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The Z-Polyhedral Model∗Gautam and S.Rajopadhye[gautam|svr℄�s.olostate.eduSeptember 28, 2006AbstratThe polyhedral model is a well developed formalism for the spei�ation, analysisand transformation of regular loop programs. The model has been extensively used ina variety of ontexts viz. automati parallelization of loop programs, loality, programveri�ation, hardware generation and more reently, automati redution of asymptotiprogram omplexity. Suh analyses and transformations are based on ertain losureproperties in the polyhedral model. However, the polyhedral model is limited in ex-pressivity and the need for the extension to a more general lass of programs is widelyknown.We provide the extension to Z-polyhedra whih are the intersetion of polyhedra andlatties. We prove the required losure properties using a novel representation and inter-pretation of Z-polyhedra. In addition, we also prove losure in the Z-polyhedral modelunder images by dependene funtions�thereby proving that unions of lbls, widely as-sumed to be a riher lass, is equal to unions of Z-polyhedra. These losure propertiesonstitute the foundations of the Z-polyhedral model. As an example, we present theautomati redution of omplexity in the Z-polyhedral model.1 IntrodutionThe polyhedral model provides sophistiated analysis and transformations of the kernels ofmany ompute- and data- intensive appliations. Programs in the polyhedral model essen-tially omprise of (i) variables (and expressions) representing olletions of values de�ned overpolyhedral domains, and (ii) a�ne dependenes between omputations. Feautrier [6℄ showedthat an important lass of onventional imperative loop programs alled a�ne ontrol loops(als) an be transformed to programs in the polyhedral model. Signi�ant parts of theSpeFP and PerfetClub benhmarks are als [2℄.An intuitive and general way speifying these programs is through a �nite list of highlevel (mutually reursive) equations. For example, the following reurrene [3℄ for omputingthe ost of optimal string parenthesization is a program in the polyhedral model (of ourse,lothed in syntati sugar).
Ci,j =







i = j : 0

i < j : min
i≤k<j

(Ci,k + Ck+1,j + f(i, j, k))

∗This researh was supported in part, by the National Siene Foundation, under the grant EI-030614:HiPHiPECS: High Level Programing of High Performane Embedded Computing Systems1



In the example, the dependene between omputations is suh that the variable C at theiteration at (i, j) depends on a range of values: between the iterations (i, k) and (k+1, j), andon the value of f at the iteration (i, j, k). A omplete desription of the equational languageis presented in setion 2.Many omputations an be expressed naturally in the polyhedral model, e.g., matrix mul-tipliation, LU-deomposition, Cholesky fatorization, Kalman �ltering, as well as algorithmsarising in RNA seondary struture predition.The polyhedral model has been used for the automati parallelization of als beauseit enables sophistiated analyses and transformations suh as sheduling [4℄ and semanti-preserving re�nements into (sequential or parallel) ode [15, 1℄. One an also automatiallyand optimally derease the omplexity of aumulations (alled redutions) in the polyhedralmodel [8℄.In an al (or the orresponding program in the polyhedral model), statement level trans-formations often yield better results than loop level transformations[?℄. This relies on thelosure of (statement/equation) domains under images by (a restrited lass of) a�ne fun-tions. Indeed, most analyses/transformations rely on losure properties in the polyhedralmodel. Also, as a result of these losure properties, we may design the equational languagementioned above suh that the domain of every (sub)expression is of the same type as thedomains of variables, permitting a uni�ed framework based on expressions de�ned over poly-hedral domains1. As a diret appliation, the redution of asymptoti program omplexityrequires the losure of domains of expressions under set di�erene.The polyhedral model urrently su�ers from ertain limitations (although partial solutions,some ad-ho, have been proposed for many of them).
• Loop programs with a non-unit stride, and non-unimodular transformations fall outsidethe sope of the model. This is an important lass of programs [17, 13, 21, 7℄ aris-ing in situations suh as the red-blak sor omputation for solving partial di�erentialequations.
• Parallel arhitetures with periodi proessor ativity, suh as multi-rate arrays [12℄ andbidiretional systoli arrays, annot be desribed in the model.
• Redution operations with arbitrary projetions annot be expressed in the model (ex-plained later).As a simple example onsider the following equation for i ≥ 1.

A[i] =

{

i even : A[i/2]
i odd : 0The two branhes de�ne the variable, eah one on a subdomain that has holes, more pre-isely, on a Z-polyhedron whih is the intersetion of an integer polyhedron and an a�ne1In fat variables may be treated simply as named expressions.2



integer lattie. Unfortunately, there does not exist an equivalent program in the polyhe-dral model (where variables have polyhedral domains, without holes) whih aptures suh adependene pattern.It has been long laimed that these limitations an be resolved through some (deeptively,as it turns out) simple extensions to polyhedra. The �rst extension, proposed by Teihand Thiele, was alled Linearly Bounded Latties (lbls) [19℄ whih are images of integerpolyhedra by arbitrary a�ne funtions. The main motivation for lbls was that polyhedraldomains were not losed under images. Le Verge, in an un�nished manusript [11℄ showed thelimitations of lbls and promoted Z-polyhedra. He also showed that there is a strit inlusion:Integer Polyhedra ⊂ Z−Polyhedra ⊂ lbl. Till date, previously known theory and tehniquesof the polyhedral model�most notably program analysis and preise determination of regionsof de�nition and usage of values�have not been extended to any of the riher models.In this paper, we present the foundations of a simple and uni�ed solution to all of theselimitations through the extension of the equational language to domains that are unions of
Z-polyhedra. Our key insight is a new representation of Z-polyhedra, and its assoiated inter-pretation. Spei�ally, we view any point in a Z-polyhedra as the integer linear ombinationsof the generators of the assoiated lattie. The oe�ients of these linear ombinations arealled oordinates whih belong to a polyhedron. The ritial hindrane in previous attemptswas that Z-polyhedra were either viewed as restrited images of integer polyhedra or as theintersetion of integer polyhedra and a�ne latties, rather than the oordinate view proposedhere. Our key ontributions are as follows.

• We present a novel representation for Z-polyhedra and an assoiated family of funtions,together with proofs of losure of unions of Z-polyhedra under intersetion, �nite union,di�erene and preimage by the family of funtions.
• We prove losure of unions of Z-polyhedra under image by the family of funtions,whih had been a major limitation of the polyhedral model. This proves that unionsof lbls, widely assumed to be a riher lass of domains, are equivalent to unions of

Z-polyhedra. This result relies on our theorem that weakens the su�ient onditionsrequired to verify in polynomial time that an lbl is in fat a Z-polyhedron .
• As an example, we present the automati derease of omplexity of programs in the

Z-polyhedralmodel. This is done by transforming the analysis to an equivalent analysison polyhedra. This shows that, often, tools and tehniques developed for the polyhedralmodel an be reused.The remainder of this paper is organized as follows. In the following setion, we desribea generi equational language where expressions are assoiated with domains. The setionshows the preise losure properties needed to ensure the semanti soundness of the equationallanguage. The mathematial bakground on latties, polyhedra, a�ne funtions, et., isdesribed in setion 3. In setion 4, we present the polyhedral model as an instane of thegeneri equational language, and elaborate on the limitation on redutions. Our main resultsabout the new representation and losure properties are desribed in Setion 5. All our proofs3



Expression Syntax DomainConstants Constant name or symbol DCVariables V DVOperators op(Expr1, . . . , ExprM )

