,
Z-polyhedral representations on different affine lattices are necessarily different. Consider the
representation of a Z-polyhedron

{Lz+1|Qz+q >0,z € Z™} (8)

Let {L'2'+1'|2' € Z™} be a different representation of the affine lattice in the Z-polyhedral
representation. Note that as a consequence of our representation scheme, L’ necessarily has
the same number of columns as L. By definition L' = LU and I’ = Lzy + [ for some constant
vector zg € Z™. The relationship between the coordinates in the two lattices is simply

Lz+1 = L'+
= LUZ + Lz +1
= L{UZ +2)+1

Since L has full column rank, we have z = Uz’ + zp. Substituting for z in (8), we get the
following equivalent representation

(L' +1QUZ + 20) +q> 0,2 € Z™}

With this characterization, we have precisely decomposed the problem of equivalence of
Z-polyhedral representations to the problem of equivalence of representations of affine lattices
and the equality of polyhedra. Our equivalence is precise in the sense that if two Z-polyhedra
differ we will be able to provide an iteration point in their difference, otherwise, we will
guarantee equality. This is a direct consequence of our representation scheme. In previous
works [16], the representation of Z-polyhedra was such that, in some cases, the equivalence
of two representations could not be guaranteed even when the domains were identical.

5.1.5 Canonical Form

The representation of a Z-polyhedron is not unique. Here, we will present a canonical form for
the representation of Z-polyhedra. For this, we present a canonical form for the representation
of affine lattices.

Definition 3 An affine lattice of the form {Lz + 1|z € Z"} where the n X m matriz L has
full column rank is in canonical form if

1. L is in Hermite normal form.

2. V1 <j<m:l <L ; where L;, j is the first non-zero element in column j.
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As a property of our representation scheme, two Z-polyhedral representations based on
the same lattice are equivalent iff their coordinate polyhedra are equal. Now, if we choose
any previously used canonical form for the representation of the coordinate polyhedra, we
have a canonical representation for Z-polyhedra.

5.2 Unions of Z-Polyhedra

Domains in the Z-polyhedral model are finite unions of Z-polyhedra where each element in
the union is expressed in the representation discussed in section 5.1. To be an instance of the
equational language, unions of Z-polyhedra must be closed under intersection, finite union
and difference and image and preimage by the family of functions. Here we will show closure
under the intersection and difference (The union of a finite set of unions of Z-polyhedra is
trivially a finite set of Z-polyhedra ).

In section 5.3 we will define the family of functions and then demonstrate closure of the
family of unions of Z-polyhedra under image and preimage by the family of functions.

5.2.1 Intersection

From elementary set theory, the intersection of two unions of Z-polyhedra , given as D =
U; ZP; and D’ = Uj ZP;, equals the union of intersections of two Z-polyhedra as follows

pnD' =(JzP)n(J2zP) = JEP:in2P))
i J i3
Thus, we only need to show that the intersection of two Z-polyhedra is a finite union
of Z-polyhedra . As a matter of fact, it is precisely a single Z-polyhedron . Let the two
Z-polyhedra be represented by, say Z and Z’ as follows

Z = {Lz+1|Qz+¢q¢>0,z€ Z™}
z - {L'z'+l'|Q'z/+q/ZO,z/GZm,}

The intersection of Z-polyhedra represented by Z and Z’ relies on the intersection of the
affine lattices represented by £ = {Lz + 1|z € Z™} and £ = {L'2' + 1|2’ € Z"™} on which
they are based. The intersection of affine lattices represented by £ and £’ is an affine lattice,
say represented by £ = {L"2" +1"|2" € Z™"} where L” has full column rank. The affine
lattice represented by £” may be empty, in which case the corresponding Z-polyhedron is
empty. If £L” represents a non-empty affine lattice, we have the following relationships. Note,
L" may have a fewer number of columns than either L or L'.

L"=LS1"=Ls+1
L/I — Lls/ l/l — L/S/+ll

where S and S’ are matrices and s and s’ are vectors.

