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Abstract

The polyhedral model is extensively used for analyses and transformations of reg-
ular loop programs, one of the most important being automatic parallelization. The
model, however, is limited in expressivity and the need for the generalization to more
general class of programs has been widely known. Analyses and transformations in the
polyhedral model rely on certain closure properties. Recently, these closure properties
were extended to programs where variables may be defined over unions of Z-polyhedra,
intersections of polyhedra and lattices.

We present the scheduling analysis for the automatic parallelization of programs in
the Z-polyhedral model, and obtain multidimensional schedules through an 1LP formu-
lation that minimizes latency. The resultant schedule can then be used to construct a
space-time transformation to obtain an equivalent program in the Z-polyhedral model.

1 Introduction

The polyhedral model is a well developed formalism providing sophisticated analysis and
transformations of the kernels of many compute- and data- intensive applications. Pro-
grams in the polyhedral model essentially comprise of (i) variables representing collections
of values defined over polyhedral domains', and (ii) affine dependences between computa-
tions. Feautrier [5] showed that an important class of conventional imperative loop programs
called affine control loops (ACLs) can be transformed to programs in the polyhedral model.
Significant parts of the SpecFP and PerfectClub benchmarks are ACLs [1].

Many computations can be expressed in the polyhedral model, e.g., matrix multiplication,
LU-decomposition, Cholesky factorization, Kalman filtering, as well as algorithms arising in
RNA secondary structure prediction. Nevertheless, the polyhedral model suffers from certain
limitations. Loop programs with a non-unit stride fall outside the scope of the model. This is
an important class of programs |22, 15, 27, 8] arising in situations such as the red-black SOR
computation for solving partial differential equations. As a consequence, non-unimodular
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!These may be viewed as generalized multi-dimensional arrays, the bounds of which are given by arbitrary
affine inequalities.



transformations are also disallowed in the polyhedral model. Non-unimodular transforma-
tions are required for the derivation of parallel architectures with periodic processor activity,
such as multi-rate arrays [14] and bidirectional systolic arrays.

It had long been conjectured that these limitations can be resolved through the extension
of variable domains to unions of Z-polyhedra which are the intersection of polyhedra and
affine lattices. However, the required closure properties for these Z-polyhedral domains
were only recently proved |9], as a result of a novel representation for Z-polyhedra and the
associated family of dependences.

The Z-polyhedral model enables more sophisticated analyses and transformations by
providing greater information in the specifications viz., pertaining to lattices. More impor-
tantly, the Z-polyhedral model allows specifications with a more general dependence pattern
than the specifications in the polyhedral model.

Example 1 Consider the following loop program

for 1 =1 to N
Ali] = (i%2==0 7 A[i/2] : 0);

This program exhibits a dependence pattern that is richer than the affine dependences
of the polyhedral model. In other words, it is impossible to write an equivalent program
in the polyhedral model, i.e., without the use of the mod operator, that can perform the
required computation. One may consider replacing the variable A by two variables X and Y
corresponding to the even and odd points of A such that A[2i] = X[i] and A[2i — 1] = Y[i].
However, the definition of X now requires the mod operator, because X[2i] = X[i] and

X[2i —1] = Y[i].

Automatic parallelization is one of the most important and widely studied analysis in
the polyhedral model [11, 12, 6, 7, 2, 21, 20, 16, 3, 23, 24, 17, 19|. This paper presents
an algorithm for scheduling the more general programs of the Z-polyhedral model. Our
key contributions are (i) deriving precedence (causality) constraints for programs written in
the Z-polyhedral model, (ii) formulation of an integer linear program to obtain a schedule
which is based on Farkas method and minimizes latency, and (iii) the generalization of the
scheduling problem to multi-dimensional schedules. A important feature of our formulation
is that it seeks schedules that can be used to construct a program transformation to obtain
an equivalent specification in the Z-polyhedral model?.

The remainder of this paper is organized as follows. In the following section, we give a
example to motivate the scheduling problem for programs written in the Z-polyhedral model.
The mathematical background on lattices, polyhedra, Z-polyhedra and affine functions is
described in section 3. In section 4, we describe an equational language for high level
specifications in the Z-polyhedral model and present reduced dependence graphs as the
required abstraction for our analysis. In section 5, we derive precedence constraints and
then formulate an ILP to obtain valid (multidimensional) schedules. Finally, we discuss
future and related work and present our conclusions.