M
⋂

i=1

DExpriCase ase Expr1; . . . ; ExprM esa M
⊎

i=1

DExpriRestrition D′ : Expr D′ ∩ DExprDependene Expr.(z → f(z)) f−1(DExpr)Redutions redue(⊕, (z → f(z)), Expr) f(DExpr)Table 1: Expressions: Syntax and Domains. If op is a binary operator, it may be written inin�x notation. ⊎ denotes disjoint union and f−1 denotes relational inverse.are onstrutive, and should be aessible to a reader with a bakground in linear algebra,and for this reason we have hosen not to relegate the proofs to an appendix, although theymay be skipped or skimmed on �rst reading. Then, we present the automati and optimalderease of the omplexity of redutions in the Z-polyhedral model. Finally, we disuss futureand related work and present our onlusions.2 Equational LanguagePrograms are a �nite list of equations of the form Var = Expr where Var and Expr denotemappings from their domains to a set of values. The elements of a domain are alled iterationpoints.Expressions are onstruted by the rules given in table 1 (olumn 2). The domains ofall variables and onstants are delared and the domains of expressions are derived (table 1olumn 3). We adopt the onvention that the domain of an expression A is denoted by DA,and the funtion z → f(z) by f . The funtion spei�ed in a dependene expression is alledthe dependene funtion and the funtion spei�ed in a redution is alled the projetionfuntion.For ompound expressions to be de�ned over the same family of domains, say FD, allsyntax rules must maintain losure with respet to FD. Thus, FD must be losed underintersetion, �nite union, di�erene and image and preimage by the family of funtions, say
Ff .2.1 SemantisHere, we provide the semantis of expressions over their domains of de�nition. At the iterationpoint z in its domain, the value of

• a onstant expression is the assoiated onstant.4



• a variable is either provided as input or given by an equation; in the latter ase, it isthe value, at z, of the expression on its rhs.
• an operator expression is the result of applying op on the values, at z, of its expressionarguments.
• a ase expression is the value at z of that alternative, to whose domain z belongs.Alternatives of a ase expression are de�ned over disjoint domains. This an be derivedfrom a more general desription in whih the domains of the alternatives are non-disjoint,but are evaluated one after the other, sine FD is losed under di�erene.
• a restrition over E is the value of E at z.
• the dependene expression E.f is the value of E at f(z).
• redue(⊕, f, E) is the appliation of ⊕ on the values of E at all iteration points in DEthat map to z by f . ⊕ is an assoiative and ommutative binary operator and thereforewe may hoose any order of its appliation.It is often onvenient to have a variable de�ned either entirely as input, or only by anequation. The former is alled an input variable and the latter is a omputed variable. Com-puted variables are just names for valid expressions. Sine FD is losed under di�erene, it isalways possible to transform any spei�ation to have only input and omputed variables.2.2 Context DomainConsider the set of iteration points at whih the value of an expression is needed. This set isalled the ontext domain of an expression [5, 8℄. We an always transform an spei�ationby restriting any (sub)expression to its ontext domain. Therefore, for losure, we requirethat the ontext domain also belongs to the family of domains.The ontext domain of an expression is alulated from its parent expression by the fol-lowing rules. The ontext domain XE of the expression E is
• DV ∩DE in the equation V = E.
• XE′ if E′ is op(. . . , E, . . .).
• DE ∩ XE′ when E′ is ase . . . , E, . . . esa.
• XE′ when E′ is D′ : E.
• f(XE′) if E′ is E.f .
• f−1

p (XE′) ∩DE if E′ is redue(⊕, fp, E).The notion of ontext domains is important in the automati simpli�ation of algorithmiomplexity [8℄, sine we may have expressions that are de�ned on a muh larger domain thanneeded. An isolated study of suh expressions ourring in the rhs of an equation may provideus with an inorret estimate of the omplexity of the equation.5



3 Mathematial BakgroundIn this setion, we will provide the required mathematial bakground on linear algebra overintegers.3.1 MatriesAs a onvention, we will denote matries with the upper-ase letters and vetors with thelower-ase. Unless spei�ally mentioned, all matries and vetors have integer elements. Wewill denote the identity matrix by I.We will use the following onepts and properties of matries
• The kernel of a matrix T , written as ker(T ) is the set of all vetors z suh that Tz = 0.
• A matrix is unimodular if it is square and its determinant is either 1 or −1.
• Two matries L and L′ are said to be olumn equivalent or right equivalent if there existsa unimodular matrix U suh that L = L′U .
• A unique representative element in eah set of matries that are olumn equivalent isthe one in Hermite normal form [9℄.De�nition 1 An n × m matrix H with rank d is in Hermite Normal Form (HNF) , if1. ∀1 ≤ j ≤ d,∃i1, . . . , id with 1 ≤ i1 < . . . < id ≤ n: Hij ,j > 0.2. ∀1 ≤ j ≤ d, 1 ≤ i < ij : Hi,j = 0.3. ∀d + 1 ≤ j ≤ m, 1 ≤ i ≤ n: Hi,j = 04. ∀1 ≤ l < j ≤ d: 0 ≤ Hij ,l < Hij ,j.Remark 1 For every matrix A, there exists a unique matrix H that is in HNF and olumnequivalent to A i.e., there exists a unimodular matrix U suh that A = HU .Note that the provided de�nition of the Hermite normal form does not require the matrix

A to have full row rank.There is a related normal form alled the Smith normal form [18℄ that we will use in thepresentation of this paper.De�nition 2 An n × m matrix S with rank d is in Smith Normal Form (SNF) , if1. S is a diagonal matrix.2. ∀1 ≤ i ≤ d: Si,i > 0.3. ∀1 ≤ i ≤ d − 1: Si,i divides Si+1,i+1.4. ∀d + 1 ≤ i ≤ min(n,m): Si,i = 0Remark 2 For every matrix, A, there exists a unique matrix S that is in SNF suh that
A = V SU where V and U are unimodular matries.6



3.2 A�ne LattiesThe lattie generated by a matrix L is the set of all integer linear ombinations of the olumnsof L. If the olumns of a matrix are linearly independent, they onstitute a basis of thegenerated lattie. The latties generated by two matries are equal i� the submatries orre-sponding to the non-zero olumns in their Hermite normal forms are equal. As a speial ase,the latties generated by two n×m matries are equal i� the matries are olumn equivalent.In this paper, we will use a generalization of the latties generated by a matrix, additionallyallowing o�sets by onstant vetors. These are alled a�ne latties. An a�ne lattie is asubset of Z
n and an be represented as {Lz + l|z ∈ Z

m} where L and l are an n × m matrixand n-vetor respetively. We all z the oordinates in the partiular representation of thea�ne lattie. Representations of a�ne latties will be denoted by L.The a�ne latties represented by {Lz + l|z ∈ Z
m} and {L′z′ + l′|z′ ∈ Z

m′

} are equali� the matries generated by L and L′ are equal and l′ = Lz0 + l for some onstant vetor
z0 ∈ Z

m.3.3 Integer PolyhedraAn integer polyhedron, P is a subset of Z
n, the elements of whih satisfy a �nite number ofa�ne inequalities (also alled a�ne onstraints or just onstraints when there is no ambiguity)with integer oe�ients. We follow the onvention that the a�ne onstraint ci is given as

(aT
i z + αi ≥ 0) where z, ai ∈ Z

n, αi ∈ Z. The integer polyhedron, P, satisfying the set ofonstraints C = {c1, . . . , cb} is often written as {z ∈ Z
n|Qz + q ≥ 0} where Q = (a1 . . . ab)

T isan b × n matrix2 and q = (α1 . . . αb)
T is an b-vetor.We shall use the following properties and notation.