16



Taking the intersection of the Z-polyhedra represented by Z and Z’ with the affine lattice
represented by £” we get

ZnL" = {2 +1"Q(S2" +s)+q>0,2" eZ™}
Z/ N E” — {LIIZ// +l//‘Ql(s/Z// _"_ S/) +q/ Z 072// c Zm//}

Since, they are based on the same representation of the affine lattice, the intersection of
these two Z-polyhedra is simply

S + s m!’
{L”z//—l—l”| < 52/5/ >2/1+ < qu+ é?/s/ ) > sz// c7 }

Note, the coordinate polyhedra of this intersection may not have the entire universe as
its context, in which case, we would bring it to the required representation through the
transformation in step 2 presented in section 5.1.1.

5.2.2 Difference

From set theory, the difference of two unions of Z-polyhedra, given as D = |J; ZP; and
D = Uj ZP;, equals the union of differences of two Z-polyhedra as follows

p-D' =(Jzr)-(JzP) =l | ((E&P:i - 2P))
i J i J
If we show that the difference of two Z-polyhedra is a finite union of Z-polyhedra , we
may use the result on closure of domains under intersection presented in the previous section
and claim closure under difference.

Let the two Z-polyhedra be represented by, say Z and Z’ as follows

Z = {Lz+1Qz+q¢>0,z€ Z™}
Z = (U +1Q7 +¢ >0,7 ez™}

The difference of Z-polyhedra represented by Z and Z’ relies on the intersection and
difference of the affine lattices represented by £ = {Lz + 1|z € Z™} and L' = {L'2' + U'|z’ €
Zm/} on which they are based. The difference of Z-polyhedra represented by Z and Z’ is
a union of Z-polyhedra elements of which may be defined on either the intersection or the
difference of the affine lattices.

Let us first consider the intersection of the affine lattices. The intersection of affine lattices
represented by £ and £’ is an affine lattice, say represented by £” = {L"2" +1"|2" € 7"}
where L” has full column rank. The affine lattice represented by £” may be empty, in which
case all Z-polyhedra corresponding to the intersection are empty. If £” represents a non-
empty affine lattice, we have the following relationships.

L"=LS1"=Ls+1
L/l — L/s/ l/l — L/S/+l/
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where S and S’ are matrices and s and s’ are vectors.
Taking the intersection of the Z-polyhedra represented by Z and Z’ with the affine lattice
represented by £” we get

ZnL" = {2 +1"Q(S2" +s)+q¢>0,2" eZ™}
Z/ N ﬁ/, — {LI/Z/I +ll/‘Q/(s/zl/ + S/) +q/ 2 0721/ c Zm//}

Since, they are based on the same representation of the affine lattice, the difference of
these two Z-polyhedra is simply a union of Z-polyhedra , each element of which (indexed by
k) can be represented by

{L//Z// + l"’Q’k/Z” + qg > 0721/ e Zm”}

where the following difference of polyhedra {2”|Q(Sz" +5)+q > 0,2" € Z™"'} —{2"|Q' (52" +
§)4+¢ >0,2" € Z™"} is a union of polyhedra of the form {Z"QY"+q >0,2" € Z™"}. Let
the obtained union of Z-polyhedra be denoted by D;; ;. The coordinate polyhedra of elements
in this union may not have the entire universe as its context, in which case, we would bring
them to the required representation through the transformation in step 2 presented in section
5.1.1.

Now, let us consider the difference of the affine lattices. The difference of affine lattices
represented by £ and £ is a union of non-empty affine lattices (indexed by h), say represented

by E# = {L#z# —I—l#|z# € me} where each L# has full column rank. We have the following
relationships.
L = LSy, 1 = L) +1

where Sy is an matrix and sp is an vector. The intersection of the Z-polyhedra represented
by Z with the affine lattices represented by ﬁ# can be represented by

#
ZN £f = {L#z}i7£ + l#’QShzf + (¢ + Qsp) >0, z# ez}

Let this union be denoted by Dj;g. The coordinate polyhedra of elements in this union
may not have the entire universe as its context, in which case, we would bring them to the
required representation through the transformation in step 2 presented in section 5.1.1.

