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The Z-Polyhedral Model∗Gautam and S.Rajopadhye[gautam|svr℄�
s.
olostate.eduSeptember 28, 2006Abstra
tThe polyhedral model is a well developed formalism for the spe
i�
ation, analysisand transformation of regular loop programs. The model has been extensively used ina variety of 
ontexts viz. automati
 parallelization of loop programs, lo
ality, programveri�
ation, hardware generation and more re
ently, automati
 redu
tion of asymptoti
program 
omplexity. Su
h analyses and transformations are based on 
ertain 
losureproperties in the polyhedral model. However, the polyhedral model is limited in ex-pressivity and the need for the extension to a more general 
lass of programs is widelyknown.We provide the extension to Z-polyhedra whi
h are the interse
tion of polyhedra andlatti
es. We prove the required 
losure properties using a novel representation and inter-pretation of Z-polyhedra. In addition, we also prove 
losure in the Z-polyhedral modelunder images by dependen
e fun
tions�thereby proving that unions of lbls, widely as-sumed to be a ri
her 
lass, is equal to unions of Z-polyhedra. These 
losure properties
onstitute the foundations of the Z-polyhedral model. As an example, we present theautomati
 redu
tion of 
omplexity in the Z-polyhedral model.1 Introdu
tionThe polyhedral model provides sophisti
ated analysis and transformations of the kernels ofmany 
ompute- and data- intensive appli
ations. Programs in the polyhedral model essen-tially 
omprise of (i) variables (and expressions) representing 
olle
tions of values de�ned overpolyhedral domains, and (ii) a�ne dependen
es between 
omputations. Feautrier [6℄ showedthat an important 
lass of 
onventional imperative loop programs 
alled a�ne 
ontrol loops(a
ls) 
an be transformed to programs in the polyhedral model. Signi�
ant parts of theSpe
FP and Perfe
tClub ben
hmarks are a
ls [2℄.An intuitive and general way spe
ifying these programs is through a �nite list of highlevel (mutually re
ursive) equations. For example, the following re
urren
e [3℄ for 
omputingthe 
ost of optimal string parenthesization is a program in the polyhedral model (of 
ourse,
lothed in synta
ti
 sugar).
Ci,j =







i = j : 0

i < j : min
i≤k<j

(Ci,k + Ck+1,j + f(i, j, k))

∗This resear
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ien
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In the example, the dependen
e between 
omputations is su
h that the variable C at theiteration at (i, j) depends on a range of values: between the iterations (i, k) and (k+1, j), andon the value of f at the iteration (i, j, k). A 
omplete des
ription of the equational languageis presented in se
tion 2.Many 
omputations 
an be expressed naturally in the polyhedral model, e.g., matrix mul-tipli
ation, LU-de
omposition, Cholesky fa
torization, Kalman �ltering, as well as algorithmsarising in RNA se
ondary stru
ture predi
tion.The polyhedral model has been used for the automati
 parallelization of a
ls be
auseit enables sophisti
ated analyses and transformations su
h as s
heduling [4℄ and semanti
-preserving re�nements into (sequential or parallel) 
ode [15, 1℄. One 
an also automati
allyand optimally de
rease the 
omplexity of a

umulations (
alled redu
tions) in the polyhedralmodel [8℄.In an a
l (or the 
orresponding program in the polyhedral model), statement level trans-formations often yield better results than loop level transformations[?℄. This relies on the
losure of (statement/equation) domains under images by (a restri
ted 
lass of) a�ne fun
-tions. Indeed, most analyses/transformations rely on 
losure properties in the polyhedralmodel. Also, as a result of these 
losure properties, we may design the equational languagementioned above su
h that the domain of every (sub)expression is of the same type as thedomains of variables, permitting a uni�ed framework based on expressions de�ned over poly-hedral domains1. As a dire
t appli
ation, the redu
tion of asymptoti
 program 
omplexityrequires the 
losure of domains of expressions under set di�eren
e.The polyhedral model 
urrently su�ers from 
ertain limitations (although partial solutions,some ad-ho
, have been proposed for many of them).
• Loop programs with a non-unit stride, and non-unimodular transformations fall outsidethe s
ope of the model. This is an important 
lass of programs [17, 13, 21, 7℄ aris-ing in situations su
h as the red-bla
k sor 
omputation for solving partial di�erentialequations.
• Parallel ar
hite
tures with periodi
 pro
essor a
tivity, su
h as multi-rate arrays [12℄ andbidire
tional systoli
 arrays, 
annot be des
ribed in the model.
• Redu
tion operations with arbitrary proje
tions 
annot be expressed in the model (ex-plained later).As a simple example 
onsider the following equation for i ≥ 1.

A[i] =

{

i even : A[i/2]
i odd : 0The two bran
hes de�ne the variable, ea
h one on a subdomain that has holes, more pre-
isely, on a Z-polyhedron whi
h is the interse
tion of an integer polyhedron and an a�ne1In fa
t variables may be treated simply as named expressions.2



integer latti
e. Unfortunately, there does not exist an equivalent program in the polyhe-dral model (where variables have polyhedral domains, without holes) whi
h 
aptures su
h adependen
e pattern.It has been long 
laimed that these limitations 
an be resolved through some (de
eptively,as it turns out) simple extensions to polyhedra. The �rst extension, proposed by Tei
hand Thiele, was 
alled Linearly Bounded Latti
es (lbls) [19℄ whi
h are images of integerpolyhedra by arbitrary a�ne fun
tions. The main motivation for lbls was that polyhedraldomains were not 
losed under images. Le Verge, in an un�nished manus
ript [11℄ showed thelimitations of lbls and promoted Z-polyhedra. He also showed that there is a stri
t in
lusion:Integer Polyhedra ⊂ Z−Polyhedra ⊂ lbl. Till date, previously known theory and te
hniquesof the polyhedral model�most notably program analysis and pre
ise determination of regionsof de�nition and usage of values�have not been extended to any of the ri
her models.In this paper, we present the foundations of a simple and uni�ed solution to all of theselimitations through the extension of the equational language to domains that are unions of
Z-polyhedra. Our key insight is a new representation of Z-polyhedra, and its asso
iated inter-pretation. Spe
i�
ally, we view any point in a Z-polyhedra as the integer linear 
ombinationsof the generators of the asso
iated latti
e. The 
oe�
ients of these linear 
ombinations are
alled 
oordinates whi
h belong to a polyhedron. The 
riti
al hindran
e in previous attemptswas that Z-polyhedra were either viewed as restri
ted images of integer polyhedra or as theinterse
tion of integer polyhedra and a�ne latti
es, rather than the 
oordinate view proposedhere. Our key 
ontributions are as follows.

• We present a novel representation for Z-polyhedra and an asso
iated family of fun
tions,together with proofs of 
losure of unions of Z-polyhedra under interse
tion, �nite union,di�eren
e and preimage by the family of fun
tions.
• We prove 
losure of unions of Z-polyhedra under image by the family of fun
tions,whi
h had been a major limitation of the polyhedral model. This proves that unionsof lbls, widely assumed to be a ri
her 
lass of domains, are equivalent to unions of

Z-polyhedra. This result relies on our theorem that weakens the su�
ient 
onditionsrequired to verify in polynomial time that an lbl is in fa
t a Z-polyhedron .
• As an example, we present the automati
 de
rease of 
omplexity of programs in the

Z-polyhedralmodel. This is done by transforming the analysis to an equivalent analysison polyhedra. This shows that, often, tools and te
hniques developed for the polyhedralmodel 
an be reused.The remainder of this paper is organized as follows. In the following se
tion, we des
ribea generi
 equational language where expressions are asso
iated with domains. The se
tionshows the pre
ise 
losure properties needed to ensure the semanti
 soundness of the equationallanguage. The mathemati
al ba
kground on latti
es, polyhedra, a�ne fun
tions, et
., isdes
ribed in se
tion 3. In se
tion 4, we present the polyhedral model as an instan
e of thegeneri
 equational language, and elaborate on the limitation on redu
tions. Our main resultsabout the new representation and 
losure properties are des
ribed in Se
tion 5. All our proofs3



Expression Syntax DomainConstants Constant name or symbol DCVariables V DVOperators op(Expr1, . . . , ExprM )