• The onstraint c ≡ (aT z+α ≥ 0) of P is said to be saturated i� (aT z+α = 0)∩P = P.
• The lineality spae of P is de�ned as the linear part of the largest a�ne subspaeontained in P. It is given by ker(Q).
• The ontext of P is de�ned as the linear part of the smallest a�ne subspae that ontains

P. If the saturated onstraints of P in C, are the rows of {Q0z + q0 ≥ 0}, then it isker(Q0).3.4 A�ne Images of Integer PolyhedraConsider the integer polyhedron P = {z ∈ Z
m|Qz + q ≥ 0} and the a�ne funtion f : (z →

Tz + t) where Q and T are b×m and n×m matries respetively and q and t are a b-vetorand n vetor respetively. The image of P under f is of the form {Tz+ t|Qz+q ≥ 0, z ∈ Z
m}.These are the so alled linearly bound latties (or lbls) [19℄.2When Q and/or q is rational, we an appropriately multiply the onstraints to get integer elements.7



4 The Polyhedral ModelThe polyhedral model is a onrete instane of the equational language presented in setion2. As we have already mentioned, the polyhedral model has the family of unions of integerpolyhedra as FD and the family of a�ne funtions of the form (z → Tz+t) as Ff . Reall thatall matries and vetors have integer elements. Sine suh a�ne funtions are a mapping on
z whih is the vetor of oordinates on the standard basis, we will refer to them as standarda�ne funtions. Variables in the polyhedral model may be seen as multi-dimensional arrays.Our presentation of the language spei�ation in setion 2 is based on the Alpha language[14, 10℄ and the MMAlpha framework for manipulating Alpha programs, whih relies on alibrary for manipulating polyhedra [20℄.4.1 LimitationsAs mentioned in the introdution, the polyhedral model su�ers from the following limitations.

• Loop programs with non-unit stride, and non-unimodular transformations fall outsidethe sope of the model.
• Parallel arhitetures with periodi proessor ativity, suh as multi-rate arrays [12℄ andbidiretional systoli arrays, annot be desribed in the model.
• Redution operations with arbitrary projetions annot be expressed in the model.Here, we will elaborate the limitation on redutions. This limitation, in essene, arises as aresult of image by the family of funtions. The family of unions of integer polyhedra is notlosed under image by the family of standard a�ne funtions. To aount for this shortoming,projetion funtions in a redution have been limited to those valid funtions, the image bywhih, of the partiular domain is also a valid domain.Nevertheless, even with this ondition, some problems persisted (not explained before).Reall that the ontext domain of a (sub)expression in a dependene expression requires theimage of a valid domain by the dependene funtion whih is not neessarily a valid domain.This is handled in a ad-ho manner by taking the losure (onvex hull) of the image in FD.A key ontribution of this paper is the proof that the family of unions of Z-polyhedra islosed under images by the family of funtions. The preise haraterization of the family offuntions will be presented in setion 5. Nevertheless, we wish to mention that all standarda�ne funtions are elements of this family.5 The Z-Polyhedral ModelIn this setion we will present extensions to the polyhedral model. We will start by studyingmore general mathematial objets than polyhedra alled Z-polyhedra . A Z-polyhedronis the intersetion of an integer polyhedron and an a�ne lattie. When the a�ne lattie isthe anonial lattie, Z

n, the obtained Z-polyhedron is also an integer polyhedron. Sine8



a Z-polyhedron annot be expressed as a �nite union of integer polyhedra, the family of�nite unions of Z-polyhedra stritly ontains the family of unions of integer polyhedra. Also,as we have previously mentioned the assoiated family of funtions ontains the family ofstandard a�ne funtions. Both these ontainments are strit, therefore, upon showing therequired losure properties, we will have the Z-polyhedral model as a strit generalization ofthe polyhedral model.Moreover, we will also show that the family of unions of Z-polyhedra is losed underimages by the family of funtions. This avoids the irregularities of the polyhedral model, asseen in the previous setion.5.1 Representation of Z-PolyhedraThe key insight into proving the required losure properties on unions of Z-polyhedra is aertain form of representation. We represent the Z-polyhedra in the following form, say Z

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (1)where L has full olumn rank and Pc

Z = {z|Qz + q ≥ 0, z ∈ Z
m} has a ontext that isthe universe, Z

m. Pc
Z is alled the oordinate polyhedron assoiated with the partiularrepresentation3, Z, of the Z-polyhedron. The Z-polyhedron for whih L has no olumns hasa oordinate polyhedron in Z

0. The empty Z-polyhedron is denoted by {|}.The onditions on L and Pc
Z in the representation guarantee the following three ritialproperties1. Every point in the oordinate polyhedron maps to a unique iteration point of the Z-polyhedron.2. Two representations with the same a�ne image, Lz+l, are equivalent i� their oordinatepolyhedra are equal.3. Two representations, {Lz + l|Qz +q ≥ 0, z ∈ Z

m} and {L′z′ + l′|Q′z′ +q′ ≥ 0, z′ ∈ Z
m′

},are not equivalent if the a�ne latties represented by {Lz+ l|z ∈ Z
m} and {L′z′+ l′|z′ ∈

Z
m′

} are not equal.Two representations are said to be equivalent if they orrespond to the same set. Naturally,two domains are equal if they have equivalent representations. In the set of properties givenabove, property 1 and 2 are a onsequene of the fat that L has full olumn rank. Property3 is a onsequene of the fat that the ontext of Pc
Z is the universe, Z

m.We will make extensive use of some the results presented by Le Verge [11℄ who showedthat the family of polyhedra is stritly ontained in the family of Z-polyhedra whih is turn instritly ontained in the family of lbls. He proved that membership testing in lbls is NP-omplete. In addition, he proved that it is at least an NP-omplete problem to determine if3Note that we have denoted partiular representations with the symbol Z. Later, ZP will denote the setof iterations. 9



an lbl is a Z-polyhedronand gave su�ient onditions for an lbl to be a Z-polyhedron . Wewill study these onditions in depth and provide extensions to his result. Finally, he provideda representation of arbitrary lbls as the anoni projetion of an integer polyhedron along asingle anoni vetor.Note that Z is in the form of an a�ne image of an integer polyhedron (an lbl) and wehave mentioned that the family of lbls is a more general lass of objets than the familyof Z-polyhedra. However, Le Verge showed that the lbl is a Z-polyhedron when L has fullolumn rank in the ontext, ker(Q0), of Pc
Z . Mathematially, L has full olumn rank in theontext of Pc

Z , i� A =

(

L
Q0

) has full olumn rank. The lbl in (1) is a Z-polyhedron sineit satis�es an even striter ondition � L has full olumn rank. We have imposed suh arequirement sine under the onditions of Le Verge, properties 2 and 3 given above fails i.e.,it is possible for two Z-polyhedra with the same a�ne image, Lz + l, to be equivalent evenwhen their oordinate polyhedra di�er and two representations may be equivalent even whenthe a�ne latties in the representation are not equal.However, our striter requirement does not mean that we aept a restrited set of objetsor limit the expressibility provided to the programmer. We will �rst show that every Z-polyhedron has a representation that satis�es the ondition that L has full olumn rank.Then, we will present a transformation that onverts representations in whih L has fullolumn rank but the oordinate polyhedron does not have the entire universe as its ontextto the required form presented in (1).We will then extend the result of Le Verge by weakening his onditions even further; in-stead of requiring A to have full olumn rank whih implies that ker(A) = {0}, we will requireker(A) ⊆ ker(Q). Thus, we provide the programmer with even greater expressivity than wasavailable previously. That lbls satisfying our weaker onditions are also Z-polyhedra will beshown by providing a transformation that onverts representations satisfying ker(A) ⊆ ker(Q)to equivalent representations satisfying ker(A) = {0}. Finally, we will provide a transfor-mation that onverts these representations satisfying ker(A) = {0} to the form satisfyingker(L) = {0} that an be brought to the �nal required form by the transformation mentionedpreviously.Sine it is at least an NP-omplete problem to determine if an lbl is a Z-polyhedronand all the onditions presented above take polynomial time to verify, these are just su�ientonditions.5.1.1 Completeness of the RepresentationHere we will show that every Z-polyhedron an be represented in the required form presentedin (1). Consider the Z-polyhedron, ZP say, whih is the intersetion of the integer polyhedron
P = {y ∈ Z

n|Qy + q ≥ 0} and the a�ne lattie represented by L = {Lz + l|z ∈ Z
m} where Qand L are b × n and n × m matries respetively and q and l are an b-vetor and a n-vetorrespetively. Note that both P and the a�ne lattie represented by L lie in Z

n.We will show the ompleteness of the representation in two steps, �rst by showing thatany Z-polyhedron an be represented in a form where L has full olumn rank. Then, we will10



transform this representation to the required form.Step 1: Let L have rank d and H =
(

