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S
heduling in the Z-Polyhedral Model∗Gautam, DaeGon Kim and S. Rajopadhye{gautam|kim}�
s.
olostate.edu, Sanjay.Rajopadhye�
olostate.eduO
tober 12, 2006Abstra
tThe polyhedral model is extensively used for analyses and transformations of reg-ular loop programs, one of the most important being automati
 parallelization. Themodel, however, is limited in expressivity and the need for the generalization to moregeneral 
lass of programs has been widely known. Analyses and transformations in thepolyhedral model rely on 
ertain 
losure properties. Re
ently, these 
losure propertieswere extended to programs where variables may be de�ned over unions of Z-polyhedra,interse
tions of polyhedra and latti
es.We present the s
heduling analysis for the automati
 parallelization of programs inthe Z-polyhedral model, and obtain multidimensional s
hedules through an ilp formu-lation that minimizes laten
y. The resultant s
hedule 
an then be used to 
onstru
t aspa
e-time transformation to obtain an equivalent program in the Z-polyhedral model.1 Introdu
tionThe polyhedral model is a well developed formalism providing sophisti
ated analysis andtransformations of the kernels of many 
ompute- and data- intensive appli
ations. Pro-grams in the polyhedral model essentially 
omprise of (i) variables representing 
olle
tionsof values de�ned over polyhedral domains1, and (ii) a�ne dependen
es between 
omputa-tions. Feautrier [5℄ showed that an important 
lass of 
onventional imperative loop programs
alled a�ne 
ontrol loops (a
ls) 
an be transformed to programs in the polyhedral model.Signi�
ant parts of the Spe
FP and Perfe
tClub ben
hmarks are a
ls [1℄.Many 
omputations 
an be expressed in the polyhedral model, e.g., matrix multipli
ation,LU-de
omposition, Cholesky fa
torization, Kalman �ltering, as well as algorithms arising inRNA se
ondary stru
ture predi
tion. Nevertheless, the polyhedral model su�ers from 
ertainlimitations. Loop programs with a non-unit stride fall outside the s
ope of the model. This isan important 
lass of programs [22, 15, 27, 8℄ arising in situations su
h as the red-bla
k sor
omputation for solving partial di�erential equations. As a 
onsequen
e, non-unimodular
∗This resear
h was supported in part, by the National S
ien
e Foundation, under the grant EI-030614:HiPHiPECS: High Level Programing of High Performan
e Embedded Computing Systems1These may be viewed as generalized multi-dimensional arrays, the bounds of whi
h are given by arbitrarya�ne inequalities. 1