M
⋂

i=1

DExpriCase 
ase Expr1; . . . ; ExprM esa
 M
⊎

i=1

DExpriRestri
tion D′ : Expr D′ ∩ DExprDependen
e Expr.(z → f(z)) f−1(DExpr)Redu
tions redu
e(⊕, (z → f(z)), Expr) f(DExpr)Table 1: Expressions: Syntax and Domains. If op is a binary operator, it may be written inin�x notation. ⊎ denotes disjoint union and f−1 denotes relational inverse.are 
onstru
tive, and should be a

essible to a reader with a ba
kground in linear algebra,and for this reason we have 
hosen not to relegate the proofs to an appendix, although theymay be skipped or skimmed on �rst reading. Then, we present the automati
 and optimalde
rease of the 
omplexity of redu
tions in the Z-polyhedral model. Finally, we dis
uss futureand related work and present our 
on
lusions.2 Equational LanguagePrograms are a �nite list of equations of the form Var = Expr where Var and Expr denotemappings from their domains to a set of values. The elements of a domain are 
alled iterationpoints.Expressions are 
onstru
ted by the rules given in table 1 (
olumn 2). The domains ofall variables and 
onstants are de
lared and the domains of expressions are derived (table 1
olumn 3). We adopt the 
onvention that the domain of an expression A is denoted by DA,and the fun
tion z → f(z) by f . The fun
tion spe
i�ed in a dependen
e expression is 
alledthe dependen
e fun
tion and the fun
tion spe
i�ed in a redu
tion is 
alled the proje
tionfun
tion.For 
ompound expressions to be de�ned over the same family of domains, say FD, allsyntax rules must maintain 
losure with respe
t to FD. Thus, FD must be 
losed underinterse
tion, �nite union, di�eren
e and image and preimage by the family of fun
tions, say
Ff .2.1 Semanti
sHere, we provide the semanti
s of expressions over their domains of de�nition. At the iterationpoint z in its domain, the value of

• a 
onstant expression is the asso
iated 
onstant.4



• a variable is either provided as input or given by an equation; in the latter 
ase, it isthe value, at z, of the expression on its rhs.
• an operator expression is the result of applying op on the values, at z, of its expressionarguments.
• a 
ase expression is the value at z of that alternative, to whose domain z belongs.Alternatives of a 
ase expression are de�ned over disjoint domains. This 
an be derivedfrom a more general des
ription in whi
h the domains of the alternatives are non-disjoint,but are evaluated one after the other, sin
e FD is 
losed under di�eren
e.
• a restri
tion over E is the value of E at z.
• the dependen
e expression E.f is the value of E at f(z).
• redu
e(⊕, f, E) is the appli
ation of ⊕ on the values of E at all iteration points in DEthat map to z by f . ⊕ is an asso
iative and 
ommutative binary operator and thereforewe may 
hoose any order of its appli
ation.It is often 
onvenient to have a variable de�ned either entirely as input, or only by anequation. The former is 
alled an input variable and the latter is a 
omputed variable. Com-puted variables are just names for valid expressions. Sin
e FD is 
losed under di�eren
e, it isalways possible to transform any spe
i�
ation to have only input and 
omputed variables.2.2 Context DomainConsider the set of iteration points at whi
h the value of an expression is needed. This set is
alled the 
ontext domain of an expression [5, 8℄. We 
an always transform an spe
i�
ationby restri
ting any (sub)expression to its 
ontext domain. Therefore, for 
losure, we requirethat the 
ontext domain also belongs to the family of domains.The 
ontext domain of an expression is 
al
ulated from its parent expression by the fol-lowing rules. The 
ontext domain XE of the expression E is
• DV ∩DE in the equation V = E.
• XE′ if E′ is op(. . . , E, . . .).
• DE ∩ XE′ when E′ is 
ase . . . , E, . . . esa
.
• XE′ when E′ is D′ : E.
• f(XE′) if E′ is E.f .
• f−1

p (XE′) ∩DE if E′ is redu
e(⊕, fp, E).The notion of 
ontext domains is important in the automati
 simpli�
ation of algorithmi

omplexity [8℄, sin
e we may have expressions that are de�ned on a mu
h larger domain thanneeded. An isolated study of su
h expressions o

urring in the rhs of an equation may provideus with an in
orre
t estimate of the 
omplexity of the equation.5



3 Mathemati
al Ba
kgroundIn this se
tion, we will provide the required mathemati
al ba
kground on linear algebra overintegers.3.1 Matri
esAs a 
onvention, we will denote matri
es with the upper-
ase letters and ve
tors with thelower-
ase. Unless spe
i�
ally mentioned, all matri
es and ve
tors have integer elements. Wewill denote the identity matrix by I.We will use the following 
on
epts and properties of matri
es
• The kernel of a matrix T , written as ker(T ) is the set of all ve
tors z su
h that Tz = 0.
• A matrix is unimodular if it is square and its determinant is either 1 or −1.
• Two matri
es L and L′ are said to be 
olumn equivalent or right equivalent if there existsa unimodular matrix U su
h that L = L′U .
• A unique representative element in ea
h set of matri
es that are 
olumn equivalent isthe one in Hermite normal form [9℄.De�nition 1 An n × m matrix H with rank d is in Hermite Normal Form (HNF) , if1. ∀1 ≤ j ≤ d,∃i1, . . . , id with 1 ≤ i1 < . . . < id ≤ n: Hij ,j > 0.2. ∀1 ≤ j ≤ d, 1 ≤ i < ij : Hi,j = 0.3. ∀d + 1 ≤ j ≤ m, 1 ≤ i ≤ n: Hi,j = 04. ∀1 ≤ l < j ≤ d: 0 ≤ Hij ,l < Hij ,j.Remark 1 For every matrix A, there exists a unique matrix H that is in HNF and 
olumnequivalent to A i.e., there exists a unimodular matrix U su
h that A = HU .Note that the provided de�nition of the Hermite normal form does not require the matrix

A to have full row rank.There is a related normal form 
alled the Smith normal form [18℄ that we will use in thepresentation of this paper.De�nition 2 An n × m matrix S with rank d is in Smith Normal Form (SNF) , if1. S is a diagonal matrix.2. ∀1 ≤ i ≤ d: Si,i > 0.3. ∀1 ≤ i ≤ d − 1: Si,i divides Si+1,i+1.4. ∀d + 1 ≤ i ≤ min(n,m): Si,i = 0Remark 2 For every matrix, A, there exists a unique matrix S that is in SNF su
h that
A = V SU where V and U are unimodular matri
es.6



3.2 A�ne Latti
esThe latti
e generated by a matrix L is the set of all integer linear 
ombinations of the 
olumnsof L. If the 
olumns of a matrix are linearly independent, they 
onstitute a basis of thegenerated latti
e. The latti
es generated by two matri
es are equal i� the submatri
es 
orre-sponding to the non-zero 
olumns in their Hermite normal forms are equal. As a spe
ial 
ase,the latti
es generated by two n×m matri
es are equal i� the matri
es are 
olumn equivalent.In this paper, we will use a generalization of the latti
es generated by a matrix, additionallyallowing o�sets by 
onstant ve
tors. These are 
alled a�ne latti
es. An a�ne latti
e is asubset of Z
n and 
an be represented as {Lz + l|z ∈ Z

m} where L and l are an n × m matrixand n-ve
tor respe
tively. We 
all z the 
oordinates in the parti
ular representation of thea�ne latti
e. Representations of a�ne latti
es will be denoted by L.The a�ne latti
es represented by {Lz + l|z ∈ Z
m} and {L′z′ + l′|z′ ∈ Z

m′

} are equali� the matri
es generated by L and L′ are equal and l′ = Lz0 + l for some 
onstant ve
tor
z0 ∈ Z

m.3.3 Integer PolyhedraAn integer polyhedron, P is a subset of Z
n, the elements of whi
h satisfy a �nite number ofa�ne inequalities (also 
alled a�ne 
onstraints or just 
onstraints when there is no ambiguity)with integer 
oe�
ients. We follow the 
onvention that the a�ne 
onstraint ci is given as

(aT
i z + αi ≥ 0) where z, ai ∈ Z

n, αi ∈ Z. The integer polyhedron, P, satisfying the set of
onstraints C = {c1, . . . , cb} is often written as {z ∈ Z
n|Qz + q ≥ 0} where Q = (a1 . . . ab)

T isan b × n matrix2 and q = (α1 . . . αb)
T is an b-ve
tor.We shall use the following properties and notation.