H ′ 0
) be its Hermite normal form suh that H ′is a n × d matrix of full olumn rank and L = HU where U is a unimodular matrix. Therepresentation L an be written as {HUz + l|z ∈ Z

m}. Sine U is unimodular, L is equivalentto {Hz′ + l|z′ ∈ Z
m} where z′ = Uz .Now onsider ZP, the intersetion of the a�ne lattie represented by L and the polyhedron

P.
ZP = {Hz′ + l|z′ ∈ Z

m} ∩ {y ∈ Z
n|Qy + q ≥ 0}

= {Hz′ + l|Q(Hz′ + l) + q ≥ 0, z′ ∈ Z
m}

= {
(

H ′ 0
)

z′ + l|Q
(

H ′ 0
)

z′ +

(q + Ql) ≥ 0, z′ ∈ Z
m}

= {H ′z′′ + l|Q′z′′ + q′ ≥ 0, z′′ ∈ Z
d}where Q′ = QH ′, q′ = q + Ql and z′′ =

(

I 0
)

z′. Sine, H ′ has full olumn rank, therepresentation an be brought to the �nal required form using the following transformation.Step 2: To show the ompleteness of our representation sheme, we need to prove that everyrepresentation of the form
{Lz + l|Qz + q ≥ 0, z ∈ Z

m} (2)satisfying ker(L) = {0} an be transformed to the �nal required form.Let Pc
Z = {z|Qz + q ≥ 0, z ∈ Z

m} be the oordinate polyhedron assoiated to the rep-resentation. Let the smallest a�ne subspae that ontains Pc
Z be {z|Tz = t} where T is an

n × m matrix and t is an n-vetor. The ontext of Pc
Z is given by ker(T ). Let T have rank

d and let S be its Smith normal form suh that T = V SU , where V and U are unimodularmatries. We have V SUz = t. Sine, U is unimodular, we may hange the oordinates to
z′ = Uz to get the following equivalent representation of the Z-polyhedron

{L′z′ + l|Q′z′ + q ≥ 0, z′ ∈ Z
m} (3)where L′ = LU−1 and Q′ = QU−1.We have Sz′ = t′ where t′ = V −1t. If any of the (d + 1)th, . . . , nth omponent of t′ isnon-zero then the oordinate polyhedron is empty implying the orresponding Z-polyhedronis empty. If S′ is the top-left d× d submatrix of S, t′′ is the vetor onstruted from the �rst

d elements of t′ and z′ =

(

z1

z′′

), we have ( S′ 0
)

(

z1

z′′

)

=

(

t′′

0

) or
(

I 0
)

(

z1

z′′

)

=

(

(S′)−1t′′

0

)

11



These give us d equalities for the �rst d elements of z′. Again, if any elements of the vetor
(S′)−1t′′ are rational, then the oordinate polyhedron is empty and therefore the orrespond-ing Z-polyhedron is empty. Otherwise, substituting ( (S′)−1t′′

z′′

) for z′ in (3), we get thefollowing equivalent representation
{L′′z′′ + l′|Q′′z′′ + q′ ≥ 0, z′′ ∈ Z

m−d} (4)where L′ =
(

L1 L′′
), l′ = l+L1(S

′)−1t′′, Q′ =
(

Q1 Q′′
) and q′ = q+Q1(S

′)−1t′′. Note,the T was of rank d and therefore Pc
Z had to be a m−d dimensional polyhedron embedded in

Z
m. Reall that L has full olumn rank and therefore the iteration domain has a one-to-onemapping with points in the oordinate domain in (2). The oordinate polyhedron in (4) isembedded in Z

m−d. Therefore, it neessarily must have a ontext that is the entire universe.5.1.2 ExpressivityHere, we will present the expressivity available to the programmer and the transformationsneeded to onvert user spei�ations to the required form.Relaxation of the Su�ient Condition Le Verge proved that an lbl of the form {Lz +

l|Qz + q ≥ 0, z ∈ Z
m} is a Z-polyhedron when ker(A) = {0} where A =

(

L
Q0

) and ker(Q0)is the ontext of the polyhedron {z|Qz + q ≥ 0, z ∈ Z
m}. We will present a relaxationof this su�ient ondition, only requiring ker(A) ⊆ ker(Q), by providing a transformationthat onverts suh representations to equivalent representations satisfying ker(A) = {0}. Inaddition to providing greater expressivity to the programmer, this theorem is ruial to provelosure of unions of Z-polyhedra under image.We will use the results of Le Verge's proposition 4.4 [11℄. It is repeated here for onve-niene.Proposition 1 Let M be an integral matrix. The following properties are equivalent:1. there exists an integral matrix M ′ suh that M ′M = I;2. there exists an integral matrix N suh that ( M N
) is unimodular;3. The Hermite normal form of MT is ( I 0

)The following theorem laims the equivalene of lbls resulting from our more generalrepresentations to those satisfying Le Verge's su�ient ondition.Theorem 1 A representation {Lz + l|Qz + q ≥ 0, z ∈ Z
m} of an lbl satisfying ker(A) ⊆ker(Q), where A =

(

L
Q0

) and the ontext of its oordinate polyhedron given by ker(Q0), anbe transformed to an equivalent representation of the form {L′z′ + l|Q′z′ + q ≥ 0, z′ ∈ Z
m′

}where L′ has full olumn rank in the ontext of its oordinate polyhedron.12



Proof Let the A be of rank d and H =
(

H ′ 0
) be its Hermite normal form suh that H ′ isthe submatrix of full olumn rank orresponding to the �rst d olumns of H. From de�nition,there exists a unimodular matrix U suh that A = HU. We have AU−1 =

(

H ′ 0
) where

U−1 is the unimodular inverse of U . Let U =

(

V1

V2

) and U−1 =
(

V ′
1 V ′

2

) where V ′
2 isthe olumn submatrix of U−1 orresponding to the zero-olumns of ( H ′ 0

), V1V
′
1 = I,

V1V
′
2 = 0, V2V

′
1 = 0 and V2V

′
2 = I. Let us onstrut a matrix, W suh that W

(

V ′
1 V ′

2

)

=
(

V ′
1 0

) or W =
(

V ′
1 0

)

U or W = V ′
1V1.Sine, ker(A) ⊆ ker(L), LV ′

2 = 0 and therefore Lz + l = LWz + l. Also sine, ker(A) ⊆ker(Q) we get Qz + q = QWz + q. With this, the representation {Lz + l|Qz + q ≥ 0, z ∈ Z
m}is equivalent to {LWz + l|QWz + q ≥ 0, z ∈ Z

m} or
{LV ′

1V1z + l|QV ′
1V1z + q ≥ 0, z ∈ Z

m} (5)The Hermite normal form for V1 is ( I 0
) by proposition 1 sine V1V

′
1 = V ′T

1 V T
1 = I.For unimodular matrix U ′, we have

{V1z|z ∈ Z
m} = {

(

I 0
)

U ′z|z ∈ Z
m}

= {
(

I 0
)

z′|z′ ∈ Z
m}

= {z′′|z′′ ∈ Z
d}Denoting V1z by z′′ in (5), we get the following equivalent representation

{LV ′
1z′′ + l|QV ′

1z′′ + q ≥ 0, z′′ ∈ Z
d} (6)We will now show that (6) is the transformed equivalent representation where LV ′

1 hasfull olumn rank in the ontext, say ker(Q′
0), of its oordinate polyhedron {z′′|QV ′

1z
′′ + q ≥

0, z′′ ∈ Z
d}. Note, ker(Q0V

′
1) is a superset ker(Q′

0).ker( LV ′
1

Q′
0

)