2This has been a major drawback of previous methods using rational schedules.
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Figure 1: Data dependence graph for N = 5 and Reduced Dependence Graph (RDG) of
Example 2 in Polyhedral model

2 Motivating Example

Consider the following loop program:

Example 2

for i =0 to N
for j =0 to N
X[i,j] = (i%2==0 7 X[i,j-1] : Y[i-1,j1);
for j = N downto 0
Y[i,3] = (i%2==0 ? X[i,j1 : Y[i,j+1]);

In order to parallelize this affine loop program extracting data dependence relations is
a first and critical step. Such dependence relations should be respected in any parallelized
program. Otherwise, the semantics of a program will not be preserved.

In order to know dependence relations, we now apply exact dataflow analysis [5], a
well-known technique for extracting dependence relations. The obtained data dependence
information are shown in Figure 1. A node in data dependence graph represents an iter-
ation point of a statement, and the arrow between nodes specifies data-flow between two
operations.

Now, we want to parallelize this computation. Because of the vertical dependence on
X, the execution order of X will be increasing order of j index. Similarly, the execution
order of Y will be decreasing order of j. Together with dependences between X to Y, this
computation must be done sequentially exactly like the original loops, that is, for each i,
first computing X in the increasing of j and then computing Y in the decreasing order of 7,
repeating this for ¢ + 1 until the whole computation finishes.

One may find one dimensional parallelism in the program by distinguishing true depen-
dence from false dependence as shown in Figure 1. In the figure the true dependence are
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Figure 2: Data dependence graph for N =5 and RDG of Example 2 in Z-polyhedral model,
In RDG, two nodes above (resp. below) are associated with above (resp. below) Z-polyhedron

denoted with black arrows. The precise execution order can be given and realized by the
following schedules and parallelized loop program, respectively:

for j =0 to N
forall i to (N/2)

N teven @ j Y[2i+1 N-i]=Y[2i+1 N-i+1]:
Ax (4, 7) { iodd : j+2 X[; .’_J o U I
l,J]_XI:21:J_1:|:
. teven : j+1 Y[2i,jl1=Y[21,j];
)\ ’ _ . . ) 3 )
r(i.J) {zodd : N—j X[2i+1,31=Y[21,3j];

Note that the loop program is correct only when N is odd. For the sake of simplicity, we
assume that N is odd. We also assume that the statements are executed sequentially, i.e.,
there is synchronization between statements.

The key idea of this detection is based on precise information on dependence relations
by separating a rectangle, called polyhedron, into two disjoint rectangle with holes, called
Z-polyhedra. Note that the actual representation of data dependence graph in Figure 1 is
the RDG. Since N is not known at compile time, the data dependence graph is not possible
to construct. The precise data dependence relations are shown in Figure 2.

In this paper we address the problem of scheduling together with constructing RDG in Z-
polyhedral model. One may argue that the example has an equivalent loop program where
parallelism can be detected even in Polyhedral model. As we argue in the introduction,
every program in Z-polyhedral model does not have an equivalent program in Polyhedral
model. Also, it is not always obvious to write programs so that parallelism can be detected
in Polyhedral model.



3 Mathematical Background

Here, we will provide the required mathematical background on linear algebra over integers.

3.1 Matrices

As a convention, we will denote matrices with the upper-case letters and vectors with the
lower-case. Unless specifically mentioned, all matrices and vectors have integer elements.
We will denote the identity matrix by I. Syntactically, the different elements of a vector v
will be written as a list.

We will use the following concepts and properties of matrices

e The kernel of a matrix T, written as ker(7") is the set of all vectors z such that Tz = 0.
e A matrix is unimodular if it is square and its determinant is either 1 or —1.

e Two matrices L and L' are said to be column equivalent or right equivalent if there
exists a unimodular matrix U such that L = L'U.

e A unique representative element in each set of matrices that are column equivalent is
the one in Hermite normal form [10].

Definition 1 An n x m matrizc H with rank d is in Hermite Normal Form (HNF) , if
1.V <j<d,Fiy,....0q with1<id; <...<ig<n:H;;>0.
2.V1<j<d1<i<i: Hi; =0.

