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Abstract

Data dependence analysis is a crucial step for any computation reordering trans-
formation. Exposing the inherent ordering among the computations in different loop
iterations, it provides the conditions for the validity of loop transformations such as
automatic parallelization and tiling.

Exact dependence analysis gives the minimal set of computation orderings to be
respected by transformations. Currently, a restricted class of programs, called affine
control loops (ACLs), can be analyzed to produce exact dependence relations. In this
paper we extend this analysis to a more general class of programs that contain (7)
loops with non-unit stride, (i¢) modulo operations, integer divisions, max and min in:
loop bounds, guards, and memory access functions, and (ii7) existential variables in
guards. More precisely, the proposed technique can be applied to loop programs having
statements defined over Presburger sets. The results of our analysis are programs in
the Z-polyhedral model, a generalization of the well-established polyhedral model. The
beauty of our formulation is that with straightforward pre- and post-processing we can

reuse the existing tools and techniques previously developed for ACLs.



1 Introduction

A significant fraction of program execution time is spent in loops, thus, most optimizing
compilers focus on their efficient compilation. Various loop transformations such as reorder-
ing, automatic parallelization or blocking have been developed for almost three decades.
To ensure the semantic equivalence of any transformation, it is essential to respect the de-
pendences between statement instances. The extraction of these dependences is what is
known as value-based dependence analysis or simply dependence analysis. Since dependences
between statement instances dictate the space of valid transformations, the power of loop
transformations relies critically on the chosen iteration space and dependence abstraction.
The most sophisticated existing technology is the polyhedral model that enables the analysis
and transformation of loops that have a polyhedral iteration space and affine dependences
between different statement instances. In this paper we present the theory for the exact
dependence analysis of a more general class of loops, having statements defined over richer

domains. As such, we enable much stronger optimizations.

Example 1 highlights the need for our result. Given the following sequential loop

for i=1 ... n
if ((i%2==0) || (i%3==0))

X[i] = £(X[i-11);

note that the statement is not executed at all loop iterations. Wheni = 65+1 ori=65+5
for any integer 7, the statement guard ((¢42==0) [ (4%3==0)) fails. However, any polyhedral
approach 1s incapable of factoring this information, and therefore, conservatively assumes
that the statement X[t] = f(X[i-11) is executed at all loop iterations. As all statements
instances depend on the value obtained from the previous iteration, this abstraction clearly
imposes a sequential execution order of the loop. Moreover, if we were to use the more precise

information, we may obtain the constant-time parallelization of this ©(n) loop given below.



forall i =2 ... n step 6

X[i]l = £X[i-11);
forall i = 6 ... n step 6
X[i]l = £(X[i-11);
forall i =3 ... n step 6
X[i] = £(X[i-11);
forall i =4 ... n step 6
X[i] = £(X[i-1]1);

The iteration spaces of the each of the four loops are similar to the original loop, but
restricted to certain periodic hops. More precisely, it is the intersection of the original poly-
hedron i € {1,...,n} and a lattice (with a periodicity of 6). Such a set is called a Z-
polyhedron. Broadly, the shown parallelization requires the dependence analysis, scheduling
analysis [13] and code generation [1] of loops having statements defined over Z-polyhedral

iteration domains.

The loops that have a precise abstraction in the polyhedral model are called affine control
loops or ACLs. As mentioned, exact dependence analysis has been developed for ACLs |8,
25, 24]. Based on the abstraction, sophisticated techniques such as memory optimization |6,
17, 26, 20, 31, 4], automatic parallelization |2, 3, 9, 10, 15, 16, 21, 23, 27, 28, 30| and, more
recently, the automatic and optimal decrease in the asymptotic complexity of accumulations
[12] have been developed in the polyhedral model.

However, there are many important loop programs that are not ACLs. Loops with non-
unit stride are required to express computations such as the RED-BLACK SOR for solving
partial differential equations. More importantly, tiled programs generally encode information
of the tile origins and lattice. Any subsequent analysis of such programs, primarily for the
purpose of porting to different architectures requires the more general dependence analysis
presented here. For similar mathematical reasons, non-unimodular transformations [11, 19,

32, 29|, used for program optimization and in the derivation of parallel architectures with
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periodic processor activity such as multi-rate arrays 18] and bidirectional systolic arrays
result in loops that are not ACLs, thus, cannot be expressed in the polyhedral model.