⊆ ker( LV ′
1

Q0V
′
1

)

= ker(( L
Q0

)

V ′
1

)

= ker(AV ′
1)

= ker(H ′)

= {0}sine H ′ has full olumn rank.Although Le Verge has already been proved that representations satisfying ker(A) = {0}are Z-polyhedra whih an be expressed in the required form presented in (1), for the sakeof ompleteness, we present the following transformation that onverts these representations13



to an equivalent representation satisfying ker(L) = {0} whih an be brought to the �nalrequired form using the transformation in step 2 presented in setion 5.1.1.Consider a representation, Z, of the form {Lz + l|Qz + q ≥ 0, z ∈ Z
m} satisfying ker(A) =

{0} where A =

(

L
Q0

) and ker(Q0) is the ontext of the polyhedron Pc
Z = {z|Qz + q ≥

0, z ∈ Z
m}.Le Verge showed in [11℄ that the ondition ker(A) = {0} holds i� there exists an a�nefuntion, f ′(y) = Ky + k, with rational elements suh that f ′(f(z)) = z for all z ∈ Pc

Z where
f(z) = Lz + l. With the presene of suh a �restrited inverse�, the Z-polyhedron an beequivalently represented as {Lz + l|Q(K(Lz + l) + k) + q ≥ 0, z ∈ Z

m}. Simplifying therepresentation, we get the form
{Lz + l|QKLz + (q + QKl + Qk) ≥ 0, z ∈ Z

m} (7)Sine, K and k are rational, we may need to multiply the onstraints of the oordinatepolyhedron by appropriate onstants to get integer elements for all matries and vetors. Wewill hereafter assume that suh a transformation has been performed.Let L have rank d and H =
(

H ′ 0
) be its Hermite normal form suh that H ′ is a n×dmatrix of full olumn rank and L = HU where U is a unimodular matrix. The representationin (7) is equivalent to

{HUz + l|Q′HUz + q′ ≥ 0, z ∈ Z
m}where Q′ = QK and q′ = q + QKl + Qk. Sine U is unimodular, we have an equivalentrepresentation given by

{Hz′ + l|Q′Hz′ + q′ ≥ 0, z′ ∈ Z
m}

= {
(

H ′ 0
)

z′ + l|Q′
(

H ′ 0
)

z′ + q′ ≥ 0, z′ ∈ Z
m}where z′ = Uz . Finally by hanging to oordinates z′′ =

(

I 0
)

z′, we get
{H ′z′′ + l|Q′′z′′ + q′ ≥ 0, z′′ ∈ Z

d}where Q′′ = Q′H ′. Sine, H ′ has full olumn rank, the representation an be brought to the�nal required form using the transformation in step 2 presented in setion 5.1.1.Heneforth we will assume that all representations of Z-polyhedra onform to our repre-sentation sheme presented in (1).5.1.3 InterpretationThe onventional way to interpret our representation of Z-polyhedra as {Lz+l|Qz+q ≥ 0, z ∈
Z

m} is similar to the de�nition of an lbl, as an a�ne image of an integer polyhedron. We wishto motivate an alternate view in whih {Lz + l|z ∈ Z
m} in the Z-polyhedral representationis interpreted as a representation of an a�ne lattie. The Z-polyhedral representation is saidto be based on the representation of the a�ne lattie. The set of valid oordinates is givenby the oordinate polyhedron. Iteration points of the Z-polyhedral domain are points of thea�ne lattie in the partiular representation orresponding to valid oordinates.14



5.1.4 EquivaleneOur representation for Z-polyhedra is suh that any two Z-polyhedral representations basedon the same representation of an a�ne lattie are equivalent i� their orresponding oordinatepolyhedra are equal. We will now study the equivalene of Z-polyhedral representations basedon di�erent representations of the same a�ne lattie. Reall that in our representation sheme,
Z-polyhedral representations on di�erent a�ne latties are neessarily di�erent. Consider therepresentation of a Z-polyhedron

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (8)Let {L′z′+l′|z′ ∈ Z

m} be a di�erent representation of the a�ne lattie in the Z-polyhedralrepresentation. Note that as a onsequene of our representation sheme, L′ neessarily hasthe same number of olumns as L. By de�nition L′ = LU and l′ = Lz0 + l for some onstantvetor z0 ∈ Z
m. The relationship between the oordinates in the two latties is simply

Lz + l = L′z′ + l′

= LUz′ + Lz0 + l

= L(Uz′ + z0) + lSine L has full olumn rank, we have z = Uz′ + z0. Substituting for z in (8), we get thefollowing equivalent representation
{L′z′ + l′|Q(Uz′ + z0) + q ≥ 0, z′ ∈ Z

m}With this haraterization, we have preisely deomposed the problem of equivalene of
Z-polyhedral representations to the problem of equivalene of representations of a�ne lattiesand the equality of polyhedra. Our equivalene is preise in the sense that if two Z-polyhedradi�er we will be able to provide an iteration point in their di�erene, otherwise, we willguarantee equality. This is a diret onsequene of our representation sheme. In previousworks [16℄, the representation of Z-polyhedra was suh that, in some ases, the equivaleneof two representations ould not be guaranteed even when the domains were idential.5.1.5 Canonial FormThe representation of a Z-polyhedron is not unique. Here, we will present a anonial form forthe representation of Z-polyhedra. For this, we present a anonial form for the representationof a�ne latties.De�nition 3 An a�ne lattie of the form {Lz + l|z ∈ Z

m} where the n × m matrix L hasfull olumn rank is in anonial form if1. L is in Hermite normal form.2. ∀1 ≤ j ≤ m: lij < Lij ,j where Lij ,j is the �rst non-zero element in olumn j.15



As a property of our representation sheme, two Z-polyhedral representations based onthe same lattie are equivalent i� their oordinate polyhedra are equal. Now, if we hooseany previously used anonial form for the representation of the oordinate polyhedra, wehave a anonial representation for Z-polyhedra.5.2 Unions of Z-PolyhedraDomains in the Z-polyhedral model are �nite unions of Z-polyhedra where eah element inthe union is expressed in the representation disussed in setion 5.1. To be an instane of theequational language, unions of Z-polyhedra must be losed under intersetion, �nite unionand di�erene and image and preimage by the family of funtions. Here we will show losureunder the intersetion and di�erene (The union of a �nite set of unions of Z-polyhedra istrivially a �nite set of Z-polyhedra ).In setion 5.3 we will de�ne the family of funtions and then demonstrate losure of thefamily of unions of Z-polyhedra under image and preimage by the family of funtions.5.2.1 IntersetionFrom elementary set theory, the intersetion of two unions of Z-polyhedra , given as D =
⋃

i ZP i and D′ =
⋃

j ZP ′
j , equals the union of intersetions of two Z-polyhedra as follows

D ∩ D′ = (
⋃

i

ZP i) ∩ (
⋃

j

ZP ′
j) =

⋃

i,j

(ZP i ∩ ZP ′
j)Thus, we only need to show that the intersetion of two Z-polyhedra is a �nite unionof Z-polyhedra . As a matter of fat, it is preisely a single Z-polyhedron . Let the two

Z-polyhedra be represented by, say Z and Z ′ as follows
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}

Z ′ = {L′z′ + l′|Q′z′ + q′ ≥ 0, z′ ∈ Z
m′

}The intersetion of Z-polyhedra represented by Z and Z ′ relies on the intersetion of thea�ne latties represented by L = {Lz + l|z ∈ Z
m} and L′ = {L′z′ + l′|z′ ∈ Z

m′

} on whihthey are based. The intersetion of a�ne latties represented by L and L′ is an a�ne lattie,say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

} where L′′ has full olumn rank. The a�nelattie represented by L′′ may be empty, in whih ase the orresponding Z-polyhedron isempty. If L′′ represents a non-empty a�ne lattie, we have the following relationships. Note,
L′′ may have a fewer number of olumns than either L or L′.