3 Vd+1<j7j<m,1<i<n: H; ;=0
4. V1<l<j<d:0<H;,; <H;;

For every matrix A, there exists a unique matrix H that is in HNF and column equivalent
to A i.e., there exists a unimodular matrix U such that A = HU. Note that the provided
definition of the Hermite normal form does not require the matrix A to have full row rank.

3.2 Affine Lattices

The lattice generated by a matrix L is the set of all integer linear combinations of the
columns of L. If the columns of a matrix are linearly independent, they constitute a basis of
the generated lattice. The lattices generated by two matrices are equal iff the submatrices
corresponding to the non-zero columns in their Hermite normal forms are equal. As a special
case, the lattices generated by two n X m matrices are equal iff the matrices are column
equivalent.

We use a generalization of the lattices generated by a matrix, additionally allowing offsets
by constant vectors. These are called affine lattices. An affine lattice is a subset of Z™ and
can be represented as {Lz + [|z € Z™} where L and [ are an n X m matrix and n-vector
respectively. We call z the coordinates of the affine lattice.

The affine lattices {Lz + [|z € Z™} and {L'2' + I'|z' € Z™} are equal iff the lattices
generated by L and L' are equal and I’ = Lz + [ for some constant vector zy € Z™.



3.3 Integer Polyhedra

An integer polyhedron, P is a subset of Z™ that can be defined by a finite number of affine
inequalities (also called affine constraints or just constraints when there is no ambiguity)
with integer coefficients. We follow the convention that the affine constraint ¢; is given as
(alz + a; > 0) where 2,a; € Z", o; € Z. The integer polyhedron, P, satisfying the set of
constraints C = {cy,...,cp} is often written as {z € Z"|Qz + ¢ > 0} where Q = (a; ...ap)T
is an b x n matrix and ¢ = (o ... )7 is an b-vector ex. {4, |0 <1i,0 < j} is the polyhedron
corresponding to the first orthant.
We shall use the following properties and notation.

e The constraint ¢ = (a”z2+a > 0) of P is said to be saturated iff (az+a =0)NP = P.

e The lineality space of P is defined as the linear part of the largest affine subspace
contained in P. It is given by ker(Q).

e The context of P is defined as the linear part of the smallest affine subspace that
contains P. If the saturated constraints in C, are the rows of {Qyz + qo > 0}, then it

is ker(Qo).

3.3.1 Parameterized Integer Polyhedra

A parameterized integer polyhedron is an integer polyhedron where some indices are inter-
preted as size parameters. We may also interpret a parameterized integer polyhedron as the
infinite set of integer polyhedra obtained by exhaustively assigning valid constant values to
all size parameters.

3.4 Z-Polyhedra

A Z-polyhedron is the intersection of an integer polyhedron and an affine lattice. It is also
an integer polyhedron when the affine lattice is the canonical lattice, Z". The required
closure properties on unions of Z-polyhedra were based on the following representation for
Z-polyhedra.

{Lz+1|Qz+q>0,z€ Z™} (1)

where L has full column rank and the polyhedron P¢ = {z|Qz+¢q > 0,z € Z} has a context
that is the universe, Z™. P¢ is called the coordinate polyhedron of the Z-polyhedron. The
Z-polyhedron for which L has no columns has a coordinate polyhedron in Z°. The empty
Z-polyhedron is denoted by {|}. The interpretation is that the Z-polyhedral representation
is said to be based on the affine lattice given by {Lz + [|z € Z™}. Iteration points of the
Z-polyhedral domain are points of the affine lattice corresponding to valid coordinates. The
set of valid coordinates is given by the coordinate polyhedron.



3.4.1 Parameterized Z-Polyhedra

A parameterized Z-polyhedron is a Z-polyhedron where some rows of its corresponding
affine lattice are interpreted as size parameters. We may also interpret a parameterized Z-
polyhedron as an infinite set of Z-polyhedra. The elements of a parameterized Z-polyhedron
are called its instances.

For the sake of explanation, and without loss of generality, we may impose that the rows
that denote size parameters are before all non-parameter rows. The equivalent Z-polyhedron
based on the Hermite normal form of such a lattice has an important property that will used
in our analysis; all points of the coordinate polyhedron with identical values of the first few
indices belong to the same instance of the parameterized Z-polyhedron.