We present the dependence analysis for loops having statements defined over Z-polyhedral
domains. In fact, we will accept loops having statements that are defined over arbitrary Pres-
burger sets and use our previous result that shows the equivalence of Presburger sets and
unions of Z-polyhedra. It is precisely this result that has enabled the extension proposed
here. The decidable theory of Presburger formulae has been known for many decades which
has also been incorporated in the Omega tool [25] used extensively in optimizing compil-
ers. In spite of the greater generality of the underlying machinery, the Omega test is often
restricted to ACLs in practice.

In this paper we present the exact dependence analysis technique for a richer class of

programs where statements can be defined over Presburger sets. Our main contributions are

e The extension of the exact data-flow analysis to a more general class of programs that
include non-unit stride loops and have mod, integer division, max and min operations
in loop bounds, guards and even memory access functions. These statements can be

further restricted by guards that have existentially quantified variables.

e A novel ILP formulation that enables us to reuse the existing tools and techniques with

a simple pre- and post-processing.

The remainder of this paper is organized as follows. In the following section, we provide
the required mathematical background for our technique. In Section 3, we illustrate our ap-
proach with an example. In Section 4 we describe our input language, precisely characterize
the iteration space of statements, and describe the data-dependence problem of obtaining
the producer for values read by any statement. We then express this problem as an ILP
formulation. Our iteration spaces are Presburger sets which may be expressed as a union
of Z-polyhedra. Finally, we post-process the results of the ILP solver to obtain an answer

in terms of iterations of the Z-polyhedron. After discussing related work in Section 5, we



finally present our conclusions.

2 Mathematical Background

In this section, we will define the mathematical objects and concepts used in our analysis.
As a convention, we will denote matrices with the upper-case letters and vectors with the
lower-case. All matrices and vectors have integer elements. We will denote the identity

matrix by /. Syntactically, the different elements of a vector v will be written as a list.

2.1 Affine Lattices

The lattice generated by a matrix L is the set of all integer linear combinations of the
columns of L. If the columns of a matrix are linearly independent, they constitute a basis
of the generated lattice.

We use a generalization of the lattices generated by a matrix, additionally allowing offsets
by constant vectors. These are called affine lattices. An affine lattice is a subset of Z™ and
can be represented as {Lz + [|z € Z™} where L and [ are an n X m matrix and n-vector

respectively. We call z the coordinates of the affine lattice.

2.2 Integer Polyhedra

An integer polyhedron, P is a subset of Z" that can be defined by a finite number of affine
inequalities (also called affine constraints or just constraints when there is no ambiguity)
with integer coefficients. We follow the convention that the affine constraint c¢; is given
as (afz + a; > 0) where z,a; € Z",; € Z. The integer polyhedron, P, satisfying the
set of constraints C = {cy,...,¢} is often written as {z € Z"|Qz + ¢ > 0} where Q =
(ar...ap)T is an b x n matrix and ¢ = (ay...qp)7 is an b-vector eg. {i,7]0 < 4,0 < j} is
the polyhedron corresponding to the first orthant. A parameterized integer polyhedron is

an integer polyhedron where some indices are interpreted as size parameters.



2.3 Z-Polyhedra

A Z-polyhedron is the intersection of an integer polyhedron and an affine lattice. We use

the following representation of Z-polyhedra.

{Lz+1Qz+¢>0,2€Z™} (1)

where the columns of L constitute a basis of the affine lattice { Lz+1|z € Z™} and valid values
of z are given by the coordinate polyhedron {z|Qz + q > 0,z € Z™} of the Z-polyhedron.
[teration points of the Z-polyhedral domain are points of the affine lattice corresponding to
valid coordinates.

A parameterized Z-polyhedron is a Z-polyhedron where some rows of its corresponding
affine lattice are interpreted as size parameters. We can always express a Z-polyhedron
such that its size parameters have a one-to-one correspondence with certain indices of its

coordinate polyhedron.

2.4 Presburger Sets

Presburger (integer) formulae consists of affine inequalities over integer variables and log-
ical operators combining affine inequalities. Formally, a Presburger formula is defined as

follows [22]:
f=al|3eflfNFIIV =S

where a =t <tandt=0|1|x|t+1t|—t. Here, z represent an integer variable.