transformations are also disallowed in the polyhedral model. Non-unimodular transforma-tions are required for the derivation of parallel ar
hite
tures with periodi
 pro
essor a
tivity,su
h as multi-rate arrays [14℄ and bidire
tional systoli
 arrays.It had long been 
onje
tured that these limitations 
an be resolved through the extensionof variable domains to unions of Z-polyhedra whi
h are the interse
tion of polyhedra anda�ne latti
es. However, the required 
losure properties for these Z-polyhedral domainswere only re
ently proved [9℄, as a result of a novel representation for Z-polyhedra and theasso
iated family of dependen
es.The Z-polyhedral model enables more sophisti
ated analyses and transformations byproviding greater information in the spe
i�
ations viz., pertaining to latti
es. More impor-tantly, the Z-polyhedral model allows spe
i�
ations with a more general dependen
e patternthan the spe
i�
ations in the polyhedral model.Example 1 Consider the following loop programfor i = 1 to NA[i℄ = (i%2==0 ? A[i/2℄ : 0);This program exhibits a dependen
e pattern that is ri
her than the a�ne dependen
esof the polyhedral model. In other words, it is impossible to write an equivalent programin the polyhedral model, i.e., without the use of the mod operator, that 
an perform therequired 
omputation. One may 
onsider repla
ing the variable A by two variables X and Y
orresponding to the even and odd points of A su
h that A[2i] = X[i] and A[2i − 1] = Y [i].However, the de�nition of X now requires the mod operator, be
ause X[2i] = X[i] and
X[2i − 1] = Y [i].Automati
 parallelization is one of the most important and widely studied analysis inthe polyhedral model [11, 12, 6, 7, 2, 21, 20, 16, 3, 23, 24, 17, 19℄. This paper presentsan algorithm for s
heduling the more general programs of the Z-polyhedral model. Ourkey 
ontributions are (i) deriving pre
eden
e (
ausality) 
onstraints for programs written inthe Z-polyhedral model, (ii) formulation of an integer linear program to obtain a s
hedulewhi
h is based on Farkas method and minimizes laten
y, and (iii) the generalization of thes
heduling problem to multi-dimensional s
hedules. A important feature of our formulationis that it seeks s
hedules that 
an be used to 
onstru
t a program transformation to obtainan equivalent spe
i�
ation in the Z-polyhedral model2.The remainder of this paper is organized as follows. In the following se
tion, we give aexample to motivate the s
heduling problem for programs written in the Z-polyhedral model.The mathemati
al ba
kground on latti
es, polyhedra, Z-polyhedra and a�ne fun
tions isdes
ribed in se
tion 3. In se
tion 4, we des
ribe an equational language for high levelspe
i�
ations in the Z-polyhedral model and present redu
ed dependen
e graphs as therequired abstra
tion for our analysis. In se
tion 5, we derive pre
eden
e 
onstraints andthen formulate an ilp to obtain valid (multidimensional) s
hedules. Finally, we dis
ussfuture and related work and present our 
on
lusions.2This has been a major drawba
k of previous methods using rational s
hedules.2
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Figure 1: Data dependen
e graph for N = 5 and Redu
ed Dependen
e Graph (rdg) ofExample 2 in Polyhedral model2 Motivating ExampleConsider the following loop program:Example 2for i = 0 to Nfor j = 0 to NX[i,j℄ = (i%2==0 ? X[i,j-1℄ : Y[i-1,j℄);for j = N downto 0Y[i,j℄ = (i%2==0 ? X[i,j℄ : Y[i,j+1℄);In order to parallelize this a�ne loop program extra
ting data dependen
e relations isa �rst and 
riti
al step. Su
h dependen
e relations should be respe
ted in any parallelizedprogram. Otherwise, the semanti
s of a program will not be preserved.In order to know dependen
e relations, we now apply exa
t data�ow analysis [5℄, awell-known te
hnique for extra
ting dependen
e relations. The obtained data dependen
einformation are shown in Figure 1. A node in data dependen
e graph represents an iter-ation point of a statement, and the arrow between nodes spe
i�es data-�ow between twooperations.Now, we want to parallelize this 
omputation. Be
ause of the verti
al dependen
e on
X, the exe
ution order of X will be in
reasing order of j index. Similarly, the exe
utionorder of Y will be de
reasing order of j. Together with dependen
es between X to Y , this
omputation must be done sequentially exa
tly like the original loops, that is, for ea
h i,�rst 
omputing X in the in
reasing of j and then 
omputing Y in the de
reasing order of j,repeating this for i + 1 until the whole 
omputation �nishes.One may �nd one dimensional parallelism in the program by distinguishing true depen-den
e from false dependen
e as shown in Figure 1. In the �gure the true dependen
e are3
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Figure 2: Data dependen
e graph for N = 5 and rdg of Example 2 in Z-polyhedral model;In rdg, two nodes above (resp. below) are asso
iated with above (resp. below) Z-polyhedrondenoted with bla
k arrows. The pre
ise exe
ution order 
an be given and realized by thefollowing s
hedules and parallelized loop program, respe
tively:
λX(i, j) =

{

i even : j

i odd : j + 2

λY (i, j) =

{

i even : j + 1
i odd : N − j

for j = 0 to Nforall i to (N/2)Y[2i+1,N-j℄=Y[2i+1,N-j+1℄;X[2i,j℄=X[2i,j-1℄;Y[2i,j℄=Y[2i,j℄;X[2i+1,j℄=Y[2i,j℄;Note that the loop program is 
orre
t only when N is odd. For the sake of simpli
ity, weassume that N is odd. We also assume that the statements are exe
uted sequentially, i.e.,there is syn
hronization between statements.The key idea of this dete
tion is based on pre
ise information on dependen
e relationsby separating a re
tangle, 
alled polyhedron, into two disjoint re
tangle with holes, 
alled
Z-polyhedra. Note that the a
tual representation of data dependen
e graph in Figure 1 isthe rdg. Sin
e N is not known at 
ompile time, the data dependen
e graph is not possibleto 
onstru
t. The pre
ise data dependen
e relations are shown in Figure 2.In this paper we address the problem of s
heduling together with 
onstru
ting rdg in Z-polyhedral model. One may argue that the example has an equivalent loop program whereparallelism 
an be dete
ted even in Polyhedral model. As we argue in the introdu
tion,every program in Z-polyhedral model does not have an equivalent program in Polyhedralmodel. Also, it is not always obvious to write programs so that parallelism 
an be dete
tedin Polyhedral model.