5.3 Affine Functions on a Lattice

We will now define the family of functions defined on unions of Z-polyhedra. We allow
functions of the form (Kz + k — Rz + r), where K has full column rank. Such functions
provide a mapping from the iteration Kz + k to the iteration Rz +r. We will call these affine
functions on a lattice or affine lattice functions. We have imposed that K has full column
rank to guarantee that the function maps a single point in its domain to a single point in its
range.
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5.3.1 Preimage

The preimage of a union of Z-polyhedra is the union of the preimage of individual Z-
polyhedra. We therefore only need to show that the preimage of a single Z-polyhedron,
represented by say Z, is a finite union of Z-polyhedra . As a matter of fact, it is precisely a
single Z-polyhedron . Let the representation Z be

Z={Lz+1|Qz+q>0,z€Z™}

Let the desired preimage on Z be by the function represented as (K2’ + k — Rz + r)
where K has full column rank, m’ say. By definition, the function provides a mapping from
the iteration point K2’ + k to the iteration point Rz’ + r. Since, we are concerned with
the preimage, if the iteration point Rz’ + r lies in the Z-polyhedron represented by Z the
iteration point in the preimage is Kz’ + k. However, Rz’ + r may not necessarily lie in the
Z-polyhedron represented by Z for all values of 2’. Specifically, a preimage exists only for
iteration points in the intersection the Z-polyhedron represented by Z and the affine lattice
represented by {Rz' + 7|z’ € Z™'}. Consider the intersection of the affine lattices represented
by £ = {Lz+1|z € Z"} and L' = {Rz' + 1|2/ € Z™}. The intersection of affine lattices
represented by £ and £’ is an affine lattice, say represented by £’ = {L"2" +1"|2" € Z™"}
where L” has full column rank. The affine lattice represented by £” may be empty, in which
case the preimage is also empty. If £” represents a non-empty affine lattice, we have the
following relationships.

L"=LS,1"=Ls+1
L"=RS"I"=Rs' +r
where S and S’ are matrices and s and s’ are vectors.

Taking the intersection of the Z-polyhedron represented by Z and the affine lattice rep-
resented by £ = {L"2" +1"|2" € Z™"}, we get the following Z-polyhedron.

ZNL = {L" +1"|QS2" + (q+ Qs) > 0,2 € Z™"} (9)

A preimage by the function exists only for iterations in the Z-polyhedron given above.
Therefore, we may safely restrict the function to map to iteration points in the lattice {L" 2"+
"2 € Z™"}. We will first characterize values of 2’ for which Rz’ + r lies in the lattice
{L"2" +1"]2" € Z™"}. Substituting for L” and I, we have L"z" +1" = RS'2" + Rs' + 1 =
R(S’2" + 8') 4+ r. This equals Rz’ + r to get the desired values of 2’. Let R be of rank d and
H = ( H 0 ) be its Hermite normal form such that R = HU. Substituting for R we get

(H 0)US2"+s) = (H 0)UZ
(H/ O)S//z//+8// — (H/ O)UZ/

where §” = US" and " = ( H' 0 )Us'. Since, U is a unimodular matrix, we will replace
Uz by 2% to get (KU‘lz# +k— Hz# + r) as an equivalent representation of the function

#
by which a preimage is desired and ( H' 0 )S"2"+s" = ( H 0 )z%. If 2% = ( Z%é ),
<2
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S// " ]
S = ( Sg’ and s = jé, then we have z# = 572" 4+ s]. As explained, we may
safely restrict the function to map to the iteration points in the lattice {L"z" +1"|2" € Z™"}.
Substituting for z# and zf&, we get the following representation for the function

KU-! < Si,Z”#‘i‘ s ) bk L
2
If KU!' = ( K| K} ) we have the following representation of the function. K{S7z" +
Kis!+ Kéz# + k — L"2" + 1" which is equivalent to
Z//
(st K3) () + (IS k) - 17
2

Note, that zf is unconstrained. We may now represent the preimage by

{( KiSy K} ) < j;k >+(K{s’1’+k~)
1(QS 0)<gﬁ>+(q+Qs)zo (10)

"
z c Zm’—d—i—m”
) 22#

Since, ( K{ Kj ) has full column rank, ( K{S{ Kj ) will have full column rank iff
S//

S}’ > = H'S] where both L” and

2

H' have full column rank. Therefore, S| necessarily must have full row rank, which in turn

implies that K{.S] has full column rank. The coordinate polyhedra for (10) may not have the

entire universe as its context, in which case, we would bring it to the required representation

through the transformation in step 2 presented in section 5.1.1.