The Presburger atom a is an single affine expression over integer variables, which can be
represented as a half-space (or trivially an integer polyhedron). The universe, U, is also an
integer polyhedron. The family of unions of integer polyhedra is closed under intersection,
union and difference. In the absence of the existential qualifier, any f can be expressed as a
union of integer polyhedra. However, the union of integer polyhedra is not closed under the

existential qualifier, which can be viewed as a projection. It has been proved recently that



‘ Presburger Set Construction Rule ‘ Corresponding operation on a union of Z-polyhedra ‘

Presburger atom a < a’ A half space whose constraint is a < a’
fi N fa Dy N Dy,
fiV fa Dy, U Dy,
- f U\ Dy
dx . f image of Dy by ((z,x) — z) function

Table 1: Conversion rule from a Presburger set to a union of Z-polyhedra; f, fi and f, are
Presburger formulae and Dy, Dy, and Dy, are the corresponding unions of Z-polyhedra

the family of unions of Z-polyhedra is closed under image by arbitrary affine functions, [14].
As a corollary, any Presburger set can always be written as a union of Z-polyhedra. The
formal conversion rule is given in Table 1. The existential qualification on variable z can be
viewed as the image of the set Dy satisfying f by the function that eliminates the variable
x. Note that a point z exists in the set described by 3z.f if and only if (z,x) € Dy. Since
the family of unions of Z-polyhedra is closed under intersection, union, difference and image
by affine function, the results of any operation in Table 1 is still a union of Z-polyhedra.
To derive the iteration space of loop in example 1, we will first express it as a Presburger
set with the introduction of existential variables to handle mod and div operators. Then,
using the closure result mentioned above, we obtain an equivalent representation of the

iteration space as a union of four Z-polyhedra.

3 Illustrating Example

We first illustrate the problem and our approach with the help of the following example. Our
goal is to express explicitly the iteration spaces as unions of Z-polyhedra and exact data
dependence relation on these representation so that further analyses and transformations,

specially those in the polyhedral model, can be applied.

for i=2 to 2N
C[i]=0; -—- R

for i=1 to N



for j=(i div 2) to N step 2

Cli+jl=C[i+jl+A[il=*B[jl; ---S

Here, div represents integer division (also denoted by ’/’). The iteration space D of a
statement is the set of all valid loop indices of its surrounding loops. The iteration space
Dpg of statement R is {i | 2 < i < 2N}. It is well known that the iteration space of a
statement in ACLs can be represented by an parameterized integer polyhedron. However,
Dg, the iteration space of statement S, cannot be represented by a polyhedron because of
integer division on lower bounds and the non-unit stride.

However, we can write Dg as the following set:

Dg={i,j|1<i<N;(idiv2) <j<N;(— (i div 2)) mod 2 = 0}

Now, we want to derive a Presburger set by introducing new variables and using the division

rule. We introduce a new integer variable a = ¢ div 2.

Ds={i,j]|3a,1<i< N;a<j<N;(j—a)mod?2=0;a=1:div 2}

By the division rule, we replace a = ¢ div 2 with 0 <17 — 2a < 1.

Ds={i,j|3a,1<i<N;a<j<N;(j—a)mod2=0,0<i—2a<1}

The modular operation (j — @) mod 2 = 0 can be removed by introducing a new integer

variable 3 and setting 7 — a = 2. Finally, we get the following Presburger set.

Ds={i,j|3a,8,1<i<N;a<j<Njj—a=280<i-2a<1}

We can view this Presburger set as the image of 7 = {i,j,a,0 | 1 < i < N;a < j <

N;j—a=23;0 <i—2a < 1} by the projection (i, j, v, ) — (4, 7). Note that (i, j,«, 3) € T
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Figure 1: Illustrating Example: The diagram in the center is the iteration space, Dg, of
the statement S which is a union of two Z-polyhedra; the leftmost object is the coordinate
polyhedron of the black points in Dg; and the rightmost object is the coordinate polyhedron
of the white points in Dg.

if and only if (i,j) € Dg.

In this example, the execution of statement S at the iteration (7', ;') requires the value
of the array C at [’ 4+ j']. We want to find the most recent instance (i,j) € Dg of S that
wrote its result to that location of the array C. Also, the answer (i, j) should be a function
of (i, 7).