Example 3 Consider the Z-polyhedron given by the intersection of the polyhedron {p,i|0 <
i < p} and the lattice {j + k,j — k}*. It may be written as

{J+kj—k0<j—k<j+k}={j+kj—kl0<k<j}

Now, suppose the first indez, p, in the polyhedron is the size parameter. As a result, the
first row in the lattice {j +k, j —k} corresponding to the Z-polyhedron is the size parameter.
The Hermite normal form of this lattice is {j', 7' + 2k'}. The equivalent Z-polyhedron is

{j/7j/+2k/‘k/§0§j/+2k/}

The iterations of this Z-polyhedron belong to the same program instance iff they have the
same coordinate index j'. Note that valid values of the parameter row trivially have a one-
to-one correspondence with value of j'; identity being the required bijection. In the general
case, however, this is not the case. Nevertheless, the required property remains invariant.
For example, consider the following Z-polyhedron with the first two rows considered as size
parameters.

{m,m+2n,i+m,7+nl0 <i<m;0<j<n}

Here, valid values of the parameter rows have a one-to-one correspondence with the values
of m and n but it is impossible to obtain identity as the required bijection.

3.5 Affine Functions and Affine Lattice Functions

An (standard) affine function is of the form (z — T’z +t) where 7" is an n x m matrix and ¢
is an n vector. Affine lattice functions are of the form (Kz+k — Rz+7), where K has full
column rank. Such functions provide a mapping from the iteration Kz + k to the iteration
Rz+r. We have imposed that K have full column rank to guarantee that (Kz+k — Rz+7)
be a function and not a relation, mapping any point in its domain to a unique point in its
range. All standard affine functions are also affine lattice functions. For any function f, f=!
will denote its relational inverse.

3Note, for both the polyhedron and the affine lattice, the specification of the space Z? is redundant. It
can be derived from the number of indices and is therefore dropped for the sake of brevity.



4 Equational Specification

An intuitive and general way of specifying programs in the Z-polyhedral model is through
a list of high level (mutually recursive) equations.

Consider the red-black SOR [26] for the iterative computation of partial differential equa-
tions. Iterations in the (7, j)-plane are divided into “red” points and “black” points, similar
to the layout of squares in a chess board. First, black points (at even i 4 j) are computed
using the four neighbouring red points (at odd ¢ + j), then the red points are computed
using its four neighbouring black points. These two phases are repeated until convergence.
Introducing an additional dimension, k to denote the iterative application of the two phases,
we get the following equation

C 1 —l—] eveln : i(C’i_Lj,k_l + Ci+17j,k—1 + Ci,j—l,k—l + Ci,j—i—l,k—l) // black update
i,J,k — . .
! 1+ ] odd : i(Ci_Lj,k + CH_LJ‘JQ + Ci,j—l,k + Ci,j—f—l,k) // red update

This equation, with appropriate syntactic sugaring, is our preferred program in the
Z-polyhedral model. Here, C' and the two branches of the equation are defined over Z-
polyhedral domains. A Z-polyhedral domain is a union of Z-polyhedra.

In general, the input for our scheduling analysis is a finite list of equations of the form

V=¢ Dy;: op(....,.U(Lz+1— Rz+r),...) (2)

where V' and U are variables declared over the Z-polyhedral domains Dy, and Dy, respectively,
Dy, is the Z-polyhedral domain of the corresponding branch of the equation and op is
an arbitrary, atomic, iteration-wise, single-valued function that takes a single time-step to
evaluate. The affine lattice function (Lz 4+ 1 — Rz + ) is a dependence such that the value
of the (sub)expression, U.(Lz + 1 — Rz + r) at Lz + [ equals the value of U at Rz + r.
The domains of different branches of an equation are disjoint and satisfy | Dy; = Dy to
ensure that any variable is not under- or over-defined. Variables that are not defined by
an equation are treated as input. These equations can be obtained from the more general
equational language presented in 9] through a transformation based on the closure properties
of Z-polyhedral domains, called normalization.