K{S7 has full column rank. Note that L” = ( H 0 ) (

Discussion We wish to mention that it is necessary to consider the general case where the
affine lattice in the range of a function may not necessarily be a subset of the affine lattice
on which the Z-polyhedron is based. If otherwise, we had restricted the function to have its
range defined over the appropriate affine sublattices (which would have significantly simplified
the calculations presented above), the semantic equivalence of Z-polyhedra based solely on
the set of iteration points, would fail. For example, the function (¢ — i) would be defined on
the Z-polyhedron represented by {i|i > 0,7 € Z} but would not be defined on the equivalent

union of two Z-polyhedra represented by {2i|i > 0,7 € Z} and {2i + 1|i > 0,i € Z}.

5.3.2 Change of Basis

Before, we talk about arbitrary images of unions of Z-polyhedra by affine functions on lattices,
we will study a restricted case in which
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1. each element? in the union is of the form

{Lizi +1i|Qizi + ¢ > 0,2 € Z™}
2. the affine lattice function represented as (Kz' + k — Rz’ + ) is such that K as well as
R have full dimensional column rank, m.

3. The affine lattices {L;z; + l;|z; € Z™} related to each Z-polyhedronin the union are
sublattices of the affine lattice {Kz' + k|2’ € Z™} in the domain of the affine lattice
function.

The change of basis is a frequently used space reindexing function to perform semantically
equivalent transformations of the specification. We will first study the image of each Z-
polyhedronby the change of basis function. Then, we will discuss the transformation of the
specification.
By property 3 above,
LZ' = KSi,li = KSi-i-k

where S5; are matrices and s; are vectors. We may safely restrict the change of basis on
a Z-polyhedron to be defined over the affine sublattice related to the Z-polyhedron. The
restricted change of basis is

(K(Sizi+ si) + k — R(Sizi + si) + 1)

which is equivalent to

(Lizi +1; — RS;z + (T + RS,’))
The image can be represented as
{RSizi + (r + Rs;)|Qizi +¢; > 0,2 € Z™}

Note, RS; has full column rank since R has full column rank and S; has full row rank.
Also the coordinate polyhedron is identical to the original Z-polyhedron, and so has the entire
universe as its context.

The transformation of the specification under a change of basis, f of the variable X is the
following.

1. Replace the domain of X by its image under f.
2. Replace all occurrences of X on the rhs of any equation by X.f

3. For the equation defining X, add a dependence by f~! on the expression on its rhs.

In some cases, we may even choose to waive the condition on the representation of Z-polyhedra that the
coordinate polyhedron has the entire universe as its context.
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5.3.3 Images

We will now discuss images of unions of Z-polyhedra by arbitrary affine functions on lattices.
The image of a union of Z-polyhedra by a function is the union of images of individual
Z-polyhedra .

We already know that the image of a Z-polyhedron by an arbitrary affine function is
an LBL which is a more general class of objects than Z-polyhedra. Here, we will prove a
surprising result that any LBL is a union of Z-polyhedra. Thus, the family of unions of 1.BLs
is identical to the family of unions of Z-polyhedra.

Consider the image of the Z-polyhedron represented as Z = {Lz+1|Qz+q > 0,2z € Z™}
by the affine lattice function represented as (Kz' + k — Rz’ + r) where K has full column
rank, m/ say. By definition, the function provides a mapping from the iteration point Kz’ +k
to the iteration point Rz’ + r. The image Rz’ + r only exists for those values of 2z’ for which
the lattice point Kz’ + k lies in the Z-polyhedron represented by Z. Thus, an image only
exists for points in the intersection of the Z-polyhedron represented by Z and the affine lattice
(K2 + k|2 € 27},

Consider the intersection of the affine lattices represented by £ = {Lz 4[|z € Z™} and
L' = {Kz+k|z € Z™}. Let this be the affine lattice, say represented by £ = {L"z"+1"|2" €
Z™"} where L” has full column rank. The affine lattice represented by £” may be empty,
in which case the image is also empty. If £” represents a non-empty lattice, we have the
following relationships.