First, we find the set of all instances that write to C[i’ + j'] before the execution of the
(', ') instance. This set can be described by the following four conditions: () (i,7) € Ds,
(17) (7',7") € Dg, (iii) i + 7 = i + j and (iw) ¢ < i — 1. Now, we express this set as
a single polyhedron P indexed by (i, 7, «, 8,¢/, 3,7, j', N) where (¢, 7', N) are parameters.
Once we find the lexicographic maximum as a function of (7', j', N), the first two indices will
be the computation that writes the value read by the (7', ;') instance. The parameterized
lexicographic maximum of P can be obtained by the pIP solver [7].

Given a valid (7', j') we are assured that (7, j) belongs Dg by the nature of the constraints
posed above. However, we need to devise a mechanism to determine whether (¢’, ') belongs
Ds. To verify whether (i'j") € Dg, we need to find a point (7', j', o/, ") € T . Alternatively,
we must explicitly represent the set without the use of extra variables. This iteration space

can be represented directly, as a union of Z-polyhedra.



This iteration space Dg for N = 7 is shown in Figure 1. By investigating the figure,
we see that a translation from any valid iteration point along the (2,1) and (0, 2) directions
results in either a valid point, or outside the polyhedral closure of the domain. However,
note that it is impossible to move a black point to a white point with the (2,1) and (0, 2)
generators. The black and white points correspond to two different affine lattices. The set

of black points can be described as follows:

B={2y1+1,y1+2ys |1 <2y; + 1 < Ny +2y2 < N;0 < o} (2)

The set of white points can be described as:

W= {2y1,51 +2y> | 1 <2y; < Njy; +2y2 < N;0 < o} (3)

This iteration space can also be computed in a systematic way, i.e., by computing the
image of 7 by the function (7, j,«, 5) — (i,7). The image of polyhedra by affine functions
can be represented as a union of Z-polyhedra. More generally, any arbitrary Presburger set
can be expressed by a union of Z-polyhedra.

Finally, what is remaining is to express the lexicographic maximum obtaining by the
PIP solver in terms of y; and y, instead of ¢/ and j' for each of the two Z-polyhedra in the
iteration space of statement S. This can be achieved by simply replacing i’ by 2y; + 1 and

3" by y1 + 2y, for B and ¢’ by 2y; and j’ by y; + 2y, for W.

4 Problem Definition and ILP Formulation

In this section, we want to answer the following three questions: (i) for the execution of
a statement at a certain iteration (given as a vector of loop indices and size parameters)
requiring the value of a memory location, which statement produces the value and at which

iteration; (i7) what is the set, D, of valid iteration vectors and its preferred representation;
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| nput program G anmmar
Pr ogram ;o Stnt*
St mt : Loop | If | Assignnent
Loop . for Index = ALExpr to ALExpr step PINT
Stnt*
| f cif (7 ABExprs ')’
St nt *
Arr ayRef : Var [ ALExpr *]
Assignnent : ArrayRef = func '(’' ArrayRef* ')’
ALBExprs : ALBExprs ' && ALBExprs |
ALBExprs ||’ ALBExprs |
exists '(' Index ',’ ALBExprs ')’ |
ALBExpr
ALBEXxpr : ALExpr Rel ation ALExpr
Rel ati on D S I S B>
ALExpr © ALExpr '+ Factor |
ALExpr '-' Factor |
ALExpr nod PINT |
ALExpr div PINT |
mex ' (' ALExpr* ')’ |
mn ' (' ALExpr* ')’
Fact or : PINT Index | Index | PINT

Figure 2: Input program grammar. Index is an identifier; ALExpr (called affine lattice
expressions) are functions of outer indices and size parameters; PINT is a positive integer;
ArrayRef is a reference to a multidimensional array that is accessed by an affine lattice
expression of outer indices and size parameters; func is a strict, side-effect free function;
div is a integer division (also denoted by ’/’); and mod is a modular operation (also denoted
by ‘%').

and (i77) how can we represent the iteration vector of the producer in concordance with the

representation of D.

4.1 Input programs

We first describe the class of programs that can be analyzed by our technique. This class
contains ACLs but, in addition, allows loops with non-unit stride and arbitrarily nested mod,
integer division, max and min operations on surrounding indices in loop bounds, guards and
memory access functions. In addition, we also allow existential quantifiers in guards. The
grammar for our input programs is given in Figure 2.