4



3 Mathemati
al Ba
kgroundHere, we will provide the required mathemati
al ba
kground on linear algebra over integers.3.1 Matri
esAs a 
onvention, we will denote matri
es with the upper-
ase letters and ve
tors with thelower-
ase. Unless spe
i�
ally mentioned, all matri
es and ve
tors have integer elements.We will denote the identity matrix by I. Synta
ti
ally, the di�erent elements of a ve
tor vwill be written as a list.We will use the following 
on
epts and properties of matri
es
• The kernel of a matrix T , written as ker(T ) is the set of all ve
tors z su
h that Tz = 0.
• A matrix is unimodular if it is square and its determinant is either 1 or −1.
• Two matri
es L and L′ are said to be 
olumn equivalent or right equivalent if thereexists a unimodular matrix U su
h that L = L′U .
• A unique representative element in ea
h set of matri
es that are 
olumn equivalent isthe one in Hermite normal form [10℄.De�nition 1 An n × m matrix H with rank d is in Hermite Normal Form (HNF) , if1. ∀1 ≤ j ≤ d, ∃i1, . . . , id with 1 ≤ i1 < . . . < id ≤ n: Hij ,j > 0.2. ∀1 ≤ j ≤ d, 1 ≤ i < ij: Hi,j = 0.3. ∀d + 1 ≤ j ≤ m, 1 ≤ i ≤ n: Hi,j = 04. ∀1 ≤ l < j ≤ d: 0 ≤ Hij ,l < Hij ,j.For every matrix A, there exists a unique matrix H that is in HNF and 
olumn equivalentto A i.e., there exists a unimodular matrix U su
h that A = HU . Note that the providedde�nition of the Hermite normal form does not require the matrix A to have full row rank.3.2 A�ne Latti
esThe latti
e generated by a matrix L is the set of all integer linear 
ombinations of the
olumns of L. If the 
olumns of a matrix are linearly independent, they 
onstitute a basis ofthe generated latti
e. The latti
es generated by two matri
es are equal i� the submatri
es
orresponding to the non-zero 
olumns in their Hermite normal forms are equal. As a spe
ial
ase, the latti
es generated by two n × m matri
es are equal i� the matri
es are 
olumnequivalent.We use a generalization of the latti
es generated by a matrix, additionally allowing o�setsby 
onstant ve
tors. These are 
alled a�ne latti
es. An a�ne latti
e is a subset of Z

n and
an be represented as {Lz + l|z ∈ Z
m} where L and l are an n × m matrix and n-ve
torrespe
tively. We 
all z the 
oordinates of the a�ne latti
e.The a�ne latti
es {Lz + l|z ∈ Z
m} and {L′z′ + l′|z′ ∈ Z

m′

} are equal i� the latti
esgenerated by L and L′ are equal and l′ = Lz0 + l for some 
onstant ve
tor z0 ∈ Z
m.5



3.3 Integer PolyhedraAn integer polyhedron, P is a subset of Z
n that 
an be de�ned by a �nite number of a�neinequalities (also 
alled a�ne 
onstraints or just 
onstraints when there is no ambiguity)with integer 
oe�
ients. We follow the 
onvention that the a�ne 
onstraint ci is given as

(aT
i z + αi ≥ 0) where z, ai ∈ Z

n, αi ∈ Z. The integer polyhedron, P, satisfying the set of
onstraints C = {c1, . . . , cb} is often written as {z ∈ Z
n|Qz + q ≥ 0} where Q = (a1 . . . ab)

Tis an b×n matrix and q = (α1 . . . αb)
T is an b-ve
tor ex. {i, j|0 ≤ i, 0 ≤ j} is the polyhedron
orresponding to the �rst orthant.We shall use the following properties and notation.