L′′ = LS, l′′ = Ls + l
L′′ = L′S′, l′′ = L′s′ + l′where S and S′ are matries and s and s′ are vetors.16



Taking the intersetion of the Z-polyhedra represented by Z and Z ′ with the a�ne lattierepresented by L′′ we get
Z ∩ L′′ = {L′′z′′ + l′′|Q(Sz′′ + s) + q ≥ 0, z′′ ∈ Z

m′′

}

Z ′ ∩ L′′ = {L′′z′′ + l′′|Q′(S′z′′ + s′) + q′ ≥ 0, z′′ ∈ Z
m′′

}Sine, they are based on the same representation of the a�ne lattie, the intersetion ofthese two Z-polyhedra is simply
{L′′z′′ + l′′|

(

QS
Q′S′

)

z′′ +

(

q + Qs
q′ + Q′S′

)

≥ 0, z′′ ∈ Z
m′′

}Note, the oordinate polyhedra of this intersetion may not have the entire universe asits ontext, in whih ase, we would bring it to the required representation through thetransformation in step 2 presented in setion 5.1.1.5.2.2 Di�ereneFrom set theory, the di�erene of two unions of Z-polyhedra, given as D =
⋃

i ZP i and
D′ =

⋃

j ZP ′
j , equals the union of di�erenes of two Z-polyhedra as follows

D −D′ = (
⋃

i

ZPi) − (
⋃

j

ZP ′
j) =

⋃

i





⋂

j

(ZP i −ZP ′
j)



If we show that the di�erene of two Z-polyhedra is a �nite union of Z-polyhedra , wemay use the result on losure of domains under intersetion presented in the previous setionand laim losure under di�erene.Let the two Z-polyhedra be represented by, say Z and Z ′ as follows
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}

Z ′ = {L′z′ + l′|Q′z′ + q′ ≥ 0, z′ ∈ Z
m′

}The di�erene of Z-polyhedra represented by Z and Z ′ relies on the intersetion anddi�erene of the a�ne latties represented by L = {Lz + l|z ∈ Z
m} and L′ = {L′z′ + l′|z′ ∈

Z
m′

} on whih they are based. The di�erene of Z-polyhedra represented by Z and Z ′ isa union of Z-polyhedra elements of whih may be de�ned on either the intersetion or thedi�erene of the a�ne latties.Let us �rst onsider the intersetion of the a�ne latties. The intersetion of a�ne lattiesrepresented by L and L′ is an a�ne lattie, say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}where L′′ has full olumn rank. The a�ne lattie represented by L′′ may be empty, in whihase all Z-polyhedra orresponding to the intersetion are empty. If L′′ represents a non-empty a�ne lattie, we have the following relationships.
L′′ = LS, l′′ = Ls + l
L′′ = L′S′, l′′ = L′s′ + l′17



where S and S′ are matries and s and s′ are vetors.Taking the intersetion of the Z-polyhedra represented by Z and Z ′ with the a�ne lattierepresented by L′′ we get
Z ∩ L′′ = {L′′z′′ + l′′|Q(Sz′′ + s) + q ≥ 0, z′′ ∈ Z

m′′

}

Z ′ ∩ L′′ = {L′′z′′ + l′′|Q′(S′z′′ + s′) + q′ ≥ 0, z′′ ∈ Z
m′′

}Sine, they are based on the same representation of the a�ne lattie, the di�erene ofthese two Z-polyhedra is simply a union of Z-polyhedra , eah element of whih (indexed by
k) an be represented by

{L′′z′′ + l′′|Q′′
kz

′′ + q′′k ≥ 0, z′′ ∈ Z
m′′

}where the following di�erene of polyhedra {z′′|Q(Sz′′+s)+q ≥ 0, z′′ ∈ Z
m′′

}−{z′′|Q′(S′z′′+
s′)+ q′ ≥ 0, z′′ ∈ Z

m′′

} is a union of polyhedra of the form {z′′|Q′′
kz

′′ + q′′k ≥ 0, z′′ ∈ Z
m′′

}. Letthe obtained union of Z-polyhedra be denoted by Dint. The oordinate polyhedra of elementsin this union may not have the entire universe as its ontext, in whih ase, we would bringthem to the required representation through the transformation in step 2 presented in setion5.1.1.Now, let us onsider the di�erene of the a�ne latties. The di�erene of a�ne lattiesrepresented by L and L′ is a union of non-empty a�ne latties (indexed by h), say representedby L#

h = {L#

h z#

h + l#h |z#

h ∈ Z
m

#

h } where eah L#

h has full olumn rank. We have the followingrelationships.
L#

h = LSh, l#h = Lsh + lwhere Sh is an matrix and sh is an vetor. The intersetion of the Z-polyhedra representedby Z with the a�ne latties represented by L#

h an be represented by
Z ∩ L#

h = {L#
h z#

h + l#h |QShz#
h + (q + Qsh) ≥ 0, z#

h ∈ Z
m

#

h }Let this union be denoted by Ddi�. The oordinate polyhedra of elements in this unionmay not have the entire universe as its ontext, in whih ase, we would bring them to therequired representation through the transformation in step 2 presented in setion 5.1.1.5.3 A�ne Funtions on a LattieWe will now de�ne the family of funtions de�ned on unions of Z-polyhedra. We allowfuntions of the form (Kz + k → Rz + r), where K has full olumn rank. Suh funtionsprovide a mapping from the iteration Kz +k to the iteration Rz + r. We will all these a�nefuntions on a lattie or a�ne lattie funtions. We have imposed that K has full olumnrank to guarantee that the funtion maps a single point in its domain to a single point in itsrange. 18



5.3.1 PreimageThe preimage of a union of Z-polyhedra is the union of the preimage of individual Z-polyhedra. We therefore only need to show that the preimage of a single Z-polyhedron,represented by say Z, is a �nite union of Z-polyhedra . As a matter of fat, it is preisely asingle Z-polyhedron . Let the representation Z be
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}Let the desired preimage on Z be by the funtion represented as (Kz′ + k → Rz′ + r)where K has full olumn rank, m′ say. By de�nition, the funtion provides a mapping fromthe iteration point Kz′ + k to the iteration point Rz′ + r. Sine, we are onerned withthe preimage, if the iteration point Rz′ + r lies in the Z-polyhedron represented by Z theiteration point in the preimage is Kz′ + k. However, Rz′ + r may not neessarily lie in the
Z-polyhedron represented by Z for all values of z′. Spei�ally, a preimage exists only foriteration points in the intersetion the Z-polyhedron represented by Z and the a�ne lattierepresented by {Rz′ + r|z′ ∈ Zm′

}. Consider the intersetion of the a�ne latties representedby L = {Lz + l|z ∈ Z
m} and L′ = {Rz′ + r|z′ ∈ Zm′

}. The intersetion of a�ne lattiesrepresented by L and L′ is an a�ne lattie, say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}where L′′ has full olumn rank. The a�ne lattie represented by L′′ may be empty, in whihase the preimage is also empty. If L′′ represents a non-empty a�ne lattie, we have thefollowing relationships.
L′′ = LS, l′′ = Ls + l
L′′ = RS′, l′′ = Rs′ + rwhere S and S′ are matries and s and s′ are vetors.Taking the intersetion of the Z-polyhedron represented by Z and the a�ne lattie rep-resented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}, we get the following Z-polyhedron.
Z ∩ L′′ = {L′′z′′ + l′′|QSz′′ + (q + Qs) ≥ 0, z′′ ∈ Z

m′′

} (9)A preimage by the funtion exists only for iterations in the Z-polyhedron given above.Therefore, we may safely restrit the funtion to map to iteration points in the lattie {L′′z′′+
l′′|z′′ ∈ Z

m′′

}. We will �rst haraterize values of z′ for whih Rz′ + r lies in the lattie
{L′′z′′ + l′′|z′′ ∈ Z

m′′

}. Substituting for L′′ and l′′, we have L′′z′′ + l′′ = RS′z′′ + Rs′ + r =
R(S′z′′ + s′) + r. This equals Rz′ + r to get the desired values of z′. Let R be of rank d and
H =