We now present three example programs: a contrived example to illustrate the 1LP for-

mulation, a well-known matrix-matrix multiplication algorithm on a 2D-torus of processors,
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and a stencil program.
Example 2 Contrived example for 1LP formulation:

for i=N%5 to N step 2
for j=i/2+i%4 to N+i%3

X[j1 = X[i/2+j%2];

Example 3 Cannon’s algorithm for multiplying two matrices. This example shows what
kinds of programs can be described by the grammar in Figure 2. However, it is not useful for

the rest of the paper because of trivial data dependence except dependence on input arrays.

for k = 0 to 5
forall i = 0 to 5
forall j = 0 to b

Cli,j1=Cli,jl1+A[i, (i+j+k)%6]1*BL(i+j+k)%6];
For details please refer to [5].
Example 4 Stencil computation (RED-BLACK SOR):

for t = 0 to 2M

1 to N-1

for i
for j = (t+i-1)%2+1 to N-1 step 2

X[i,j1=(X[i-1,j1+X[i+1,j1+X[1,j-11+X[i,j+11)/4;

In the paper, we use “statement” and “assignment” interchangeably and always mean
assignment in terms of grammar. However, we distinguish an assignment and its operation
(or instance) which is a distinct execution of the statement. A statement can be executed
multiple times, but an operation is unique in the entire execution of a program. An operation
is described completely by a statement and its associated iteration vector. We denote an

operation z € Dg of a statement S by (S, z).
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‘ expression H Additional variable ‘ Equivalent form ‘ Additional Constraint ‘
ALExpr div ¢ daeZ a (0 < ALExpr —ca < c—1)
ALExpr mod ¢ da€Z ALExpr —ca | (0 < ALExpr —ca < c—1)

Table 2: Equivalent form for ALExpr ®c where © is an integer division or mod by the positive
integer c.

4.2 Iteration Space as a Presburger Set

We will first explain how to express the iteration space of input loop nests as Presburger sets.
A Presburger set can be always seen as an image of a union of higher dimensional polyhedra
by the projection that eliminates all unnecessary variables. We use the higher dimensional
polyhedron for our ILP formulation. Its canonical projection along all the existential variables
yields the iteration space as a Presburger set.

First, let us consider the simple case where the expression is a form of « = AE ©® ¢
where ® is either an integer division or modular operation and c is a positive integer e.g.,
a = (i + j) div 2. By the division rule, we may replace it by 0 < i+ j — ca < ¢— 1. For
the general case, transformations are given in Table 2. In obtaining the equivalent form, we
have introduced an existential variable and an additional constraint.

The procedure to construct a Presburger set from arbitrary loop bounds is to introduce
a new existential variable for every mod or div operator until all the conditions are affine
expressions (with nested max and min). The maximum or minimum of affine expressions can
be transformed into disjunction and conjunction of affine expressions. Our iteration space
is then the projection of a union of polyhedra along the canonic directions corresponding to
all the introduced existential variables.

We illustrate this algorithm through its application to Example 2. The iteration space

can be expressed by

(6,5 | N%5 < i < N: (i — N%5)%2 = 0: (i/2) + i%4 < j < N +i%3}

Now, we replace N%5 by N — 5a; by introducing a new variable a;; and the new constraint
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0 < N —bHa; <4. Then, we get

(3,7 | 3on,0 < N—5a;, < 4: N—5a; <i < N;(i—(N—5a1))%2 = 0; (i/2)+i%4 < j < N+i%3}

We introduce three more variables ag, a3 and ay to replace i%4, i%3 and (i — (N — 5ay)) %2
by i — 4ag, i — 3as and (i — (N — 5oy )) — 2ay, respectively along with the introduction of

the constraints 0 <7 —4ay <3,0<i—3a3 <2and 0 < (i — (N —5ay)) — 2ay4 < 1.

{Z,] | 3@1,0&2,0&3,0&4,0§N-5O&1 §4;O§’é—40é2 SB,OSZ—?)O!?,SQ,OS (i—(N—5a1))—2a4§ 1;

To remove the only div (or’/") operator, we introduce a5 to replace (i/2) by a5 along

with the introduction of the constraint 0 < ¢ — 2a5 < 1.

{Z’] | 3@1,0&2,@3,0&4,0&5,
0<N—-5a;<4,0<i—405<3;0<i—3a3<2;0<(i—(N—=5))—204 <1;0<i—2a5<1,;

N—5(1/1S'éSN;OS(’é—(N—5Oé1))—20é4§1;a5+(’é—40é2)§j§N+(i—3a3)}

Note that the constraints consists of only affine constraints. This Presburger set is

equivalent to the projection of the polyhedron, P.o,t1rived:

{z.aja 051,042,053,044,0é5|
0<N—-5a;<4,0<i—409<3;0<i—3a3<2;0<(i—(N—=5))—204 <1;0<i—2a5<1;

N—5(1/1S'éSN;OS(’é—(N—5Oé1))—20é4§1;a5+(’é—40é2)§j§N+(i—3a3)}

by the function (i, 7, a, v, a3, g, a5 — 1, 7).