• The 
onstraint c ≡ (aT z+α ≥ 0) of P is said to be saturated i� (aT z+α = 0)∩P = P.
• The lineality spa
e of P is de�ned as the linear part of the largest a�ne subspa
e
ontained in P. It is given by ker(Q).
• The 
ontext of P is de�ned as the linear part of the smallest a�ne subspa
e that
ontains P. If the saturated 
onstraints in C, are the rows of {Q0z + q0 ≥ 0}, then itis ker(Q0).3.3.1 Parameterized Integer PolyhedraA parameterized integer polyhedron is an integer polyhedron where some indi
es are inter-preted as size parameters. We may also interpret a parameterized integer polyhedron as thein�nite set of integer polyhedra obtained by exhaustively assigning valid 
onstant values toall size parameters.3.4 Z-PolyhedraA Z-polyhedron is the interse
tion of an integer polyhedron and an a�ne latti
e. It is alsoan integer polyhedron when the a�ne latti
e is the 
anoni
al latti
e, Z

n. The required
losure properties on unions of Z-polyhedra were based on the following representation for
Z-polyhedra.

{Lz + l|Qz + q ≥ 0, z ∈ Z
m} (1)where L has full 
olumn rank and the polyhedron Pc = {z|Qz+q ≥ 0, z ∈ Z

m} has a 
ontextthat is the universe, Z
m. Pc is 
alled the 
oordinate polyhedron of the Z-polyhedron. The

Z-polyhedron for whi
h L has no 
olumns has a 
oordinate polyhedron in Z
0. The empty

Z-polyhedron is denoted by {|}. The interpretation is that the Z-polyhedral representationis said to be based on the a�ne latti
e given by {Lz + l|z ∈ Z
m}. Iteration points of the

Z-polyhedral domain are points of the a�ne latti
e 
orresponding to valid 
oordinates. Theset of valid 
oordinates is given by the 
oordinate polyhedron.
6



3.4.1 Parameterized Z-PolyhedraA parameterized Z-polyhedron is a Z-polyhedron where some rows of its 
orrespondinga�ne latti
e are interpreted as size parameters. We may also interpret a parameterized Z-polyhedron as an in�nite set of Z-polyhedra. The elements of a parameterized Z-polyhedronare 
alled its instan
es.For the sake of explanation, and without loss of generality, we may impose that the rowsthat denote size parameters are before all non-parameter rows. The equivalent Z-polyhedronbased on the Hermite normal form of su
h a latti
e has an important property that will usedin our analysis; all points of the 
oordinate polyhedron with identi
al values of the �rst fewindi
es belong to the same instan
e of the parameterized Z-polyhedron.Example 3 Consider the Z-polyhedron given by the interse
tion of the polyhedron {p, i|0 ≤
i ≤ p} and the latti
e {j + k, j − k}3. It may be written as

{j + k, j − k|0 ≤ j − k ≤ j + k} = {j + k, j − k|0 ≤ k ≤ j}Now, suppose the �rst index, p, in the polyhedron is the size parameter. As a result, the�rst row in the latti
e {j +k, j−k} 
orresponding to the Z-polyhedron is the size parameter.The Hermite normal form of this latti
e is {j′, j′ + 2k′}. The equivalent Z-polyhedron is
{j′, j′ + 2k′|k′ ≤ 0 ≤ j′ + 2k′}The iterations of this Z-polyhedron belong to the same program instan
e i� they have thesame 
oordinate index j′. Note that valid values of the parameter row trivially have a one-to-one 
orresponden
e with value of j′; identity being the required bije
tion. In the general
ase, however, this is not the 
ase. Nevertheless, the required property remains invariant.For example, 
onsider the following Z-polyhedron with the �rst two rows 
onsidered as sizeparameters.

{m, m + 2n, i + m, j + n|0 ≤ i ≤ m; 0 ≤ j ≤ n}Here, valid values of the parameter rows have a one-to-one 
orresponden
e with the valuesof m and n but it is impossible to obtain identity as the required bije
tion.3.5 A�ne Fun
tions and A�ne Latti
e Fun
tionsAn (standard) a�ne fun
tion is of the form (z → Tz + t) where T is an n×m matrix and tis an n ve
tor. A�ne latti
e fun
tions are of the form (Kz + k → Rz + r), where K has full
olumn rank. Su
h fun
tions provide a mapping from the iteration Kz + k to the iteration
Rz+r. We have imposed that K have full 
olumn rank to guarantee that (Kz+k → Rz+r)be a fun
tion and not a relation, mapping any point in its domain to a unique point in itsrange. All standard a�ne fun
tions are also a�ne latti
e fun
tions. For any fun
tion f , f−1will denote its relational inverse.3Note, for both the polyhedron and the a�ne latti
e, the spe
i�
ation of the spa
e Z

2 is redundant. It
an be derived from the number of indi
es and is therefore dropped for the sake of brevity.7