Parameterized equational specifications in the Z-polyhedral model are based on param-
eterized Z-polyhedra. An instance of a parameterized specification is called a program in-
stance. Every program instance in a parameterized specification is independent, thus, all
dependences should map consumer iterations to producer iterations within the same pro-
gram instance.

Our presentation of the equational specification is based on the ALPHA language [18, 13|
and the MMALPHA framework for manipulating ALPHA programs, which relies on a library
for manipulating polyhedra [25].

4.1 Basic Reduced Dependency Graph

A directed multi-graph called the reduced dependence graph, RDG, precisely describes the
dependences between iterations of variables. It is defined as follows
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Figure 3: Basic and Refined Reduced Dependence Graphs for example 1.

e For every variable in the specification, there is a vertex in the RDG labeled by its name
and annotated by its domain. We will refer to vertices and variables interchangeably.

e For every dependence of the variable V on U, there is an edge from V to U. It
is annotated by the corresponding dependence function. We will refer to edges and
dependences interchangeably.

At a finer granularity, every branch of an equation is associated to dependences between com-
putations. Thus, a precise analysis would dictate that dependences be expressed separately
for every branch. Again, for reasons of precision, we will express dependences of a variable
separately for every element in the Z-polyhedral domain of the corresponding branch of its
equation. To enable these, we will replace a variable by a set of new variables as elaborated
below.

In (2), let Dy,; be written as a disjoint union of Z-polyhedra given by ), Z;. The variable
V' in the domain Z; is replaced by a new variable, say X;. Similarly, let U be replaced by
new variables given as Y;. The dependence of V' in Dy; on U is replaced by dependences
from all X; on all Y. An edge from X, to Y3 may be omitted if there are no iterations in
X, that map to Y} (mathematically, if the preimage of Y) by the dependence function does
not intersect with Xj).

A naive construction following these rules results in the basic reduced dependence graph.
Figure 3a gives the basic RDG for example 1 which can be written as the following equation
for ¢+ > 1.

. { {22:|0 <2i < @} A.(2i — i) (denoted by X)
{20 -1|10<2i—1<n} 0 (denoted by Y')

Next, we will study a refinement on this RDG.

4.2 Refined Reduced Dependence Graph

In the RDG for the generic equation given in (2), let X be a variable derived from V' and
defined on Zx € Dy, and let Y be a variable derived from U defined on Zy € Dy where
Zyx and Zy are given as follows

Zy = {LXzX + ZX|ZX c Pg(}

ZY = {LyZy + ly|Zy - ’P)C/}

A dependence of the form (Lz+1 — Rz+7) is directed form X to Y. X at (Lz+1) € Zx
cannot be evaluated before Y at (Rz+r) € Zy. The affine lattice { Lz+(|z € Z"} may contain

9



points that do not lie in the affine lattice { Lxzx +Ix|zx € Z"X}. Similarly, the affine lattice
{Rz+r|z € Z™} may contain points that do not lie in the affine lattice { Ly zy +1y |2y € Z™ }.
As a result, the dependence may be specified on a finer lattice than necessary and may safely
be replaced by dependence of the form (L'z' +1' — R’z + r’) where

L’:LXS,Z’:LXs—l—lX (3)
R/ = LySl, ’l“/ = LyS/ + ly

where S and S’ are matrices and s and s’ are integer vectors. The refined RDG is a refinement
of the basic RDG where every dependence has been replaced by a dependence satisfying (3).
Figure 3b gives the refined RDG for example 1.

5 The Scheduling Problem

Here, we will present the precedence imposed by dependences and then formulate an integer
linear program to obtain valid schedules.

5.1 Causality Constraints

Dependences between the different iterations of variables impose an ordering on their evalu-
ation. A valid schedule of the evaluation of these iterations is the assignment of an execution
time to each computation so that precedence (causality) constraints are satisfied.

Let X and Y be two variables in the refined RDG defined on {Lxzx + Ix|2x € P%} and
{Lyzy + ly|zy € P§} respectively. We seek to find schedules on X and Y of the following
form

Ny(2x) = (Lxzx +1x — Ax(2x))
)\/Y(Zy) (LyZy +1ly — )\y(Zy)) (4)

where Ax and Ay are affine functions on zx and zy respectively. Our motivation for such
schedules is that all vectors and matrices comprise of integer scalars. If we seek schedules
of the form X (z') where X is an affine function and 2z’ is an iteration in the domain of a
variable, then we may potentially assign execution times to “holes” or computations that do
not exist. In general, we seek multidimensional schedules in the form of affine functions on
coordinate indices.