• The 
onstraint c ≡ (aT z+α ≥ 0) of P is said to be saturated i� (aT z+α = 0)∩P = P.
• The lineality spa
e of P is de�ned as the linear part of the largest a�ne subspa
e
ontained in P. It is given by ker(Q).
• The 
ontext of P is de�ned as the linear part of the smallest a�ne subspa
e that 
ontains

P. If the saturated 
onstraints of P in C, are the rows of {Q0z + q0 ≥ 0}, then it isker(Q0).3.4 A�ne Images of Integer PolyhedraConsider the integer polyhedron P = {z ∈ Z
m|Qz + q ≥ 0} and the a�ne fun
tion f : (z →

Tz + t) where Q and T are b×m and n×m matri
es respe
tively and q and t are a b-ve
torand n ve
tor respe
tively. The image of P under f is of the form {Tz+ t|Qz+q ≥ 0, z ∈ Z
m}.These are the so 
alled linearly bound latti
es (or lbls) [19℄.2When Q and/or q is rational, we 
an appropriately multiply the 
onstraints to get integer elements.7



4 The Polyhedral ModelThe polyhedral model is a 
on
rete instan
e of the equational language presented in se
tion2. As we have already mentioned, the polyhedral model has the family of unions of integerpolyhedra as FD and the family of a�ne fun
tions of the form (z → Tz+t) as Ff . Re
all thatall matri
es and ve
tors have integer elements. Sin
e su
h a�ne fun
tions are a mapping on
z whi
h is the ve
tor of 
oordinates on the standard basis, we will refer to them as standarda�ne fun
tions. Variables in the polyhedral model may be seen as multi-dimensional arrays.Our presentation of the language spe
i�
ation in se
tion 2 is based on the Alpha language[14, 10℄ and the MMAlpha framework for manipulating Alpha programs, whi
h relies on alibrary for manipulating polyhedra [20℄.4.1 LimitationsAs mentioned in the introdu
tion, the polyhedral model su�ers from the following limitations.

• Loop programs with non-unit stride, and non-unimodular transformations fall outsidethe s
ope of the model.
• Parallel ar
hite
tures with periodi
 pro
essor a
tivity, su
h as multi-rate arrays [12℄ andbidire
tional systoli
 arrays, 
annot be des
ribed in the model.
• Redu
tion operations with arbitrary proje
tions 
annot be expressed in the model.Here, we will elaborate the limitation on redu
tions. This limitation, in essen
e, arises as aresult of image by the family of fun
tions. The family of unions of integer polyhedra is not
losed under image by the family of standard a�ne fun
tions. To a

ount for this short
oming,proje
tion fun
tions in a redu
tion have been limited to those valid fun
tions, the image bywhi
h, of the parti
ular domain is also a valid domain.Nevertheless, even with this 
ondition, some problems persisted (not explained before).Re
all that the 
ontext domain of a (sub)expression in a dependen
e expression requires theimage of a valid domain by the dependen
e fun
tion whi
h is not ne
essarily a valid domain.This is handled in a ad-ho
 manner by taking the 
losure (
onvex hull) of the image in FD.A key 
ontribution of this paper is the proof that the family of unions of Z-polyhedra is
losed under images by the family of fun
tions. The pre
ise 
hara
terization of the family offun
tions will be presented in se
tion 5. Nevertheless, we wish to mention that all standarda�ne fun
tions are elements of this family.5 The Z-Polyhedral ModelIn this se
tion we will present extensions to the polyhedral model. We will start by studyingmore general mathemati
al obje
ts than polyhedra 
alled Z-polyhedra . A Z-polyhedronis the interse
tion of an integer polyhedron and an a�ne latti
e. When the a�ne latti
e isthe 
anoni
al latti
e, Z

n, the obtained Z-polyhedron is also an integer polyhedron. Sin
e8



a Z-polyhedron 
annot be expressed as a �nite union of integer polyhedra, the family of�nite unions of Z-polyhedra stri
tly 
ontains the family of unions of integer polyhedra. Also,as we have previously mentioned the asso
iated family of fun
tions 
ontains the family ofstandard a�ne fun
tions. Both these 
ontainments are stri
t, therefore, upon showing therequired 
losure properties, we will have the Z-polyhedral model as a stri
t generalization ofthe polyhedral model.Moreover, we will also show that the family of unions of Z-polyhedra is 
losed underimages by the family of fun
tions. This avoids the irregularities of the polyhedral model, asseen in the previous se
tion.5.1 Representation of Z-PolyhedraThe key insight into proving the required 
losure properties on unions of Z-polyhedra is a
ertain form of representation. We represent the Z-polyhedra in the following form, say Z

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (1)where L has full 
olumn rank and Pc

Z = {z|Qz + q ≥ 0, z ∈ Z
m} has a 
ontext that isthe universe, Z

m. Pc
Z is 
alled the 
oordinate polyhedron asso
iated with the parti
ularrepresentation3, Z, of the Z-polyhedron. The Z-polyhedron for whi
h L has no 
olumns hasa 
oordinate polyhedron in Z

0. The empty Z-polyhedron is denoted by {|}.The 
onditions on L and Pc
Z in the representation guarantee the following three 
riti
alproperties1. Every point in the 
oordinate polyhedron maps to a unique iteration point of the Z-polyhedron.2. Two representations with the same a�ne image, Lz+l, are equivalent i� their 
oordinatepolyhedra are equal.3. Two representations, {Lz + l|Qz +q ≥ 0, z ∈ Z

m} and {L′z′ + l′|Q′z′ +q′ ≥ 0, z′ ∈ Z
m′

},are not equivalent if the a�ne latti
es represented by {Lz+ l|z ∈ Z
m} and {L′z′+ l′|z′ ∈

Z
m′

} are not equal.Two representations are said to be equivalent if they 
orrespond to the same set. Naturally,two domains are equal if they have equivalent representations. In the set of properties givenabove, property 1 and 2 are a 
onsequen
e of the fa
t that L has full 
olumn rank. Property3 is a 
onsequen
e of the fa
t that the 
ontext of Pc
Z is the universe, Z

m.We will make extensive use of some the results presented by Le Verge [11℄ who showedthat the family of polyhedra is stri
tly 
ontained in the family of Z-polyhedra whi
h is turn instri
tly 
ontained in the family of lbls. He proved that membership testing in lbls is NP-
omplete. In addition, he proved that it is at least an NP-
omplete problem to determine if3Note that we have denoted parti
ular representations with the symbol Z. Later, ZP will denote the setof iterations. 9



an lbl is a Z-polyhedronand gave su�
ient 
onditions for an lbl to be a Z-polyhedron . Wewill study these 
onditions in depth and provide extensions to his result. Finally, he provideda representation of arbitrary lbls as the 
anoni
 proje
tion of an integer polyhedron along asingle 
anoni
 ve
tor.Note that Z is in the form of an a�ne image of an integer polyhedron (an lbl) and wehave mentioned that the family of lbls is a more general 
lass of obje
ts than the familyof Z-polyhedra. However, Le Verge showed that the lbl is a Z-polyhedron when L has full
olumn rank in the 
ontext, ker(Q0), of Pc
Z . Mathemati
ally, L has full 
olumn rank in the
ontext of Pc

Z , i� A =

(

L
Q0

) has full 
olumn rank. The lbl in (1) is a Z-polyhedron sin
eit satis�es an even stri
ter 
ondition � L has full 
olumn rank. We have imposed su
h arequirement sin
e under the 
onditions of Le Verge, properties 2 and 3 given above fails i.e.,it is possible for two Z-polyhedra with the same a�ne image, Lz + l, to be equivalent evenwhen their 
oordinate polyhedra di�er and two representations may be equivalent even whenthe a�ne latti
es in the representation are not equal.However, our stri
ter requirement does not mean that we a

ept a restri
ted set of obje
tsor limit the expressibility provided to the programmer. We will �rst show that every Z-polyhedron has a representation that satis�es the 
ondition that L has full 
olumn rank.Then, we will present a transformation that 
onverts representations in whi
h L has full
olumn rank but the 
oordinate polyhedron does not have the entire universe as its 
ontextto the required form presented in (1).We will then extend the result of Le Verge by weakening his 
onditions even further; in-stead of requiring A to have full 
olumn rank whi
h implies that ker(A) = {0}, we will requireker(A) ⊆ ker(Q). Thus, we provide the programmer with even greater expressivity than wasavailable previously. That lbls satisfying our weaker 
onditions are also Z-polyhedra will beshown by providing a transformation that 
onverts representations satisfying ker(A) ⊆ ker(Q)to equivalent representations satisfying ker(A) = {0}. Finally, we will provide a transfor-mation that 
onverts these representations satisfying ker(A) = {0} to the form satisfyingker(L) = {0} that 
an be brought to the �nal required form by the transformation mentionedpreviously.Sin
e it is at least an NP-
omplete problem to determine if an lbl is a Z-polyhedronand all the 
onditions presented above take polynomial time to verify, these are just su�
ient
onditions.5.1.1 Completeness of the RepresentationHere we will show that every Z-polyhedron 
an be represented in the required form presentedin (1). Consider the Z-polyhedron, ZP say, whi
h is the interse
tion of the integer polyhedron
P = {y ∈ Z

n|Qy + q ≥ 0} and the a�ne latti
e represented by L = {Lz + l|z ∈ Z
m} where Qand L are b × n and n × m matri
es respe
tively and q and l are an b-ve
tor and a n-ve
torrespe
tively. Note that both P and the a�ne latti
e represented by L lie in Z

n.We will show the 
ompleteness of the representation in two steps, �rst by showing thatany Z-polyhedron 
an be represented in a form where L has full 
olumn rank. Then, we will10



transform this representation to the required form.Step 1: Let L have rank d and H =
(