4 Equational Spe
i�
ationAn intuitive and general way of spe
ifying programs in the Z-polyhedral model is througha list of high level (mutually re
ursive) equations.Consider the red-bla
k sor [26℄ for the iterative 
omputation of partial di�erential equa-tions. Iterations in the (i, j)-plane are divided into �red� points and �bla
k� points, similarto the layout of squares in a 
hess board. First, bla
k points (at even i + j) are 
omputedusing the four neighbouring red points (at odd i + j), then the red points are 
omputedusing its four neighbouring bla
k points. These two phases are repeated until 
onvergen
e.Introdu
ing an additional dimension, k to denote the iterative appli
ation of the two phases,we get the following equation
Ci,j,k =

{

i + j even : 1

4
(Ci−1,j,k−1 + Ci+1,j,k−1 + Ci,j−1,k−1 + Ci,j+1,k−1) // bla
k update

i + j odd : 1

4
(Ci−1,j,k + Ci+1,j,k + Ci,j−1,k + Ci,j+1,k) // red updateThis equation, with appropriate synta
ti
 sugaring, is our preferred program in the

Z-polyhedral model. Here, C and the two bran
hes of the equation are de�ned over Z-polyhedral domains. A Z-polyhedral domain is a union of Z-polyhedra.In general, the input for our s
heduling analysis is a �nite list of equations of the form
V =







. . . . . .

DV,i : op(. . . , U.(Lz + l → Rz + r), . . .)
. . . . . .

(2)where V and U are variables de
lared over the Z-polyhedral domainsDV andDU respe
tively,
DV,i is the Z-polyhedral domain of the 
orresponding bran
h of the equation and op isan arbitrary, atomi
, iteration-wise, single-valued fun
tion that takes a single time-step toevaluate. The a�ne latti
e fun
tion (Lz + l → Rz + r) is a dependen
e su
h that the valueof the (sub)expression, U.(Lz + l → Rz + r) at Lz + l equals the value of U at Rz + r.The domains of di�erent bran
hes of an equation are disjoint and satisfy ⊎

DV,i = DV toensure that any variable is not under- or over-de�ned. Variables that are not de�ned byan equation are treated as input. These equations 
an be obtained from the more generalequational language presented in [9℄ through a transformation based on the 
losure propertiesof Z-polyhedral domains, 
alled normalization.Parameterized equational spe
i�
ations in the Z-polyhedral model are based on param-eterized Z-polyhedra. An instan
e of a parameterized spe
i�
ation is 
alled a program in-stan
e. Every program instan
e in a parameterized spe
i�
ation is independent, thus, alldependen
es should map 
onsumer iterations to produ
er iterations within the same pro-gram instan
e.Our presentation of the equational spe
i�
ation is based on the Alpha language [18, 13℄and the MMAlpha framework for manipulating Alpha programs, whi
h relies on a libraryfor manipulating polyhedra [25℄.4.1 Basi
 Redu
ed Dependen
y GraphA dire
ted multi-graph 
alled the redu
ed dependen
e graph, rdg, pre
isely des
ribes thedependen
es between iterations of variables. It is de�ned as follows8



(a) Basic RDG

{2i|1 ≤ 2i ≤ n}

{2i → i}

{2i → i}

{2i − 1|1 ≤ 2i − 1 ≤ n}
X

(b) Refined RDG

XY
{2i − 1|1 ≤ 2i − 1 ≤ n} {2i|1 ≤ 2i ≤ n}

{4i → 2i}

{4i − 2 → 2i − 1}

Y Figure 3: Basi
 and Re�ned Redu
ed Dependen
e Graphs for example 1.
• For every variable in the spe
i�
ation, there is a vertex in the rdg labeled by its nameand annotated by its domain. We will refer to verti
es and variables inter
hangeably.
• For every dependen
e of the variable V on U , there is an edge from V to U . Itis annotated by the 
orresponding dependen
e fun
tion. We will refer to edges anddependen
es inter
hangeably.At a �ner granularity, every bran
h of an equation is asso
iated to dependen
es between 
om-putations. Thus, a pre
ise analysis would di
tate that dependen
es be expressed separatelyfor every bran
h. Again, for reasons of pre
ision, we will express dependen
es of a variableseparately for every element in the Z-polyhedral domain of the 
orresponding bran
h of itsequation. To enable these, we will repla
e a variable by a set of new variables as elaboratedbelow.In (2), let DV,i be written as a disjoint union of Z-polyhedra given by ⊎

j Zj. The variable
V in the domain Zj is repla
ed by a new variable, say Xj. Similarly, let U be repla
ed bynew variables given as Yk. The dependen
e of V in DV,i on U is repla
ed by dependen
esfrom all Xj on all Yk. An edge from Xj to Yk may be omitted if there are no iterations in
Xj that map to Yk (mathemati
ally, if the preimage of Yk by the dependen
e fun
tion doesnot interse
t with Xj).A naive 
onstru
tion following these rules results in the basi
 redu
ed dependen
e graph.Figure 3a gives the basi
 rdg for example 1 whi
h 
an be written as the following equationfor i ≥ 1.