We will now formulate causality constraints using the refined RDG. Consider dependences
from X to Y. All such dependences can be written as

(Lx(Sz+s)+1lx = Ly(S'z+ ) +1y)

where S and S” are matrices and s and §" are vectors. The execution time for Y at Ly (S'z +
s") + 1y should precede the execution time for X at Lx(Sz+ s)+ lx. With the nature of the
schedules presented in (4), our causality constraint becomes

Ax(Sz+8) = Ay (S'z2+ ) >1 (5)

10



5.2 1ILP Formulation

Here, we extract ILP (integer linear programming) constraints from causality constraints, as
well as non-negativity of schedule. Then, we complete the 1LP formulation with an objective
function. Since our aim is using the pIp (Parameter Integer Programming) solver [4], the
ILP formulation will be suitable form for the solver. We also show how a multidimensional
schedule can be obtained in this model.

First, consider the non-negativity of schedule and therefore of the affine function A. For
each variable X, we want to impose the following condition:

Vz € P&,Ax(ZX) >0

By affine form of Farkas Lemma, this condition holds when Ax(z) is a non-negative affine
combination of the constraints C of P%, i.e.

bx

Ax(z) = )\X,O + Z )\X’k(a§7kz+ax,k)
k=1

where Ax; > 0 for all i = 0,...,b and a% ;2 + axy > 0 is the k-th constraint of C. From
now on, this is a prototype of affine schedule functions.
Now, consider the causality constraint presented in (5) for the dependence from X to Y.

bx by
>\X,O + Z )\X,k(a§7k(52 + S) + OAX,k) — >\y70 — Z )\y,k(a?k(S'z + S/) + Oény) —1 Z 0
k=1 k=1

where Sz 4+ s € P§ and S’z + s € Py. Equivalently, we may say z € Py NPy, where Py
and Py, are the preimage of P§ by (z — Sz + s) and Pg by (2 — S’z + ') respectively.
Now, first we will illustrate how to formulate the ILP constraints with the help of an
example. Then, we will introduce an objective function for minimizing latency.
Consider Example 1 and its refined RDG given in figure 3b. By the non-negativity con-
straints, the affine functions Ay and Ay will be of the form

)\X = )\XO + )\X1(2’é — 1) + )\XQ(N — 22)

Ay = Avo + Avi(20 — 2) + Ayo(N — 2i 4 1)
For the edge (4i — 2 — 2i — 1) from X to Y, the causality constraint is

Axo+ Ax1(4i —3) + Axa(N —4i+2) — Ayg — A\y1(20 — 1) = Ayo(N =2 —1)>1  (6)
Similarly, an ILP constraint for the edge (47 — 2i) translates into the following condition
Axo + Ax12i + Axo(N —4i) — Axo — Ax18 — Ax2(N —2i) > 1 (7)

where all the unknowns are non-negative. Since Y is assigned to a constant, one possibility
is Ayo = A\y1 = Ayo = 0. In this case, Equation (6) can be simplified to the following form

()\XO — )\Xl + )\XQ — 1) + (2)\){1 — )\XQ)(QZ — 1) + ()\XQ)(N — 22) Z 0

11



Similarly, Equation (7) also simplifies to
()\Xl — )\XQ — 1) + (>\X1 — )\XQ)(QZ — 1) >0

Now, we have the following inequalities

Axo—Ax1+Ax2—1 > 0
2Ax1 — Ax2 > 0

Axo > 0 (8)
Ax1— Ax2 — 1 > 0
Ax1— Ax2 > 0

All these steps for deriving ILP constraints can be performed automatically and these
inequalities can be systematically solved by standard ILP solvers.

Now, we present an objective function when all domains are bounded. In this case, there
exists an affine expression £ of the program parameters such that £ — Ax(z) > 0 for all
z € P% if there exists an affine function Ax. So, it does not restrict the space of valid
affine function Ay. We want to minimize the total latency by minimizing £. In order to use
the PIP solver, for each variable X we first add £ — Ax(z) > 0 to the constraints, and the
unknown variables in £ are placed into the outermost dimensions because PIP solver gives
the lexicographic minimum of a given parameterized polyhedron.