The iteration space in Example 4 can be constructed by introducing two additional

14



variables to obtain the Presburger set, Dstencil

{t,i, ]300, 00,0 <t < 2M;0<i < N —1;

0<t+i—T1-2m<Li(t+i—20)<j<N-—1j—(t+i—20)— 20 =0}

In general, we may have guards on the execution of statements. This simply requires the
addition of the constraints in the if condition to the iteration space of the corresponding
statement. A subtle point to note is that user-defined existential variables may only occur

in the if statements.

4.3 Predicate for execution order

This section focuses on the ordering of operations in input programs. In other words, it
provides the condition that an operation (.S, 2’) is executed before another operation (R, z).
We denote the depth of common loops of S and R by Nggr and the textual order of statements
S and R by the boolean predicate Bgg.

A operation (5, 2') is executed before (R, z) if

Z/[]_ .. 'NSR] < Z[l C NSR] vV (BSR N Z/[]_ .. 'NSR] = Z[l R NSR]) (4)

When Ngr = 0, the condition will be just Bgg.

For our illustrating example, C'sg = 0 and Bgg is true. So, an operation of the assignment
R precedes any operations of S. An operation (R, z) precedes (R, z’) if z < z/. Similarly,
(S, z) precedes (5,2') if z < 2.

Note that this sequencing predicate is the same as the predicate for ACLs. It is because
steps in input programs are positive integers and the conditional statements do not affect the
order of iteration vectors. A conditional statement only restricts the space of valid iteration
vectors. For a more detail description, please refer to Feautrier’s work [8] on the exact

dependence analysis of ACLs.
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4.4 TILP formulation

We have statements whose iteration spaces are Presburger sets. For a consumer statement
C whose memory (read) access function is M and a candidate producer statement P whose
(write) access function is Mp.

We will assume that the iteration space of a statement given by the Presburger set D
is such that it is the image of a single polyhedron P by the canonical projection along the
directions corresponding to existential variables. This is restrictive. However, we will see
that generalizations are straightforward extensions to the basic technique presented for this
case.

First, we want to find all the instances of P that write to the location M (z") before 2/

where 2’ € Do. This set C can be described as:

C={2€Dp |2 €Dc;Mp(z) = Mc(2); 2. < 2.}

/

where z. (resp., z.

) is z[1...Npc| (resp., Z'[1...Npc]). Note that depending on textual

order 2z, may be allowed to be z.. Using the fact that z € Dp iff (2,a) € Pp we get

C'={(z,a) € Py | (¢,&) € Po; Mp(2) = Mc(2'); 20 < 2.}

As a special case, if the memory function Mp and My are both affine functions, we
have the same ILP formulation as that of ACLs. However, its naive formulation causes the
problem that the ILP solution depends on 2/, as well as /. We can avoid this by treating o’
as unknown indices as well, rather than parameters, when constructing the parameterized

polyhedra Q given as

Q={(¢,z,a,d) | (#,d) € Pc;(z,a) € Po; Mp(2) = Mo (2'); 2. < 2.}

Q is parameterized by only 2’ and size parameters. In the solution of the ILP solver,
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(z, a, ') will be expressed as a function of 2’ and size parameters. The intuition behind such
a formulation is that the values of (v, @’) do not matter as long as (a, ') simply exists and
z is the corresponding lexicographic maximum.

Consider the stencil computation in Example 4. We want to formulate an ILP problem
to find out the producer of (t,7',j') as a function of the indices #', i" and j’ for the memory

reference X|[i, 7 — 1]. Then, the set of candidate operations can be specified by

Qstencil = {t/u ilaj/vtu ivjv aq, (g, 0/17 0/2 | (t/vi/v.j/) € Pstencil; (tu 7’7.]) € Pstencil; i = Zvj/_l = jv (tvzuj) < (]

This set is a polyhedra parameterized by (¢',4',5’). Using the PIP solver, we find the
last-write operation (t,1, j, oy, g, as, o}, ab, af) as a function of (#',4', j). It is only the first
three components, (t,1,7j), of the last-write operation of (¢',7,j') that we seek. Note that
the proper values for the remaining variables exist given (.7, j") and (¢, 1, j).