L"=LS, 1" =Ls~+1
L"=KS1"=Ks +k

where S and S’ are matrices and s and s’ are vectors.
Taking the intersection of the Z-polyhedron represented by Z and the affine lattice rep-
resented by £ = {L"z" +1"|2" € Z™"}, we get the following Z-polyhedron.

ZNL = {L"" +1"|QSZ" + (¢ +Qs) 2 0,2" € 2™} (11)

An image by the function exists only for iterations in the Z-polyhedron given above.
Therefore, we may safely restrict the function to map iteration points in the lattice {L"2" +
I"|2" € Z™"}. The restricted function is

(K(S'2" +8)+k— RS2 +5)+7)

which is equivalent to
(L"2" +1" — RS'2" + (r + Rs"))

The image may be represented as
T+ Q2" +4¢ >0,2" € Zm"} (12)

where T'=RS" t = (r+ Rs'), Q' = QS and ¢’ = (¢ + Qs)
The set in (12) is not necessarily a Z-polyhedron since there is no guarantee on the rank of
T. We will now provide an algorithm that transforms such a set into a union of Z-polyhedra.
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Let the context of the coordinate polyhedron P = {2”|Q'2" + ¢ > 0,2" € Z™"} be given

by ker(Qg). If ker(A) C ker(Q’) where A = ( r

0 >, the set in (12) is a Z-polyhedron as a
0

consequence of theorem 1.
When this condition fails, we pick any constant vector w in ker(A)\ker(Q’). Let P’ be the
translation of P along v which equals either w or —w such that

P—P =|JPn(af" +a <alv) (13)

c;eC

is a non-empty union, where P satisfies the set of constraints C and ¢; is a constraint in C
of the form (al2” 4+ a; > 0). We are guaranteed that one of the translations (along w or
—w) results in a non-empty union since w ¢ ker(Q’). The key insight into our proof is that
the image of P by the affine lattice function equals the image of P — P’ by the affine lattice
function. This is true since any element z; € P NP’ is of the form 2y + yv where zg € P — P’
and v is a constant. Since v lies in ker(7T'), its image satisfies the following property

Tzi+t=T(zo+yv)+t =Tz +t

For each non-empty element in the union of polyhedra in (13), create a union of polyhedra
of the form
Pij=PN(a] 2" +a; = f)

where 3; € {0,...,alv —1). Now we claim that if the context of P; ; is ker(Qo, ;) then

T T
ker( Qo., > - ker< 00 > (14)

where the inclusion is strict. This is because
1. a; is linearly independent of the rows of 0 since 0 v=0and ajv # 0.
0 0

2. a;fp is a row of Qo, ; and not a row of Qo.

One iteration of this transformation returns an equivalent representation of the set in (12)
that is a union of form

U{Tz" + t|Q§,jz" + qaj >0,2" € 2™}
i.J
where P; ; = {2"(Q} ;2" +¢;; > 0,2" € zm™"}
Thus, we are guaranteed that the algorithm will eventually terminate as a consequence of
the strict inclusion presented in (14).
Finally, we wish to mention that this result does not violate the complexity results for
deciding whether an LBL is a Z-polyhedra since there can potentially be an exponential
number of elements in our union.
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6 Simplifying Reductions

The work presented in [8] shows the automatic and optimal decrease in the algorithmic com-
plexity of reductions. It is one example of the extremely strong static analysis and program
transformations offered by the polyhedral model. Here, we will show that the simplification
of reductions can easily be extended to the Z-polyhedral model, as a consequence of our
representation and the constructive proofs of the closure properties.