Let us continue Example 1. For the minimum latency affine schedule, we add the following
constraints from L(= poN + 1) — Ax(z). Solving, we get

,U,()N—'—,ul — )‘XO — >\X1(27, — 1) — >\X1(N — 27,) Z 0
or (po — Axo)(N — 2i) + (o — Ax1)(2i — 1) + (po + p1 — Axo) = 0
which implies the following
po—Axo = 0
po—Ax1 = 0 (9)
po+p1—Axo = 0

Note that for the sake of simplicity, we do not consider the variable Y that is constant
on all its iterations. In fact, Equation (8) and (9) defines a polyhedron. Since we put pq
into the first dimension index, the lexicographic minimum of this polyhedron will provide
minimum latency schedules for each variable. Finally, we will get the following schedules for
X and Y

Nx @+ 26—
Ny @ 2i+1—0
Now, consider multidimensional schedules in this model. The basic idea is the same as
that in Polyhedral model. Thus, rather than presenting technical details, we just provide

a precise and intuitive (maybe inefficient) formulation for multidimensional schedules. The
basic idea of the following ILP formulation is satisfying as many dependences as possible and

12



the theory justifying this formulation is given by Feautrier |7].

max E Te

eckE
subject to 0 <z, <1

Ax(Sz+38) =M\ (S'2+8)—1>

A new variable z, for each e € F is introduced. When z, = 1, the dependence associated
to edge e will be satisfied. The objective function maximizes the number of the edges that
are satisfied. The multidimensional time can be obtained in this model by the same way in
the polyhedral model.

The purpose of this section was to present the transformation of causality constraints
into ILP constraints precisely and the illustration of this step with the help of an example.
For technical details on Farkas scheduling algorithm, please refer to 6] by Feautrier.

6 Related Work

The scheduling problem on recurrence equations with uniform (constant-sized) dependences
was originally presented by Karp et. al. [11]. A similar problem was posed by Lamport [12]
for programs with uniform dependences. Shang and Fortes [24| and Lisper |17| presented
optimal linear schedules for uniform dependence algorithms.

Rao [23] first presented affine by variable schedules for uniform dependences (Darte et.
al 2| showed that these results could have been interpreted from [11]). The first result of
scheduling programs with affine dependences was solved by Rajopadhye and Fujimoto [21],
and independently by Quinton and Van Dongen |20|. These results were generalized to
variable dependent schedules by Mauras et. al. [19]. Feautrier and Darte et. al indepen-
dently presented the optimal solution to the affine scheduling problem (by variable) |6, 3|.
Feautrier also provided the extension to multidimensional time [7]. The scheduling problem
was studied along with the objective for minimizing communication by Lim at. al. [16].

In this paper, we have extended these techniques to a class of programs that is strictly
more general than those considered previously. Moreover, the schedules that we construct
can be directly used to perform appropriate program transformations.

7 Conclusions and Future Work

The polyhedral model has been widely studied for the automatic parallelization of loop
programs. However, it is limited in expressivity. It was recently extended to Z-polyhedral
domains |9|. In this paper, we presented the scheduling analysis for the Z-polyhedral model,
a strict generalization of the polyhedral model, to obtain multidimensional schedules with
minimum latency. Our schedules are of the form N (z) = (Lz +1 — A(2)) where {Lz +
l|z € Z™} is the lattice corresponding to the Z-polyhedron and A(z) is the affine function
(comprising of integer scalars) on the coordinates of this lattice. As a result, an important
property of our ILP formulation is that it searches only in the space of functions that can
subsequently be used to construct a space-time transformation of the program.

13



Our schedules express unbounded parallelism and thus cannot directly be realized in
any parallel hardware. However, such parallelism detection is the crucial precursor to any
resource constrained analysis.

Future work involves the derivation of parallel code from our high level equations. We
also aim to implement these transformations into a compiler optimization framework.

References

[1] C. Bastoul, A. Cohen, A. Girbal, S. Sharma, and O. Temam. Putting polyhedral loop
transformations to work. In Languages and Compilers for Parallel Computers, pages
209-225, Oct 2003.