H ′ 0
) be its Hermite normal form su
h that H ′is a n × d matrix of full 
olumn rank and L = HU where U is a unimodular matrix. Therepresentation L 
an be written as {HUz + l|z ∈ Z

m}. Sin
e U is unimodular, L is equivalentto {Hz′ + l|z′ ∈ Z
m} where z′ = Uz .Now 
onsider ZP, the interse
tion of the a�ne latti
e represented by L and the polyhedron

P.
ZP = {Hz′ + l|z′ ∈ Z

m} ∩ {y ∈ Z
n|Qy + q ≥ 0}

= {Hz′ + l|Q(Hz′ + l) + q ≥ 0, z′ ∈ Z
m}

= {
(

H ′ 0
)

z′ + l|Q
(

H ′ 0
)

z′ +

(q + Ql) ≥ 0, z′ ∈ Z
m}

= {H ′z′′ + l|Q′z′′ + q′ ≥ 0, z′′ ∈ Z
d}where Q′ = QH ′, q′ = q + Ql and z′′ =

(

I 0
)

z′. Sin
e, H ′ has full 
olumn rank, therepresentation 
an be brought to the �nal required form using the following transformation.Step 2: To show the 
ompleteness of our representation s
heme, we need to prove that everyrepresentation of the form
{Lz + l|Qz + q ≥ 0, z ∈ Z

m} (2)satisfying ker(L) = {0} 
an be transformed to the �nal required form.Let Pc
Z = {z|Qz + q ≥ 0, z ∈ Z

m} be the 
oordinate polyhedron asso
iated to the rep-resentation. Let the smallest a�ne subspa
e that 
ontains Pc
Z be {z|Tz = t} where T is an

n × m matrix and t is an n-ve
tor. The 
ontext of Pc
Z is given by ker(T ). Let T have rank

d and let S be its Smith normal form su
h that T = V SU , where V and U are unimodularmatri
es. We have V SUz = t. Sin
e, U is unimodular, we may 
hange the 
oordinates to
z′ = Uz to get the following equivalent representation of the Z-polyhedron

{L′z′ + l|Q′z′ + q ≥ 0, z′ ∈ Z
m} (3)where L′ = LU−1 and Q′ = QU−1.We have Sz′ = t′ where t′ = V −1t. If any of the (d + 1)th, . . . , nth 
omponent of t′ isnon-zero then the 
oordinate polyhedron is empty implying the 
orresponding Z-polyhedronis empty. If S′ is the top-left d× d submatrix of S, t′′ is the ve
tor 
onstru
ted from the �rst

d elements of t′ and z′ =

(

z1

z′′

), we have ( S′ 0
)

(

z1

z′′

)

=

(

t′′

0

) or
(

I 0
)

(

z1

z′′

)

=

(

(S′)−1t′′

0

)

11



These give us d equalities for the �rst d elements of z′. Again, if any elements of the ve
tor
(S′)−1t′′ are rational, then the 
oordinate polyhedron is empty and therefore the 
orrespond-ing Z-polyhedron is empty. Otherwise, substituting ( (S′)−1t′′

z′′

) for z′ in (3), we get thefollowing equivalent representation
{L′′z′′ + l′|Q′′z′′ + q′ ≥ 0, z′′ ∈ Z

m−d} (4)where L′ =
(

L1 L′′
), l′ = l+L1(S

′)−1t′′, Q′ =
(

Q1 Q′′
) and q′ = q+Q1(S

′)−1t′′. Note,the T was of rank d and therefore Pc
Z had to be a m−d dimensional polyhedron embedded in

Z
m. Re
all that L has full 
olumn rank and therefore the iteration domain has a one-to-onemapping with points in the 
oordinate domain in (2). The 
oordinate polyhedron in (4) isembedded in Z

m−d. Therefore, it ne
essarily must have a 
ontext that is the entire universe.5.1.2 ExpressivityHere, we will present the expressivity available to the programmer and the transformationsneeded to 
onvert user spe
i�
ations to the required form.Relaxation of the Su�
ient Condition Le Verge proved that an lbl of the form {Lz +

l|Qz + q ≥ 0, z ∈ Z
m} is a Z-polyhedron when ker(A) = {0} where A =

(

L
Q0

) and ker(Q0)is the 
ontext of the polyhedron {z|Qz + q ≥ 0, z ∈ Z
m}. We will present a relaxationof this su�
ient 
ondition, only requiring ker(A) ⊆ ker(Q), by providing a transformationthat 
onverts su
h representations to equivalent representations satisfying ker(A) = {0}. Inaddition to providing greater expressivity to the programmer, this theorem is 
ru
ial to prove
losure of unions of Z-polyhedra under image.We will use the results of Le Verge's proposition 4.4 [11℄. It is repeated here for 
onve-nien
e.Proposition 1 Let M be an integral matrix. The following properties are equivalent:1. there exists an integral matrix M ′ su
h that M ′M = I;2. there exists an integral matrix N su
h that ( M N
) is unimodular;3. The Hermite normal form of MT is ( I 0

)The following theorem 
laims the equivalen
e of lbls resulting from our more generalrepresentations to those satisfying Le Verge's su�
ient 
ondition.Theorem 1 A representation {Lz + l|Qz + q ≥ 0, z ∈ Z
m} of an lbl satisfying ker(A) ⊆ker(Q), where A =

(

L
Q0

) and the 
ontext of its 
oordinate polyhedron given by ker(Q0), 
anbe transformed to an equivalent representation of the form {L′z′ + l|Q′z′ + q ≥ 0, z′ ∈ Z
m′

}where L′ has full 
olumn rank in the 
ontext of its 
oordinate polyhedron.12



Proof Let the A be of rank d and H =
(

H ′ 0
) be its Hermite normal form su
h that H ′ isthe submatrix of full 
olumn rank 
orresponding to the �rst d 
olumns of H. From de�nition,there exists a unimodular matrix U su
h that A = HU. We have AU−1 =

(

H ′ 0
) where

U−1 is the unimodular inverse of U . Let U =

(

V1

V2

) and U−1 =
(

V ′
1 V ′

2

) where V ′
2 isthe 
olumn submatrix of U−1 
orresponding to the zero-
olumns of ( H ′ 0

), V1V
′
1 = I,

V1V
′
2 = 0, V2V

′
1 = 0 and V2V

′
2 = I. Let us 
onstru
t a matrix, W su
h that W

(

V ′
1 V ′

2

)

=
(

V ′
1 0

) or W =
(

V ′
1 0

)

U or W = V ′
1V1.Sin
e, ker(A) ⊆ ker(L), LV ′

2 = 0 and therefore Lz + l = LWz + l. Also sin
e, ker(A) ⊆ker(Q) we get Qz + q = QWz + q. With this, the representation {Lz + l|Qz + q ≥ 0, z ∈ Z
m}is equivalent to {LWz + l|QWz + q ≥ 0, z ∈ Z

m} or
{LV ′

1V1z + l|QV ′
1V1z + q ≥ 0, z ∈ Z

m} (5)The Hermite normal form for V1 is ( I 0
) by proposition 1 sin
e V1V

′
1 = V ′T

1 V T
1 = I.For unimodular matrix U ′, we have

{V1z|z ∈ Z
m} = {

(

I 0
)

U ′z|z ∈ Z
m}

= {
(

I 0
)

z′|z′ ∈ Z
m}

= {z′′|z′′ ∈ Z
d}Denoting V1z by z′′ in (5), we get the following equivalent representation

{LV ′
1z′′ + l|QV ′

1z′′ + q ≥ 0, z′′ ∈ Z
d} (6)We will now show that (6) is the transformed equivalent representation where LV ′

1 hasfull 
olumn rank in the 
ontext, say ker(Q′
0), of its 
oordinate polyhedron {z′′|QV ′