(

H ′ 0
) be its Hermite normal form suh that R = HU . Substituting for R we get

(

H ′ 0
)

U(S′z′′ + s′) =
(

H ′ 0
)

Uz′
(

H ′ 0
)

S′′z′′ + s′′ =
(

H ′ 0
)

Uz′where S′′ = US′ and s′′ =
(

H ′ 0
)

Us′. Sine, U is a unimodular matrix, we will replae
Uz′ by z# to get (KU−1z# + k → Hz# + r) as an equivalent representation of the funtionby whih a preimage is desired and ( H ′ 0

)

S′′z′′ + s′′ =
(

H ′ 0
)

z#. If z# =

(

z#
1

z#
2

),19



S′′ =

(

S′′
1

S′′
2

) and s′′ =

(

s′′1
s′′2

) then we have z#
1 = S′′

1z′′ + s′′1. As explained, we maysafely restrit the funtion to map to the iteration points in the lattie {L′′z′′ + l′′|z′′ ∈ Z
m′′

}.Substituting for z# and z#
1 , we get the following representation for the funtion
KU−1

(

S′′
1 z′′ + s′′1

z#
2

)

+ k → L′′z′′ + l′′If KU−1 =
(

K ′
1 K ′

2

) we have the following representation of the funtion. K ′
1S

′′
1z′′ +

K ′
1s

′′
1 + K ′

2z
#
2 + k → L′′z′′ + l′′ whih is equivalent to

(

K ′
1S

′′
1 K ′

2

)

(

z′′

z#
2

)

+ (K ′
1s

′′
1 + k) → L′′z′′ + l′′Note, that z#

2 is unonstrained. We may now represent the preimage by
{

(

K ′
1S

′′
1 K ′

2

)

(

z′′

z#
2

)

+ (K ′
1s

′′
1 + k)

|
(

QS 0
)

(

z′′

z#
2

)

+ (q + Qs) ≥ 0

,

(

z′′

z#
2

)

∈ Z
m′−d+m′′

}

(10)Sine, ( K ′
1 K ′

2

) has full olumn rank, ( K ′
1S

′′
1 K ′

2

) will have full olumn rank i�
K ′

1S
′′
1 has full olumn rank. Note that L′′ =

(

H ′ 0
)

(

S′′
1

S′′
2

)

= H ′S′′
1 where both L′′ and

H ′ have full olumn rank. Therefore, S′′
1 neessarily must have full row rank, whih in turnimplies that K ′

1S
′′
1 has full olumn rank. The oordinate polyhedra for (10) may not have theentire universe as its ontext, in whih ase, we would bring it to the required representationthrough the transformation in step 2 presented in setion 5.1.1.Disussion We wish to mention that it is neessary to onsider the general ase where thea�ne lattie in the range of a funtion may not neessarily be a subset of the a�ne lattieon whih the Z-polyhedron is based. If otherwise, we had restrited the funtion to have itsrange de�ned over the appropriate a�ne sublatties (whih would have signi�antly simpli�edthe alulations presented above), the semanti equivalene of Z-polyhedra based solely onthe set of iteration points, would fail. For example, the funtion (i → i) would be de�ned onthe Z-polyhedron represented by {i|i ≥ 0, i ∈ Z} but would not be de�ned on the equivalentunion of two Z-polyhedra represented by {2i|i ≥ 0, i ∈ Z} and {2i + 1|i ≥ 0, i ∈ Z}.5.3.2 Change of BasisBefore, we talk about arbitrary images of unions of Z-polyhedra by a�ne funtions on latties,we will study a restrited ase in whih 20



1. eah element4 in the union is of the form
{Lizi + li|Qizi + qi ≥ 0, zi ∈ Z

m}2. the a�ne lattie funtion represented as (Kz′ + k → Rz′ + r) is suh that K as well as
R have full dimensional olumn rank, m.3. The a�ne latties {Lizi + li|zi ∈ Z

m} related to eah Z-polyhedronin the union aresublatties of the a�ne lattie {Kz′ + k|z′ ∈ Z
m} in the domain of the a�ne lattiefuntion.The hange of basis is a frequently used spae reindexing funtion to perform semantiallyequivalent transformations of the spei�ation. We will �rst study the image of eah Z-polyhedronby the hange of basis funtion. Then, we will disuss the transformation of thespei�ation.By property 3 above,

Li = KSi, li = Ksi + kwhere Si are matries and si are vetors. We may safely restrit the hange of basis ona Z-polyhedron to be de�ned over the a�ne sublattie related to the Z-polyhedron. Therestrited hange of basis is
(K(Sizi + si) + k → R(Sizi + si) + r)whih is equivalent to

(Lizi + li → RSizi + (r + Rsi))The image an be represented as
{RSizi + (r + Rsi)|Qizi + qi ≥ 0, zi ∈ Z

m}Note, RSi has full olumn rank sine R has full olumn rank and Si has full row rank.Also the oordinate polyhedron is idential to the original Z-polyhedron, and so has the entireuniverse as its ontext.The transformation of the spei�ation under a hange of basis, f of the variable X is thefollowing.1. Replae the domain of X by its image under f .2. Replae all ourrenes of X on the rhs of any equation by X.f3. For the equation de�ning X, add a dependene by f−1 on the expression on its rhs.4In some ases, we may even hoose to waive the ondition on the representation of Z-polyhedra that theoordinate polyhedron has the entire universe as its ontext.21



5.3.3 ImagesWe will now disuss images of unions of Z-polyhedra by arbitrary a�ne funtions on latties.The image of a union of Z-polyhedra by a funtion is the union of images of individual
Z-polyhedra .We already know that the image of a Z-polyhedron by an arbitrary a�ne funtion isan lbl whih is a more general lass of objets than Z-polyhedra. Here, we will prove asurprising result that any lbl is a union of Z-polyhedra. Thus, the family of unions of lblsis idential to the family of unions of Z-polyhedra.Consider the image of the Z-polyhedron represented as Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}by the a�ne lattie funtion represented as (Kz′ + k → Rz′ + r) where K has full olumnrank, m′ say. By de�nition, the funtion provides a mapping from the iteration point Kz′ +kto the iteration point Rz′ + r. The image Rz′ + r only exists for those values of z′ for whihthe lattie point Kz′ + k lies in the Z-polyhedron represented by Z. Thus, an image onlyexists for points in the intersetion of the Z-polyhedron represented by Z and the a�ne lattie
{Kz′ + k|z′ ∈ Z

m′

}.Consider the intersetion of the a�ne latties represented by L = {Lz + l|z ∈ Z
m} and

L′ = {Kz′+k|z′ ∈ Z
m′

}. Let this be the a�ne lattie, say represented by L′′ = {L′′z′′+l′′|z′′ ∈
Z

m′′

} where L′′ has full olumn rank. The a�ne lattie represented by L′′ may be empty,in whih ase the image is also empty. If L′′ represents a non-empty lattie, we have thefollowing relationships.
L′′ = LS, l′′ = Ls + l

L′′ = KS′, l′′ = Ks′ + kwhere S and S′ are matries and s and s′ are vetors.Taking the intersetion of the Z-polyhedron represented by Z and the a�ne lattie rep-resented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}, we get the following Z-polyhedron.
Z ∩ L′′ = {L′′z′′ + l′′|QSz′′ + (q + Qs) ≥ 0, z′′ ∈ Z

m′′

} (11)An image by the funtion exists only for iterations in the Z-polyhedron given above.Therefore, we may safely restrit the funtion to map iteration points in the lattie {L′′z′′ +
l′′|z′′ ∈ Z

m′′

}. The restrited funtion is
(K(S′z′′ + s′) + k → R(S′z′′ + s′) + r)whih is equivalent to