A =

{

{2i|0 ≤ 2i ≤ n} A.(2i → i) (denoted by X)
{2i − 1|0 ≤ 2i − 1 ≤ n} 0 (denoted by Y )Next, we will study a re�nement on this rdg.4.2 Re�ned Redu
ed Dependen
e GraphIn the rdg for the generi
 equation given in (2), let X be a variable derived from V andde�ned on ZX ∈ DV,i, and let Y be a variable derived from U de�ned on ZY ∈ DU where

ZX and ZY are given as follows
ZX = {LXzX + lX |zX ∈ Pc

X}

ZY = {LY zY + lY |zY ∈ Pc
Y }A dependen
e of the form (Lz+ l → Rz+r) is dire
ted form X to Y . X at (Lz+ l) ∈ ZX
annot be evaluated before Y at (Rz+r) ∈ ZY . The a�ne latti
e {Lz+l|z ∈ Z

n}may 
ontain9



points that do not lie in the a�ne latti
e {LXzX + lX |zX ∈ Z
nX}. Similarly, the a�ne latti
e

{Rz+r|z ∈ Z
n}may 
ontain points that do not lie in the a�ne latti
e {LY zY +lY |zY ∈ Z

nY }.As a result, the dependen
e may be spe
i�ed on a �ner latti
e than ne
essary and may safelybe repla
ed by dependen
e of the form (L′z′ + l′ → R′z′ + r′) where
L′ = LXS, l′ = LXs + lX
R′ = LY S ′, r′ = LY s′ + lY

(3)where S and S ′ are matri
es and s and s′ are integer ve
tors. The re�ned rdg is a re�nementof the basi
 rdg where every dependen
e has been repla
ed by a dependen
e satisfying (3).Figure 3b gives the re�ned rdg for example 1.5 The S
heduling ProblemHere, we will present the pre
eden
e imposed by dependen
es and then formulate an integerlinear program to obtain valid s
hedules.5.1 Causality ConstraintsDependen
es between the di�erent iterations of variables impose an ordering on their evalu-ation. A valid s
hedule of the evaluation of these iterations is the assignment of an exe
utiontime to ea
h 
omputation so that pre
eden
e (
ausality) 
onstraints are satis�ed.Let X and Y be two variables in the re�ned rdg de�ned on {LXzX + lX |zX ∈ Pc
X} and

{LY zY + lY |zY ∈ Pc
Y } respe
tively. We seek to �nd s
hedules on X and Y of the followingform

λ′

X(zX) = (LXzX + lX → λX(zX))

λ′

Y (zY ) = (LY zY + lY → λY (zY )) (4)where λX and λY are a�ne fun
tions on zX and zY respe
tively. Our motivation for su
hs
hedules is that all ve
tors and matri
es 
omprise of integer s
alars. If we seek s
hedulesof the form λ′(z′) where λ′ is an a�ne fun
tion and z′ is an iteration in the domain of avariable, then we may potentially assign exe
ution times to �holes� or 
omputations that donot exist. In general, we seek multidimensional s
hedules in the form of a�ne fun
tions on
oordinate indi
es.We will now formulate 
ausality 
onstraints using the re�ned rdg. Consider dependen
esfrom X to Y . All su
h dependen
es 
an be written as
(LX(Sz + s) + lX → LY (S ′z + s′) + lY )where S and S ′ are matri
es and s and s′ are ve
tors. The exe
ution time for Y at LY (S ′z +

s′)+ lY should pre
ede the exe
ution time for X at LX(Sz + s)+ lX. With the nature of thes
hedules presented in (4), our 
ausality 
onstraint be
omes
λX(Sz + s) − λY (S ′z + s′) ≥ 1 (5)10