1z
′′ + q ≥

0, z′′ ∈ Z
d}. Note, ker(Q0V

′
1) is a superset ker(Q′

0).ker( LV ′
1

Q′
0

)

⊆ ker( LV ′
1

Q0V
′
1

)

= ker(( L
Q0

)

V ′
1

)

= ker(AV ′
1)

= ker(H ′)

= {0}sin
e H ′ has full 
olumn rank.Although Le Verge has already been proved that representations satisfying ker(A) = {0}are Z-polyhedra whi
h 
an be expressed in the required form presented in (1), for the sakeof 
ompleteness, we present the following transformation that 
onverts these representations13



to an equivalent representation satisfying ker(L) = {0} whi
h 
an be brought to the �nalrequired form using the transformation in step 2 presented in se
tion 5.1.1.Consider a representation, Z, of the form {Lz + l|Qz + q ≥ 0, z ∈ Z
m} satisfying ker(A) =

{0} where A =

(

L
Q0

) and ker(Q0) is the 
ontext of the polyhedron Pc
Z = {z|Qz + q ≥

0, z ∈ Z
m}.Le Verge showed in [11℄ that the 
ondition ker(A) = {0} holds i� there exists an a�nefun
tion, f ′(y) = Ky + k, with rational elements su
h that f ′(f(z)) = z for all z ∈ Pc

Z where
f(z) = Lz + l. With the presen
e of su
h a �restri
ted inverse�, the Z-polyhedron 
an beequivalently represented as {Lz + l|Q(K(Lz + l) + k) + q ≥ 0, z ∈ Z

m}. Simplifying therepresentation, we get the form
{Lz + l|QKLz + (q + QKl + Qk) ≥ 0, z ∈ Z

m} (7)Sin
e, K and k are rational, we may need to multiply the 
onstraints of the 
oordinatepolyhedron by appropriate 
onstants to get integer elements for all matri
es and ve
tors. Wewill hereafter assume that su
h a transformation has been performed.Let L have rank d and H =
(

H ′ 0
) be its Hermite normal form su
h that H ′ is a n×dmatrix of full 
olumn rank and L = HU where U is a unimodular matrix. The representationin (7) is equivalent to

{HUz + l|Q′HUz + q′ ≥ 0, z ∈ Z
m}where Q′ = QK and q′ = q + QKl + Qk. Sin
e U is unimodular, we have an equivalentrepresentation given by

{Hz′ + l|Q′Hz′ + q′ ≥ 0, z′ ∈ Z
m}

= {
(

H ′ 0
)

z′ + l|Q′
(

H ′ 0
)

z′ + q′ ≥ 0, z′ ∈ Z
m}where z′ = Uz . Finally by 
hanging to 
oordinates z′′ =

(

I 0
)

z′, we get
{H ′z′′ + l|Q′′z′′ + q′ ≥ 0, z′′ ∈ Z

d}where Q′′ = Q′H ′. Sin
e, H ′ has full 
olumn rank, the representation 
an be brought to the�nal required form using the transformation in step 2 presented in se
tion 5.1.1.Hen
eforth we will assume that all representations of Z-polyhedra 
onform to our repre-sentation s
heme presented in (1).5.1.3 InterpretationThe 
onventional way to interpret our representation of Z-polyhedra as {Lz+l|Qz+q ≥ 0, z ∈
Z

m} is similar to the de�nition of an lbl, as an a�ne image of an integer polyhedron. We wishto motivate an alternate view in whi
h {Lz + l|z ∈ Z
m} in the Z-polyhedral representationis interpreted as a representation of an a�ne latti
e. The Z-polyhedral representation is saidto be based on the representation of the a�ne latti
e. The set of valid 
oordinates is givenby the 
oordinate polyhedron. Iteration points of the Z-polyhedral domain are points of thea�ne latti
e in the parti
ular representation 
orresponding to valid 
oordinates.14



5.1.4 Equivalen
eOur representation for Z-polyhedra is su
h that any two Z-polyhedral representations basedon the same representation of an a�ne latti
e are equivalent i� their 
orresponding 
oordinatepolyhedra are equal. We will now study the equivalen
e of Z-polyhedral representations basedon di�erent representations of the same a�ne latti
e. Re
all that in our representation s
heme,
Z-polyhedral representations on di�erent a�ne latti
es are ne
essarily di�erent. Consider therepresentation of a Z-polyhedron

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (8)Let {L′z′+l′|z′ ∈ Z

m} be a di�erent representation of the a�ne latti
e in the Z-polyhedralrepresentation. Note that as a 
onsequen
e of our representation s
heme, L′ ne
essarily hasthe same number of 
olumns as L. By de�nition L′ = LU and l′ = Lz0 + l for some 
onstantve
tor z0 ∈ Z
m. The relationship between the 
oordinates in the two latti
es is simply

Lz + l = L′z′ + l′

= LUz′ + Lz0 + l

= L(Uz′ + z0) + lSin
e L has full 
olumn rank, we have z = Uz′ + z0. Substituting for z in (8), we get thefollowing equivalent representation
{L′z′ + l′|Q(Uz′ + z0) + q ≥ 0, z′ ∈ Z

m}With this 
hara
terization, we have pre
isely de
omposed the problem of equivalen
e of
Z-polyhedral representations to the problem of equivalen
e of representations of a�ne latti
esand the equality of polyhedra. Our equivalen
e is pre
ise in the sense that if two Z-polyhedradi�er we will be able to provide an iteration point in their di�eren
e, otherwise, we willguarantee equality. This is a dire
t 
onsequen
e of our representation s
heme. In previousworks [16℄, the representation of Z-polyhedra was su
h that, in some 
ases, the equivalen
eof two representations 
ould not be guaranteed even when the domains were identi
al.5.1.5 Canoni
al FormThe representation of a Z-polyhedron is not unique. Here, we will present a 
anoni
al form forthe representation of Z-polyhedra. For this, we present a 
anoni
al form for the representationof a�ne latti
es.De�nition 3 An a�ne latti
e of the form {Lz + l|z ∈ Z

m} where the n × m matrix L hasfull 
olumn rank is in 
anoni
al form if1. L is in Hermite normal form.2. ∀1 ≤ j ≤ m: lij < Lij ,j where Lij ,j is the �rst non-zero element in 
olumn j.15



As a property of our representation s
heme, two Z-polyhedral representations based onthe same latti
e are equivalent i� their 
oordinate polyhedra are equal. Now, if we 
hooseany previously used 
anoni
al form for the representation of the 
oordinate polyhedra, wehave a 
anoni
al representation for Z-polyhedra.5.2 Unions of Z-PolyhedraDomains in the Z-polyhedral model are �nite unions of Z-polyhedra where ea
h element inthe union is expressed in the representation dis
ussed in se
tion 5.1. To be an instan
e of theequational language, unions of Z-polyhedra must be 
losed under interse
tion, �nite unionand di�eren
e and image and preimage by the family of fun
tions. Here we will show 
losureunder the interse
tion and di�eren
e (The union of a �nite set of unions of Z-polyhedra istrivially a �nite set of Z-polyhedra ).In se
tion 5.3 we will de�ne the family of fun
tions and then demonstrate 
losure of thefamily of unions of Z-polyhedra under image and preimage by the family of fun
tions.5.2.1 Interse
tionFrom elementary set theory, the interse
tion of two unions of Z-polyhedra , given as D =
⋃

i ZP i and D′ =
⋃

j ZP ′
j , equals the union of interse
tions of two Z-polyhedra as follows

D ∩ D′ = (
⋃

i

ZP i) ∩ (
⋃

j

ZP ′
j) =

⋃

i,j

(ZP i ∩ ZP ′
j)Thus, we only need to show that the interse
tion of two Z-polyhedra is a �nite unionof Z-polyhedra . As a matter of fa
t, it is pre
isely a single Z-polyhedron . Let the two

Z-polyhedra be represented by, say Z and Z ′ as follows
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}

Z ′ = {L′z′ + l′|Q′z′ + q′ ≥ 0, z′ ∈ Z
m′

}The interse
tion of Z-polyhedra represented by Z and Z ′ relies on the interse
tion of thea�ne latti
es represented by L = {Lz + l|z ∈ Z
m} and L′ = {L′z′ + l′|z′ ∈ Z

m′

} on whi
hthey are based. The interse
tion of a�ne latti
es represented by L and L′ is an a�ne latti
e,say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

} where L′′ has full 
olumn rank. The a�nelatti
e represented by L′′ may be empty, in whi
h 
ase the 
orresponding Z-polyhedron isempty. If L′′ represents a non-empty a�ne latti
e, we have the following relationships. Note,
L′′ may have a fewer number of 
olumns than either L or L′.