(L′′z′′ + l′′ → RS′z′′ + (r + Rs′))The image may be represented as
{Tz′′ + t|Q′z′′ + q′ ≥ 0, z′′ ∈ Z

m′′

} (12)where T = RS′, t = (r + Rs′), Q′ = QS and q′ = (q + Qs)The set in (12) is not neessarily a Z-polyhedron sine there is no guarantee on the rank of
T . We will now provide an algorithm that transforms suh a set into a union of Z-polyhedra.22



Let the ontext of the oordinate polyhedron P = {z′′|Q′z′′ + q′ ≥ 0, z′′ ∈ Z
m′′

} be givenby ker(Q0). If ker(A) ⊆ ker(Q′) where A =

(

T
Q0

), the set in (12) is a Z-polyhedron as aonsequene of theorem 1.When this ondition fails, we pik any onstant vetor w in ker(A)\ker(Q′). Let P ′ be thetranslation of P along v whih equals either w or −w suh that
P − P ′ =

⋃

ci∈C

P ∩ (aT
i z′′ + αi < aT

i v) (13)is a non-empty union, where P satis�es the set of onstraints C and ci is a onstraint in Cof the form (aT
i z′′ + αi ≥ 0). We are guaranteed that one of the translations (along w or

−w) results in a non-empty union sine w /∈ ker(Q′). The key insight into our proof is thatthe image of P by the a�ne lattie funtion equals the image of P − P ′ by the a�ne lattiefuntion. This is true sine any element z1 ∈ P ∩P ′ is of the form z0 + γv where z0 ∈ P −P ′and γ is a onstant. Sine v lies in ker(T ), its image satis�es the following property
Tz1 + t = T (z0 + γv) + t = Tz0 + tFor eah non-empty element in the union of polyhedra in (13), reate a union of polyhedraof the form

Pi,j = P ∩ (aT
i z′′ + αi = βj)where βj ∈ {0, . . . , aT

i v − 1). Now we laim that if the ontext of Pi,j is ker(Q0i,j
) thenker( T

Q0i,j

)

⊂ ker( T
Q0

) (14)where the inlusion is strit. This is beause1. aT
i is linearly independent of the rows of ( T

Q0

) sine ( T
Q0

)

v = 0 and aT
0 v 6= 0.2. aT

i is a row of Q0i,j
and not a row of Q0.One iteration of this transformation returns an equivalent representation of the set in (12)that is a union of form
⋃

i,j

{Tz′′ + t|Q′
i,jz

′′ + q′i,j ≥ 0, z′′ ∈ Z
m′′

}where Pi,j = {z′′|Q′
i,jz

′′ + q′i,j ≥ 0, z′′ ∈ Z
m′′

}Thus, we are guaranteed that the algorithm will eventually terminate as a onsequene ofthe strit inlusion presented in (14).Finally, we wish to mention that this result does not violate the omplexity results fordeiding whether an lbl is a Z-polyhedra sine there an potentially be an exponentialnumber of elements in our union. 23



6 Simplifying RedutionsThe work presented in [8℄ shows the automati and optimal derease in the algorithmi om-plexity of redutions. It is one example of the extremely strong stati analysis and programtransformations o�ered by the polyhedral model. Here, we will show that the simpli�ationof redutions an easily be extended to the Z-polyhedral model, as a onsequene of ourrepresentation and the onstrutive proofs of the losure properties.For simpli�ation, a redution is required to be de�ned over an expression of the form
E.f where the domain of the expression is a single polyhedron, and projeted by a standarda�ne funtion. By the losure of Z-polyhedral domains under set di�erene, more spei�ally,by the algorithm presented as its onstrutive proof, we express any arbitrary Z-polyhedraldomain (of the expression) as a disjoint union of Z-polyhedra. This is semantially equivalentto an expression that has, as subexpressions, redutions over expressions de�ned on elements(Z-polyhedra) in the disjoint domain. Simpli�ation of the original redution is then simplythe derease of the asymptoti omplexity these �smaller� redutions.Now, let us onsider one of these simpler redutions. With the tehniques presented inthe onstrutive proofs for losure under image and preimage, we may derive an equivalentredution with the following properties.1. The domain of the expression within the redution is represented by Z = {Lz+l|Qz+q ≥

0, z ∈ Z
m}2. The dependene funtion, f , is represented by (Lz + l → Rz + r)3. The projetion funtion is represented as (Lz + l → Tz + t)The simpler redution is equivalent to the redution over an expression whose domain is

{z|Qz + q ≥ 0, z ∈ Z
m} and whose value at z is the value of the original expression at Lz + l.The assoiated dependenes and projetions are of the form (z → Rz + r) and (z → Tz + t)respetively. This redution is in the form required for simpli�ation.In this example, we presented the generalization of an analysis developed for the poly-hedral model to the Z-polyhedral model. However, an important observation is that thegeneralization was performed through the transformation of the analysis in the Z-polyhedralmodel to the original analysis in the polyhedral model. This shows that, in many ases, onemay reuse tehniques and tools developed for the polyhedral model.7 Related WorkThe �rst work that proposed the extension to a language based on unions of Z-polyhedra wasby Quinton et. al. [16℄. However, as a onsequene of their representation and interpretation,they did not have a unique anoni representation. Also they ould not establish the equiva-lene between idential Z-polyhedra nor did they provide the di�erene or two Z-polyhedra.Other onsequenes inluded omplex semantis for hange of basis. In many ways, our paperis a logial ompletion of their e�orts initiated a deade ago.24



Ramanujam [17℄ desribes algorithms to generate ode, both sequential and parallel, afterapplying non-unimodular transformations to nested loop programs. His work is restrited to asingle, perfetly nested loop nest, and the same transformation is applied to all the statementsin the loop body. The ode generation problem thus redued to sanning the image, by anon-unimodular funtion, of a single polyhedron.Rajopadhye and Lenders [12℄ propose a tehnique for designing multi-rate VLSI arrays,whih are regular arrays of proessing elements, but where di�erent registers are loked atdi�erent rates. This leads to very e�ient hardware strutures. The mathematial formalismis based on using systems of reurrene equations (i.e., equational programs) de�ned over
Z-polyhedral domains, whih are viewed as the images of polyhedra by non-singular a�netransformations. Although the fous of the paper is on synthesis methods, notably shedulingand loalization, the authors disuss the "legality" of the proposed spei�ation, in terms ofheking whether a variable is atually de�ned at all points in the domain where it is delared.This requires determining whether the values of other variables spei�ed on the right hand sideof the equation are de�ned at preisely those points, whih requires the losure properties wedesribe here. Rajopadhye and Lenders provide su�ient onditions, not a omplete solution.8 Conlusions and Future WorkIt has been believed for more than a deade that the polyhedral model an be generalized tounions of Z-polyhedra [16, 11℄. However, till date, previously known theories and tools onthe polyhedral model have not been generalized to unions of Z-polyhedra.We present a novel representation and interpretation of Z-polyhedra that enables us toprove the various losure properties of the family of unions of Z-polyhedra required to extendthe polyhedral model. In addition, we prove losure in the Z-polyhedral model under imagesby arbitrary a�ne funtions whih had been a major limitation of the polyhedral model. Asa orollary, we prove that unions of lbls, widely assumed to be a riher lass, are equivalentto unions of Z-polyhedra.The language-theoreti aspet of the Z-polyhedral model is also very interesting. Ourequational language is purely funtional, and through its inorporation into a general pur-pose funtional language, one may make deades of researh in the automati parallelizationavailable to modern funtional languages.Future work involves the extension of the various tehniques in the polyhedral model. Weintend to provide an implementation for manipulating unions of Z-polyhedra based on ourresults. The anoni representation of unions of Z-polyhedra is also an open problem.Referenes[1℄ C. Bastoul. Generating loops for sanning polyhedra. Tehnial Report 2002/23, PRiSM,Versailles University, 2002. 25
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