5.2 ilp FormulationHere, we extra
t ilp (integer linear programming) 
onstraints from 
ausality 
onstraints, aswell as non-negativity of s
hedule. Then, we 
omplete the ilp formulation with an obje
tivefun
tion. Sin
e our aim is using the pip (Parameter Integer Programming) solver [4℄, theilp formulation will be suitable form for the solver. We also show how a multidimensionals
hedule 
an be obtained in this model.First, 
onsider the non-negativity of s
hedule and therefore of the a�ne fun
tion λ. Forea
h variable X, we want to impose the following 
ondition:
∀z ∈ Pc

X , λX(zX) ≥ 0By a�ne form of Farkas Lemma, this 
ondition holds when λX(z) is a non-negative a�ne
ombination of the 
onstraints C of Pc
X , i.e.

λX(z) ≡ λX,0 +

bX
∑

k=1

λX,k(a
T
X,kz+αX,k)where λX,i ≥ 0 for all i = 0, . . . , b and aT

X,kz + αX,k ≥ 0 is the k-th 
onstraint of C. Fromnow on, this is a prototype of a�ne s
hedule fun
tions.Now, 
onsider the 
ausality 
onstraint presented in (5) for the dependen
e from X to Y .
λX,0 +

bX
∑

k=1

λX,k(a
T
X,k(Sz + s) + αX,k) − λY,0 −

bY
∑

k=1

λY,k(a
T
Y,k(S

′z + s′) + αY,k) − 1 ≥ 0where Sz + s ∈ Pc
X and S ′z + s′ ∈ Pc

Y . Equivalently, we may say z ∈ P ′

X ∩ P ′

Y where P ′

Xand P ′

Y are the preimage of Pc
X by (z → Sz + s) and Pc

Y by (z → S ′z + s′) respe
tively.Now, �rst we will illustrate how to formulate the ilp 
onstraints with the help of anexample. Then, we will introdu
e an obje
tive fun
tion for minimizing laten
y.Consider Example 1 and its re�ned rdg given in �gure 3b. By the non-negativity 
on-straints, the a�ne fun
tions λX and λY will be of the form
λX = λX0 + λX1(2i − 1) + λX2(N − 2i)

λY = λY 0 + λY 1(2i − 2) + λY 2(N − 2i + 1)For the edge (4i − 2 → 2i − 1) from X to Y , the 
ausality 
onstraint is
λX0 + λX1(4i − 3) + λX2(N − 4i + 2) − λY 0 − λY 1(2i − 1) − λY 2(N − 2i − 1) ≥ 1 (6)Similarly, an ilp 
onstraint for the edge (4i → 2i) translates into the following 
ondition

λX0 + λX12i + λX2(N − 4i) − λX0 − λX1i − λX2(N − 2i) ≥ 1 (7)where all the unknowns are non-negative. Sin
e Y is assigned to a 
onstant, one possibilityis λY 0 = λY 1 = λY 2 = 0. In this 
ase, Equation (6) 
an be simpli�ed to the following form
(λX0 − λX1 + λX2 − 1) + (2λX1 − λX2)(2i − 1) + (λX2)(N − 2i) ≥ 011



Similarly, Equation (7) also simpli�es to
(λX1 − λX2 − 1) + (λX1 − λX2)(2i − 1) ≥ 0Now, we have the following inequalities

λX0 − λX1 + λX2 − 1 ≥ 0
2λX1 − λX2 ≥ 0

λX0 ≥ 0
λX1 − λX2 − 1 ≥ 0

λX1 − λX2 ≥ 0

(8)All these steps for deriving ilp 
onstraints 
an be performed automati
ally and theseinequalities 
an be systemati
ally solved by standard ilp solvers.Now, we present an obje
tive fun
tion when all domains are bounded. In this 
ase, thereexists an a�ne expression L of the program parameters su
h that L − λX(z) ≥ 0 for all
z ∈ Pc

X if there exists an a�ne fun
tion λX . So, it does not restri
t the spa
e of valida�ne fun
tion λX . We want to minimize the total laten
y by minimizing L. In order to usethe pip solver, for ea
h variable X we �rst add L − λX(z) ≥ 0 to the 
onstraints, and theunknown variables in L are pla
ed into the outermost dimensions be
ause pip solver givesthe lexi
ographi
 minimum of a given parameterized polyhedron.Let us 
ontinue Example 1. For the minimum laten
y a�ne s
hedule, we add the following
onstraints from L(= µ0N + µ1) − λX(z). Solving, we get
µ0N + µ1 − λX0 − λX1(2i − 1) − λX1(N − 2i) ≥ 0or (µ0 − λX0)(N − 2i) + (µ0 − λX1)(2i − 1) + (µ0 + µ1 − λX0) ≥ 0whi
h implies the following