For simplification, a reduction is required to be defined over an expression of the form
E.f where the domain of the expression is a single polyhedron, and projected by a standard
affine function. By the closure of Z-polyhedral domains under set difference, more specifically,
by the algorithm presented as its constructive proof, we express any arbitrary Z-polyhedral
domain (of the expression) as a disjoint union of Z-polyhedra. This is semantically equivalent
to an expression that has, as subexpressions, reductions over expressions defined on elements
(Z-polyhedra) in the disjoint domain. Simplification of the original reduction is then simply
the decrease of the asymptotic complexity these “smaller” reductions.

Now, let us consider one of these simpler reductions. With the techniques presented in
the constructive proofs for closure under image and preimage, we may derive an equivalent
reduction with the following properties.

1. The domain of the expression within the reduction is represented by Z = {Lz+1|Qz+q >
0,z €2™}

2. The dependence function, f, is represented by (Lz +1 — Rz +r)
3. The projection function is represented as (Lz +1 — Tz +t)

The simpler reduction is equivalent to the reduction over an expression whose domain is
{2|Qz+4q > 0,z € Z"™} and whose value at z is the value of the original expression at Lz + 1.
The associated dependences and projections are of the form (z — Rz +r) and (z — Tz +t)
respectively. This reduction is in the form required for simplification.

In this example, we presented the generalization of an analysis developed for the poly-
hedral model to the Z-polyhedral model. However, an important observation is that the
generalization was performed through the transformation of the analysis in the Z-polyhedral
model to the original analysis in the polyhedral model. This shows that, in many cases, one
may reuse techniques and tools developed for the polyhedral model.

7 Related Work

The first work that proposed the extension to a language based on unions of Z-polyhedra was
by Quinton et. al. [16]. However, as a consequence of their representation and interpretation,
they did not have a unique canonic representation. Also they could not establish the equiva-
lence between identical Z-polyhedra nor did they provide the difference or two Z-polyhedra.
Other consequences included complex semantics for change of basis. In many ways, our paper
is a logical completion of their efforts initiated a decade ago.
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Ramanujam 17| describes algorithms to generate code, both sequential and parallel, after
applying non-unimodular transformations to nested loop programs. His work is restricted to a
single, perfectly nested loop nest, and the same transformation is applied to all the statements
in the loop body. The code generation problem thus reduced to scanning the image, by a
non-unimodular function, of a single polyhedron.

Rajopadhye and Lenders [12] propose a technique for designing multi-rate VLSI arrays,
which are regular arrays of processing elements, but where different registers are clocked at
different rates. This leads to very efficient hardware structures. The mathematical formalism
is based on using systems of recurrence equations (i.e., equational programs) defined over
Z-polyhedral domains, which are viewed as the images of polyhedra by non-singular affine
transformations. Although the focus of the paper is on synthesis methods, notably scheduling
and localization, the authors discuss the "legality" of the proposed specification, in terms of
checking whether a variable is actually defined at all points in the domain where it is declared.
This requires determining whether the values of other variables specified on the right hand side
of the equation are defined at precisely those points, which requires the closure properties we
describe here. Rajopadhye and Lenders provide sufficient conditions, not a complete solution.

8 Conclusions and Future Work

It has been believed for more than a decade that the polyhedral model can be generalized to
unions of Z-polyhedra [16, 11]. However, till date, previously known theories and tools on
the polyhedral model have not been generalized to unions of Z-polyhedra.

We present a novel representation and interpretation of Z-polyhedra that enables us to
prove the various closure properties of the family of unions of Z-polyhedra required to extend
the polyhedral model. In addition, we prove closure in the Z-polyhedral model under images
by arbitrary affine functions which had been a major limitation of the polyhedral model. As
a corollary, we prove that unions of LBLs, widely assumed to be a richer class, are equivalent
to unions of Z-polyhedra.

The language-theoretic aspect of the Z-polyhedral model is also very interesting. Our
equational language is purely functional, and through its incorporation into a general pur-
pose functional language, one may make decades of research in the automatic parallelization
available to modern functional languages.

Future work involves the extension of the various techniques in the polyhedral model. We
intend to provide an implementation for manipulating unions of Z-polyhedra based on our
results. The canonic representation of unions of Z-polyhedra is also an open problem.
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