In fact, Qgenci] 18 NOt a single polyhedron because of the lexicographic order, but a
union of three polyhedra. The lexicographic order (t,4,j) < (',4’, 5') is decomposed to three
cases: t < t,t =t ANi < andt =t ANi =149 ANj < j. So, for each polyhedron, a
different 1LP problem is solved and all the individual solutions are combined to obtain the
producer iteration that last wrote the value. In the presence of multiple candidate producer
statements these solutions are further combined to obtain the producer statement and its
iteration. For a detailed description of such steps, again refer to Feautrier’s work [8].

With this understanding, it is straightforward to see that when the iteration space of
a statement is the image of a union of polyhedra, we can solve the ILP problem once for
each pair of consumer and producer polyhedron in the unions and subsequently combine the
results to obtain the required producer iteration. Note that the number of calls to PIP are a
function of the number of the disjunctions in the Presburger set, not that of the exponential
number of elements in the union of Z-polyhedra.

Our memory access functions are not always simple affine functions (refer to Example
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2). To obtain the required Presburger set for complex memory access, we simplify the
constraints M,(z) = Mc(2') using the techniques presented previously in the construction
of the iteration space of statements.

With the help of Example 2, we now illustrate this approach. Consider the set that
satisfies i'/2 4+ j'%2 = j:

{(, 5" 0.9) 147'/2+ %2 = j}

We introduce two existential variables 3; and (35 to remove the modular the integer division

operations to obtain

M= {05,082 | 0 <7 =20 S L0 < =20, S LB+ (7' — 262) = j}

Finally, the set of candidate operations can be specified by

Qeontrived = {(#,2,@,0", 8) [ (2, @) € Peoptrived (2, @) € Peontrived; (72, 0) € M;z < 2}

Once again, we treat this set as a polyhedra parameterized by 2’ and size parameters and
find the lexicographic maximum using the PIP solver to obtain the producer for the iteration

at 2.

4.5 Iteration Space as a Union of Z-polyhedra

Thus far, we have expressed the iteration space of statements as Presburger sets and pre-
sented in detail how to construct these sets. However, the existential quantification in
Presburger equations makes it difficult to obtain the precise set of iterations. For this, we
express Presburger sets as a union of Z-polyhedra and specialize the last-write function to
each individual Z-polyhedron. Let ZP = {Ly + l|ly € P} be a Z-polyhedron in the union
and f(2') is the last-write function. The last-write function in terms of the coordinates of

the Z-polyhedron is then simply f(Ly + ).
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5 Conclusion & Future Work

We presented a compiler analysis for performing exact value-based dependence analysis for
a richer class of “static control loop programs.” This class is significantly more general
than the largest previously known class, namely affine control loops for which such analysis
was possible [8, 25, 24]. It includes loop programs whose iteration spaces are arbitrary
Pressburger sets and whose access functions are affine functions extended with div and mod
operators and existential quantifiers. Such a class is not only more general, but it is also
important, since many common applications such as red-black SOR, and Canon’s algorithm
for matrix multiplication, can be concisely and naturally written using the extended syntax
that we provide.

Our analysis may be viewed as (i) an initial pre-processing step to transform the input
specification so that all existentially quantified formulae are replaced by polyhedral sets of
higher dimensions; (ii) formulation of the precedence constraints as a parametric integer
linear program that can be solved by well known tools such as PIP |7]; and (iii) a final post-
processing step that converts the results of this into system of affine recurrence equations
defined over Z-polyhedral domains (called Z-Polyhedral SAREs, or ZPSAREs). Because of
the precisely defined pre- and post-processing steps, we are able to simply reuse existing
machinery and tools that have been previously developed for the limited case of ACLS.

The output of the analysis, ZPSARES, can exploit a novel representation of Z-polyhedra |14]
and can be analyzed for parallelism using sophisticated and more precise scheduling tech-
niques, that allow us to detect more parallelism than is possible under the polyhedral model
alone [13].

Our ongoing work involves the implementation of these techniques. The construction of
the precise iteration space requires two important tools: a library for manipulating unions of

Z-polyhedra and a component for converting a Presburger set to a union of Z-polyhedra.
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