[2] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization.
Birkhauser, 2000.

[3] Alain Darte and Yves Robert. Affine-by-statement scheduling of uniform and affine loop
nests over parametric. J. Parallel Distrib. Comput., 29(1):43 59, 1995.

[4] P. Feautrier. Parametric integer programming. Operationnelle/Operations Research,
22(3):243 268, 1988.

|5] P. Feautrier. Dataflow analysis of array and scalar references. Int. Journal of Parallel
Programming, 20(1):23 53, 1991.

|6] P. Feautrier. Some efficient solutions to the affine scheduling problem. part I. one-
dimensional time. Int. Journal of Parallel Programming, 21(5):313 348, Oct 1992.

|7] P. Feautrier. Some efficient solutions to the affine scheduling problem. part II. multidi-
mensional time. Int. Journal of Parallel Programming, 21(6):389-420, Dec 1992.

|8] Agustin Fernandez, José M. Llaberia, and Miguel Valero-Garcia. Loop transformation
using nonunimodular matrices. IEEE Trans. Parallel Distrib. Syst., 6(8):832-840, 1995.

[9] Gautam and S. Rajopadhye. The Z-polyhedral model. Technical Report 06-103, Col-
orado State University, Fort Collins, Colorado, 2006.

[10] C. Hermite. Sur l'introduction des variables continues dans la theorie des nombres. J.
Reine Angew. Math., 41:191-216, 1851.

[11] R. M. Karp, R. E. Miller, and S. V. Winograd. The organization of computations for
uniform recurrence equations. JACM, 14(3):563-590, July 1967.

[12] Leslie Lamport. The parallel execution of DO loops. Communications of the ACM,
pages 83 93, February 1974.

[13] H. Le Verge. Un environnement de transformations de programmmes pour la synthése
d’architectures réguliéres. PhD thesis, L’Université de Rennes I, IRISA, Campus de
Beaulieu, Rennes, France, Oct 1992.

14



[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

26]

27]

P. Lenders and S. V. Rajopadhye. Multirate VLSI arrays and their synthesis. Technical
Report 94-70-01, Oregon State University, December 1994.

Wei Li and Keshav Pingali. A singular loop transformation framework based on non-
singular matrices. Int. J. Parallel Program., 22(2):183-205, 1994.

Amy W. Lim, Gerald I. Cheong, and Monica S. Lam. An affine partitioning algorithm
to maximize parallelism and minimize communication. In International Conference on
Supercomputing, pages 228-237, 1999.

B. Lisper. Linear programming methods for minimizing execution time of indexed
computations. In Int. Workshop on Compilers for Parallel Computers, 1990.

C. Mauras. ALPHA: un langage équationnel pour la conception et la programmation
d’architectures paralléles synchrones. PhD thesis, L’Université de Rennes I, Rennes,
France, December 1989.

C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter. Scheduling affine parametrized
recurrences by means of variable dependent timing functions. In International Confer-
ence on Application Specific Array Processing, pages 100-110, 1990.

Patrice Quinton and Vincent Van Dongen. The mapping of linear recurrence equations
on regular arrays. Journal of VLSI Signal Processing, 1(2):95-113, 1989.

S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systolic
arrays from recurrence equations with linear dependencies. In Foundations of Software
Technology and Theoretical Computer Science, pages 488-503, 1986.

J. Ramanujam. Beyond unimodular transformations. J. Supercomput., 9(4):365 389,
1995.

S. K. Rao. Regular Iterative Algorithms and their Implementations on Processor Arrays.
PhD thesis, Stanford University, Information Systems Lab., Stanford, Ca, October 1985.

W. Shang and J. Fortes. Time optimal linear schedules for algorithms with uniform
dependencies. IEEE Transactions on Computers, 40(6):723 742, June 1991.

D. Wilde. A library for doing polyhedral operations. Technical Report PI 785, IRISA,
Rennes, France, Dec 1993.

Barry Wilkinson and Michael Allen. Parallel programming: techniques and applications
using networked workstations and parallel computers. Prentice-Hall, Inc., 1999.

Jingling Xue. Automating non-unimodular loop transformations for massive parallelism.
Parallel Computing, 20(5):711 728, 1994,

15