L′′ = LS, l′′ = Ls + l
L′′ = L′S′, l′′ = L′s′ + l′where S and S′ are matri
es and s and s′ are ve
tors.16



Taking the interse
tion of the Z-polyhedra represented by Z and Z ′ with the a�ne latti
erepresented by L′′ we get
Z ∩ L′′ = {L′′z′′ + l′′|Q(Sz′′ + s) + q ≥ 0, z′′ ∈ Z

m′′

}

Z ′ ∩ L′′ = {L′′z′′ + l′′|Q′(S′z′′ + s′) + q′ ≥ 0, z′′ ∈ Z
m′′

}Sin
e, they are based on the same representation of the a�ne latti
e, the interse
tion ofthese two Z-polyhedra is simply
{L′′z′′ + l′′|

(

QS
Q′S′

)

z′′ +

(

q + Qs
q′ + Q′S′

)

≥ 0, z′′ ∈ Z
m′′

}Note, the 
oordinate polyhedra of this interse
tion may not have the entire universe asits 
ontext, in whi
h 
ase, we would bring it to the required representation through thetransformation in step 2 presented in se
tion 5.1.1.5.2.2 Di�eren
eFrom set theory, the di�eren
e of two unions of Z-polyhedra, given as D =
⋃

i ZP i and
D′ =

⋃

j ZP ′
j , equals the union of di�eren
es of two Z-polyhedra as follows

D −D′ = (
⋃

i

ZPi) − (
⋃

j

ZP ′
j) =

⋃

i





⋂

j

(ZP i −ZP ′
j)



If we show that the di�eren
e of two Z-polyhedra is a �nite union of Z-polyhedra , wemay use the result on 
losure of domains under interse
tion presented in the previous se
tionand 
laim 
losure under di�eren
e.Let the two Z-polyhedra be represented by, say Z and Z ′ as follows
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}

Z ′ = {L′z′ + l′|Q′z′ + q′ ≥ 0, z′ ∈ Z
m′

}The di�eren
e of Z-polyhedra represented by Z and Z ′ relies on the interse
tion anddi�eren
e of the a�ne latti
es represented by L = {Lz + l|z ∈ Z
m} and L′ = {L′z′ + l′|z′ ∈

Z
m′

} on whi
h they are based. The di�eren
e of Z-polyhedra represented by Z and Z ′ isa union of Z-polyhedra elements of whi
h may be de�ned on either the interse
tion or thedi�eren
e of the a�ne latti
es.Let us �rst 
onsider the interse
tion of the a�ne latti
es. The interse
tion of a�ne latti
esrepresented by L and L′ is an a�ne latti
e, say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}where L′′ has full 
olumn rank. The a�ne latti
e represented by L′′ may be empty, in whi
h
ase all Z-polyhedra 
orresponding to the interse
tion are empty. If L′′ represents a non-empty a�ne latti
e, we have the following relationships.
L′′ = LS, l′′ = Ls + l
L′′ = L′S′, l′′ = L′s′ + l′17



where S and S′ are matri
es and s and s′ are ve
tors.Taking the interse
tion of the Z-polyhedra represented by Z and Z ′ with the a�ne latti
erepresented by L′′ we get
Z ∩ L′′ = {L′′z′′ + l′′|Q(Sz′′ + s) + q ≥ 0, z′′ ∈ Z

m′′

}

Z ′ ∩ L′′ = {L′′z′′ + l′′|Q′(S′z′′ + s′) + q′ ≥ 0, z′′ ∈ Z
m′′

}Sin
e, they are based on the same representation of the a�ne latti
e, the di�eren
e ofthese two Z-polyhedra is simply a union of Z-polyhedra , ea
h element of whi
h (indexed by
k) 
an be represented by

{L′′z′′ + l′′|Q′′
kz

′′ + q′′k ≥ 0, z′′ ∈ Z
m′′

}where the following di�eren
e of polyhedra {z′′|Q(Sz′′+s)+q ≥ 0, z′′ ∈ Z
m′′

}−{z′′|Q′(S′z′′+
s′)+ q′ ≥ 0, z′′ ∈ Z

m′′

} is a union of polyhedra of the form {z′′|Q′′
kz

′′ + q′′k ≥ 0, z′′ ∈ Z
m′′

}. Letthe obtained union of Z-polyhedra be denoted by Dint. The 
oordinate polyhedra of elementsin this union may not have the entire universe as its 
ontext, in whi
h 
ase, we would bringthem to the required representation through the transformation in step 2 presented in se
tion5.1.1.Now, let us 
onsider the di�eren
e of the a�ne latti
es. The di�eren
e of a�ne latti
esrepresented by L and L′ is a union of non-empty a�ne latti
es (indexed by h), say representedby L#

h = {L#

h z#

h + l#h |z#

h ∈ Z
m

#

h } where ea
h L#

h has full 
olumn rank. We have the followingrelationships.
L#

h = LSh, l#h = Lsh + lwhere Sh is an matrix and sh is an ve
tor. The interse
tion of the Z-polyhedra representedby Z with the a�ne latti
es represented by L#

h 
an be represented by
Z ∩ L#

h = {L#
h z#

h + l#h |QShz#
h + (q + Qsh) ≥ 0, z#

h ∈ Z
m

#

h }Let this union be denoted by Ddi�. The 
oordinate polyhedra of elements in this unionmay not have the entire universe as its 
ontext, in whi
h 
ase, we would bring them to therequired representation through the transformation in step 2 presented in se
tion 5.1.1.5.3 A�ne Fun
tions on a Latti
eWe will now de�ne the family of fun
tions de�ned on unions of Z-polyhedra. We allowfun
tions of the form (Kz + k → Rz + r), where K has full 
olumn rank. Su
h fun
tionsprovide a mapping from the iteration Kz +k to the iteration Rz + r. We will 
all these a�nefun
tions on a latti
e or a�ne latti
e fun
tions. We have imposed that K has full 
olumnrank to guarantee that the fun
tion maps a single point in its domain to a single point in itsrange. 18



5.3.1 PreimageThe preimage of a union of Z-polyhedra is the union of the preimage of individual Z-polyhedra. We therefore only need to show that the preimage of a single Z-polyhedron,represented by say Z, is a �nite union of Z-polyhedra . As a matter of fa
t, it is pre
isely asingle Z-polyhedron . Let the representation Z be
Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}Let the desired preimage on Z be by the fun
tion represented as (Kz′ + k → Rz′ + r)where K has full 
olumn rank, m′ say. By de�nition, the fun
tion provides a mapping fromthe iteration point Kz′ + k to the iteration point Rz′ + r. Sin
e, we are 
on
erned withthe preimage, if the iteration point Rz′ + r lies in the Z-polyhedron represented by Z theiteration point in the preimage is Kz′ + k. However, Rz′ + r may not ne
essarily lie in the
Z-polyhedron represented by Z for all values of z′. Spe
i�
ally, a preimage exists only foriteration points in the interse
tion the Z-polyhedron represented by Z and the a�ne latti
erepresented by {Rz′ + r|z′ ∈ Zm′

}. Consider the interse
tion of the a�ne latti
es representedby L = {Lz + l|z ∈ Z
m} and L′ = {Rz′ + r|z′ ∈ Zm′

}. The interse
tion of a�ne latti
esrepresented by L and L′ is an a�ne latti
e, say represented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}where L′′ has full 
olumn rank. The a�ne latti
e represented by L′′ may be empty, in whi
h
ase the preimage is also empty. If L′′ represents a non-empty a�ne latti
e, we have thefollowing relationships.
L′′ = LS, l′′ = Ls + l
L′′ = RS′, l′′ = Rs′ + rwhere S and S′ are matri
es and s and s′ are ve
tors.Taking the interse
tion of the Z-polyhedron represented by Z and the a�ne latti
e rep-resented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}, we get the following Z-polyhedron.
Z ∩ L′′ = {L′′z′′ + l′′|QSz′′ + (q + Qs) ≥ 0, z′′ ∈ Z

m′′

} (9)A preimage by the fun
tion exists only for iterations in the Z-polyhedron given above.Therefore, we may safely restri
t the fun
tion to map to iteration points in the latti
e {L′′z′′+
l′′|z′′ ∈ Z

m′′

}. We will �rst 
hara
terize values of z′ for whi
h Rz′ + r lies in the latti
e
{L′′z′′ + l′′|z′′ ∈ Z

m′′

}. Substituting for L′′ and l′′, we have L′′z′′ + l′′ = RS′z′′ + Rs′ + r =
R(S′z′′ + s′) + r. This equals Rz′ + r to get the desired values of z′. Let R be of rank d and
H =