µ0 − λX0 ≥ 0
µ0 − λX1 ≥ 0

µ0 + µ1 − λX0 ≥ 0
(9)Note that for the sake of simpli
ity, we do not 
onsider the variable Y that is 
onstanton all its iterations. In fa
t, Equation (8) and (9) de�nes a polyhedron. Sin
e we put µ0into the �rst dimension index, the lexi
ographi
 minimum of this polyhedron will provideminimum laten
y s
hedules for ea
h variable. Finally, we will get the following s
hedules for

X and Y

λ′

X : 2i → i

λ′

Y : 2i + 1 → 0Now, 
onsider multidimensional s
hedules in this model. The basi
 idea is the same asthat in Polyhedral model. Thus, rather than presenting te
hni
al details, we just providea pre
ise and intuitive (maybe ine�
ient) formulation for multidimensional s
hedules. Thebasi
 idea of the following ilp formulation is satisfying as many dependen
es as possible and12



the theory justifying this formulation is given by Feautrier [7℄.
max

∑

e∈E

xesubje
t to 0 ≤ xe ≤ 1
λX(Sz + s) − λY (S ′z + s′) − 1 ≥ xe

λX(z) ≥ 0A new variable xe for ea
h e ∈ E is introdu
ed. When xe = 1, the dependen
e asso
iatedto edge e will be satis�ed. The obje
tive fun
tion maximizes the number of the edges thatare satis�ed. The multidimensional time 
an be obtained in this model by the same way inthe polyhedral model.The purpose of this se
tion was to present the transformation of 
ausality 
onstraintsinto ilp 
onstraints pre
isely and the illustration of this step with the help of an example.For te
hni
al details on Farkas s
heduling algorithm, please refer to [6℄ by Feautrier.6 Related WorkThe s
heduling problem on re
urren
e equations with uniform (
onstant-sized) dependen
eswas originally presented by Karp et. al. [11℄. A similar problem was posed by Lamport [12℄for programs with uniform dependen
es. Shang and Fortes [24℄ and Lisper [17℄ presentedoptimal linear s
hedules for uniform dependen
e algorithms.Rao [23℄ �rst presented a�ne by variable s
hedules for uniform dependen
es (Darte et.al [2℄ showed that these results 
ould have been interpreted from [11℄). The �rst result ofs
heduling programs with a�ne dependen
es was solved by Rajopadhye and Fujimoto [21℄,and independently by Quinton and Van Dongen [20℄. These results were generalized tovariable dependent s
hedules by Mauras et. al. [19℄. Feautrier and Darte et. al indepen-dently presented the optimal solution to the a�ne s
heduling problem (by variable) [6, 3℄.Feautrier also provided the extension to multidimensional time [7℄. The s
heduling problemwas studied along with the obje
tive for minimizing 
ommuni
ation by Lim at. al. [16℄.In this paper, we have extended these te
hniques to a 
lass of programs that is stri
tlymore general than those 
onsidered previously. Moreover, the s
hedules that we 
onstru
t
an be dire
tly used to perform appropriate program transformations.7 Con
lusions and Future WorkThe polyhedral model has been widely studied for the automati
 parallelization of loopprograms. However, it is limited in expressivity. It was re
ently extended to Z-polyhedraldomains [9℄. In this paper, we presented the s
heduling analysis for the Z-polyhedral model,a stri
t generalization of the polyhedral model, to obtain multidimensional s
hedules withminimum laten
y. Our s
hedules are of the form λ′(z) = (Lz + l → λ(z)) where {Lz +
l|z ∈ Z

n} is the latti
e 
orresponding to the Z-polyhedron and λ(z) is the a�ne fun
tion(
omprising of integer s
alars) on the 
oordinates of this latti
e. As a result, an importantproperty of our ilp formulation is that it sear
hes only in the spa
e of fun
tions that 
ansubsequently be used to 
onstru
t a spa
e-time transformation of the program.13



Our s
hedules express unbounded parallelism and thus 
annot dire
tly be realized inany parallel hardware. However, su
h parallelism dete
tion is the 
ru
ial pre
ursor to anyresour
e 
onstrained analysis.Future work involves the derivation of parallel 
ode from our high level equations. Wealso aim to implement these transformations into a 
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