(

H ′ 0
) be its Hermite normal form su
h that R = HU . Substituting for R we get

(

H ′ 0
)

U(S′z′′ + s′) =
(

H ′ 0
)

Uz′
(

H ′ 0
)

S′′z′′ + s′′ =
(

H ′ 0
)

Uz′where S′′ = US′ and s′′ =
(

H ′ 0
)

Us′. Sin
e, U is a unimodular matrix, we will repla
e
Uz′ by z# to get (KU−1z# + k → Hz# + r) as an equivalent representation of the fun
tionby whi
h a preimage is desired and ( H ′ 0

)

S′′z′′ + s′′ =
(

H ′ 0
)

z#. If z# =

(

z#
1

z#
2

),19



S′′ =

(

S′′
1

S′′
2

) and s′′ =

(

s′′1
s′′2

) then we have z#
1 = S′′

1z′′ + s′′1. As explained, we maysafely restri
t the fun
tion to map to the iteration points in the latti
e {L′′z′′ + l′′|z′′ ∈ Z
m′′

}.Substituting for z# and z#
1 , we get the following representation for the fun
tion
KU−1

(

S′′
1 z′′ + s′′1

z#
2

)

+ k → L′′z′′ + l′′If KU−1 =
(

K ′
1 K ′

2

) we have the following representation of the fun
tion. K ′
1S

′′
1z′′ +

K ′
1s

′′
1 + K ′

2z
#
2 + k → L′′z′′ + l′′ whi
h is equivalent to

(

K ′
1S

′′
1 K ′

2

)

(

z′′

z#
2

)

+ (K ′
1s

′′
1 + k) → L′′z′′ + l′′Note, that z#

2 is un
onstrained. We may now represent the preimage by
{

(

K ′
1S

′′
1 K ′

2

)

(

z′′

z#
2

)

+ (K ′
1s

′′
1 + k)

|
(

QS 0
)

(

z′′

z#
2

)

+ (q + Qs) ≥ 0

,

(

z′′

z#
2

)

∈ Z
m′−d+m′′

}

(10)Sin
e, ( K ′
1 K ′

2

) has full 
olumn rank, ( K ′
1S

′′
1 K ′

2

) will have full 
olumn rank i�
K ′

1S
′′
1 has full 
olumn rank. Note that L′′ =

(

H ′ 0
)

(

S′′
1

S′′
2

)

= H ′S′′
1 where both L′′ and

H ′ have full 
olumn rank. Therefore, S′′
1 ne
essarily must have full row rank, whi
h in turnimplies that K ′

1S
′′
1 has full 
olumn rank. The 
oordinate polyhedra for (10) may not have theentire universe as its 
ontext, in whi
h 
ase, we would bring it to the required representationthrough the transformation in step 2 presented in se
tion 5.1.1.Dis
ussion We wish to mention that it is ne
essary to 
onsider the general 
ase where thea�ne latti
e in the range of a fun
tion may not ne
essarily be a subset of the a�ne latti
eon whi
h the Z-polyhedron is based. If otherwise, we had restri
ted the fun
tion to have itsrange de�ned over the appropriate a�ne sublatti
es (whi
h would have signi�
antly simpli�edthe 
al
ulations presented above), the semanti
 equivalen
e of Z-polyhedra based solely onthe set of iteration points, would fail. For example, the fun
tion (i → i) would be de�ned onthe Z-polyhedron represented by {i|i ≥ 0, i ∈ Z} but would not be de�ned on the equivalentunion of two Z-polyhedra represented by {2i|i ≥ 0, i ∈ Z} and {2i + 1|i ≥ 0, i ∈ Z}.5.3.2 Change of BasisBefore, we talk about arbitrary images of unions of Z-polyhedra by a�ne fun
tions on latti
es,we will study a restri
ted 
ase in whi
h 20



1. ea
h element4 in the union is of the form
{Lizi + li|Qizi + qi ≥ 0, zi ∈ Z

m}2. the a�ne latti
e fun
tion represented as (Kz′ + k → Rz′ + r) is su
h that K as well as
R have full dimensional 
olumn rank, m.3. The a�ne latti
es {Lizi + li|zi ∈ Z

m} related to ea
h Z-polyhedronin the union aresublatti
es of the a�ne latti
e {Kz′ + k|z′ ∈ Z
m} in the domain of the a�ne latti
efun
tion.The 
hange of basis is a frequently used spa
e reindexing fun
tion to perform semanti
allyequivalent transformations of the spe
i�
ation. We will �rst study the image of ea
h Z-polyhedronby the 
hange of basis fun
tion. Then, we will dis
uss the transformation of thespe
i�
ation.By property 3 above,

Li = KSi, li = Ksi + kwhere Si are matri
es and si are ve
tors. We may safely restri
t the 
hange of basis ona Z-polyhedron to be de�ned over the a�ne sublatti
e related to the Z-polyhedron. Therestri
ted 
hange of basis is
(K(Sizi + si) + k → R(Sizi + si) + r)whi
h is equivalent to

(Lizi + li → RSizi + (r + Rsi))The image 
an be represented as
{RSizi + (r + Rsi)|Qizi + qi ≥ 0, zi ∈ Z

m}Note, RSi has full 
olumn rank sin
e R has full 
olumn rank and Si has full row rank.Also the 
oordinate polyhedron is identi
al to the original Z-polyhedron, and so has the entireuniverse as its 
ontext.The transformation of the spe
i�
ation under a 
hange of basis, f of the variable X is thefollowing.1. Repla
e the domain of X by its image under f .2. Repla
e all o

urren
es of X on the rhs of any equation by X.f3. For the equation de�ning X, add a dependen
e by f−1 on the expression on its rhs.4In some 
ases, we may even 
hoose to waive the 
ondition on the representation of Z-polyhedra that the
oordinate polyhedron has the entire universe as its 
ontext.21



5.3.3 ImagesWe will now dis
uss images of unions of Z-polyhedra by arbitrary a�ne fun
tions on latti
es.The image of a union of Z-polyhedra by a fun
tion is the union of images of individual
Z-polyhedra .We already know that the image of a Z-polyhedron by an arbitrary a�ne fun
tion isan lbl whi
h is a more general 
lass of obje
ts than Z-polyhedra. Here, we will prove asurprising result that any lbl is a union of Z-polyhedra. Thus, the family of unions of lblsis identi
al to the family of unions of Z-polyhedra.Consider the image of the Z-polyhedron represented as Z = {Lz + l|Qz + q ≥ 0, z ∈ Z

m}by the a�ne latti
e fun
tion represented as (Kz′ + k → Rz′ + r) where K has full 
olumnrank, m′ say. By de�nition, the fun
tion provides a mapping from the iteration point Kz′ +kto the iteration point Rz′ + r. The image Rz′ + r only exists for those values of z′ for whi
hthe latti
e point Kz′ + k lies in the Z-polyhedron represented by Z. Thus, an image onlyexists for points in the interse
tion of the Z-polyhedron represented by Z and the a�ne latti
e
{Kz′ + k|z′ ∈ Z

m′

}.Consider the interse
tion of the a�ne latti
es represented by L = {Lz + l|z ∈ Z
m} and

L′ = {Kz′+k|z′ ∈ Z
m′

}. Let this be the a�ne latti
e, say represented by L′′ = {L′′z′′+l′′|z′′ ∈
Z

m′′

} where L′′ has full 
olumn rank. The a�ne latti
e represented by L′′ may be empty,in whi
h 
ase the image is also empty. If L′′ represents a non-empty latti
e, we have thefollowing relationships.
L′′ = LS, l′′ = Ls + l

L′′ = KS′, l′′ = Ks′ + kwhere S and S′ are matri
es and s and s′ are ve
tors.Taking the interse
tion of the Z-polyhedron represented by Z and the a�ne latti
e rep-resented by L′′ = {L′′z′′ + l′′|z′′ ∈ Z
m′′

}, we get the following Z-polyhedron.
Z ∩ L′′ = {L′′z′′ + l′′|QSz′′ + (q + Qs) ≥ 0, z′′ ∈ Z

m′′

} (11)An image by the fun
tion exists only for iterations in the Z-polyhedron given above.Therefore, we may safely restri
t the fun
tion to map iteration points in the latti
e {L′′z′′ +
l′′|z′′ ∈ Z

m′′

}. The restri
ted fun
tion is
(K(S′z′′ + s′) + k → R(S′z′′ + s′) + r)whi
h is equivalent to

(L′′z′′ + l′′ → RS′z′′ + (r + Rs′))The image may be represented as
{Tz′′ + t|Q′z′′ + q′ ≥ 0, z′′ ∈ Z

m′′

} (12)where T = RS′, t = (r + Rs′), Q′ = QS and q′ = (q + Qs)The set in (12) is not ne
essarily a Z-polyhedron sin
e there is no guarantee on the rank of
T . We will now provide an algorithm that transforms su
h a set into a union of Z-polyhedra.22



Let the 
ontext of the 
oordinate polyhedron P = {z′′|Q′z′′ + q′ ≥ 0, z′′ ∈ Z
m′′

} be givenby ker(Q0). If ker(A) ⊆ ker(Q′) where A =

(

T
Q0

), the set in (12) is a Z-polyhedron as a
onsequen
e of theorem 1.When this 
ondition fails, we pi
k any 
onstant ve
tor w in ker(A)\ker(Q′). Let P ′ be thetranslation of P along v whi
h equals either w or −w su
h that
P − P ′ =

⋃

ci∈C

P ∩ (aT
i z′′ + αi < aT

i v) (13)is a non-empty union, where P satis�es the set of 
onstraints C and ci is a 
onstraint in Cof the form (aT
i z′′ + αi ≥ 0). We are guaranteed that one of the translations (along w or

−w) results in a non-empty union sin
e w /∈ ker(Q′). The key insight into our proof is thatthe image of P by the a�ne latti
e fun
tion equals the image of P − P ′ by the a�ne latti
efun
tion. This is true sin
e any element z1 ∈ P ∩P ′ is of the form z0 + γv where z0 ∈ P −P ′and γ is a 
onstant. Sin
e v lies in ker(T ), its image satis�es the following property
Tz1 + t = T (z0 + γv) + t = Tz0 + tFor ea
h non-empty element in the union of polyhedra in (13), 
reate a union of polyhedraof the form

Pi,j = P ∩ (aT
i z′′ + αi = βj)where βj ∈ {0, . . . , aT

i v − 1). Now we 
laim that if the 
ontext of Pi,j is ker(Q0i,j
) thenker( T

Q0i,j

)

⊂ ker( T
Q0

) (14)where the in
lusion is stri
t. This is be
ause1. aT
i is linearly independent of the rows of ( T

Q0

) sin
e ( T
Q0

)

v = 0 and aT
0 v 6= 0.2. aT

i is a row of Q0i,j
and not a row of Q0.One iteration of this transformation returns an equivalent representation of the set in (12)that is a union of form
⋃

i,j

{Tz′′ + t|Q′
i,jz

′′ + q′i,j ≥ 0, z′′ ∈ Z
m′′

}where Pi,j = {z′′|Q′
i,jz

′′ + q′i,j ≥ 0, z′′ ∈ Z
m′′

}Thus, we are guaranteed that the algorithm will eventually terminate as a 
onsequen
e ofthe stri
t in
lusion presented in (14).Finally, we wish to mention that this result does not violate the 
omplexity results forde
iding whether an lbl is a Z-polyhedra sin
e there 
an potentially be an exponentialnumber of elements in our union. 23



6 Simplifying Redu
tionsThe work presented in [8℄ shows the automati
 and optimal de
rease in the algorithmi
 
om-plexity of redu
tions. It is one example of the extremely strong stati
 analysis and programtransformations o�ered by the polyhedral model. Here, we will show that the simpli�
ationof redu
tions 
an easily be extended to the Z-polyhedral model, as a 
onsequen
e of ourrepresentation and the 
onstru
tive proofs of the 
losure properties.For simpli�
ation, a redu
tion is required to be de�ned over an expression of the form
E.f where the domain of the expression is a single polyhedron, and proje
ted by a standarda�ne fun
tion. By the 
losure of Z-polyhedral domains under set di�eren
e, more spe
i�
ally,by the algorithm presented as its 
onstru
tive proof, we express any arbitrary Z-polyhedraldomain (of the expression) as a disjoint union of Z-polyhedra. This is semanti
ally equivalentto an expression that has, as subexpressions, redu
tions over expressions de�ned on elements(Z-polyhedra) in the disjoint domain. Simpli�
ation of the original redu
tion is then simplythe de
rease of the asymptoti
 
omplexity these �smaller� redu
tions.Now, let us 
onsider one of these simpler redu
tions. With the te
hniques presented inthe 
onstru
tive proofs for 
losure under image and preimage, we may derive an equivalentredu
tion with the following properties.1. The domain of the expression within the redu
tion is represented by Z = {Lz+l|Qz+q ≥

0, z ∈ Z
m}2. The dependen
e fun
tion, f , is represented by (Lz + l → Rz + r)3. The proje
tion fun
tion is represented as (Lz + l → Tz + t)The simpler redu
tion is equivalent to the redu
tion over an expression whose domain is

{z|Qz + q ≥ 0, z ∈ Z
m} and whose value at z is the value of the original expression at Lz + l.The asso
iated dependen
es and proje
tions are of the form (z → Rz + r) and (z → Tz + t)respe
tively. This redu
tion is in the form required for simpli�
ation.In this example, we presented the generalization of an analysis developed for the poly-hedral model to the Z-polyhedral model. However, an important observation is that thegeneralization was performed through the transformation of the analysis in the Z-polyhedralmodel to the original analysis in the polyhedral model. This shows that, in many 
ases, onemay reuse te
hniques and tools developed for the polyhedral model.7 Related WorkThe �rst work that proposed the extension to a language based on unions of Z-polyhedra wasby Quinton et. al. [16℄. However, as a 
onsequen
e of their representation and interpretation,they did not have a unique 
anoni
 representation. Also they 
ould not establish the equiva-len
e between identi
al Z-polyhedra nor did they provide the di�eren
e or two Z-polyhedra.Other 
onsequen
es in
luded 
omplex semanti
s for 
hange of basis. In many ways, our paperis a logi
al 
ompletion of their e�orts initiated a de
ade ago.24



Ramanujam [17℄ des
ribes algorithms to generate 
ode, both sequential and parallel, afterapplying non-unimodular transformations to nested loop programs. His work is restri
ted to asingle, perfe
tly nested loop nest, and the same transformation is applied to all the statementsin the loop body. The 
ode generation problem thus redu
ed to s
anning the image, by anon-unimodular fun
tion, of a single polyhedron.Rajopadhye and Lenders [12℄ propose a te
hnique for designing multi-rate VLSI arrays,whi
h are regular arrays of pro
essing elements, but where di�erent registers are 
lo
ked atdi�erent rates. This leads to very e�
ient hardware stru
tures. The mathemati
al formalismis based on using systems of re
urren
e equations (i.e., equational programs) de�ned over
Z-polyhedral domains, whi
h are viewed as the images of polyhedra by non-singular a�netransformations. Although the fo
us of the paper is on synthesis methods, notably s
hedulingand lo
alization, the authors dis
uss the "legality" of the proposed spe
i�
ation, in terms of
he
king whether a variable is a
tually de�ned at all points in the domain where it is de
lared.This requires determining whether the values of other variables spe
i�ed on the right hand sideof the equation are de�ned at pre
isely those points, whi
h requires the 
losure properties wedes
ribe here. Rajopadhye and Lenders provide su�
ient 
onditions, not a 
omplete solution.8 Con
lusions and Future WorkIt has been believed for more than a de
ade that the polyhedral model 
an be generalized tounions of Z-polyhedra [16, 11℄. However, till date, previously known theories and tools onthe polyhedral model have not been generalized to unions of Z-polyhedra.We present a novel representation and interpretation of Z-polyhedra that enables us toprove the various 
losure properties of the family of unions of Z-polyhedra required to extendthe polyhedral model. In addition, we prove 
losure in the Z-polyhedral model under imagesby arbitrary a�ne fun
tions whi
h had been a major limitation of the polyhedral model. Asa 
orollary, we prove that unions of lbls, widely assumed to be a ri
her 
lass, are equivalentto unions of Z-polyhedra.The language-theoreti
 aspe
t of the Z-polyhedral model is also very interesting. Ourequational language is purely fun
tional, and through its in
orporation into a general pur-pose fun
tional language, one may make de
ades of resear
h in the automati
 parallelizationavailable to modern fun
tional languages.Future work involves the extension of the various te
hniques in the polyhedral model. Weintend to provide an implementation for manipulating unions of Z-polyhedra based on ourresults. The 
anoni
 representation of unions of Z-polyhedra is also an open problem.Referen
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