
Computer Science

Technical Report

Value-based Dependence Analysis for the

Z-ployhedral Model

DaeGon Kim and Gautam and Sanjay V. Rajopadhye

[kim|ggupta|svr]@cs.colostate.edu

April 17, 2008

Technical Report CS-08-100

Computer Science Department

Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466

WWW: http://www.cs.colostate.edu

Value-based Dependen
e Analysis for the Z-ployhedralModelDaeGon Kim and Gautam and Sanjay V. Rajopadhye[kim|ggupta|svr℄�
s.
olostate.eduApril 17, 2008Abstra
tData dependen
e analysis is a
ru
ial step for any
omputation reordering trans-formation. Exposing the inherent ordering among the
omputations in di�erent loopiterations, it provides the
onditions for the validity of loop transformations su
h asautomati
 parallelization and tiling.Exa
t dependen
e analysis gives the minimal set of
omputation orderings to berespe
ted by transformations. Currently, a restri
ted
lass of programs,
alled a�ne
ontrol loops (a
ls),
an be analyzed to produ
e exa
t dependen
e relations. In thispaper we extend this analysis to a more general
lass of programs that
ontain (i)loops with non-unit stride, (ii) modulo operations, integer divisions, max and min in:loop bounds, guards, and memory a

ess fun
tions, and (iii) existential variables inguards. More pre
isely, the proposed te
hnique
an be applied to loop programs havingstatements de�ned over Presburger sets. The results of our analysis are programs inthe Z-polyhedral model, a generalization of the well-established polyhedral model. Thebeauty of our formulation is that with straightforward pre- and post-pro
essing we
anreuse the existing tools and te
hniques previously developed for a
ls.1

1 Introdu
tionA signi�
ant fra
tion of program exe
ution time is spent in loops, thus, most optimizing
ompilers fo
us on their e�
ient
ompilation. Various loop transformations su
h as reorder-ing, automati
 parallelization or blo
king have been developed for almost three de
ades.To ensure the semanti
 equivalen
e of any transformation, it is essential to respe
t the de-penden
es between statement instan
es. The extra
tion of these dependen
es is what isknown as value-based dependen
e analysis or simply dependen
e analysis. Sin
e dependen
esbetween statement instan
es di
tate the spa
e of valid transformations, the power of looptransformations relies
riti
ally on the
hosen iteration spa
e and dependen
e abstra
tion.The most sophisti
ated existing te
hnology is the polyhedral model that enables the analysisand transformation of loops that have a polyhedral iteration spa
e and a�ne dependen
esbetween di�erent statement instan
es. In this paper we present the theory for the exa
tdependen
e analysis of a more general
lass of loops, having statements de�ned over ri
herdomains. As su
h, we enable mu
h stronger optimizations.Example 1 highlights the need for our result. Given the following sequential loopfor i = 1 ... nif ((i%2==0)||(i%3==0))X[i℄ = f(X[i-1℄);note that the statement is not exe
uted at all loop iterations. When i = 6j+1 or i = 6j+5for any integer j, the statement guard ((i%2==0)||(i%3==0)) fails. However, any polyhedralapproa
h is in
apable of fa
toring this information, and therefore,
onservatively assumesthat the statement X[i℄ = f(X[i-1℄) is exe
uted at all loop iterations. As all statementsinstan
es depend on the value obtained from the previous iteration, this abstra
tion
learlyimposes a sequential exe
ution order of the loop. Moreover, if we were to use the more pre
iseinformation, we may obtain the
onstant-time parallelization of this Θ(n) loop given below.2

forall i = 2 ... n step 6X[i℄ = f(X[i-1℄);forall i = 6 ... n step 6X[i℄ = f(X[i-1℄);forall i = 3 ... n step 6X[i℄ = f(X[i-1℄);forall i = 4 ... n step 6X[i℄ = f(X[i-1℄);The iteration spa
es of the ea
h of the four loops are similar to the original loop, butrestri
ted to
ertain periodi
 hops. More pre
isely, it is the interse
tion of the original poly-hedron i ∈ {1, . . . , n} and a latti
e (with a periodi
ity of 6). Su
h a set is
alled a Z-polyhedron. Broadly, the shown parallelization requires the dependen
e analysis, s
hedulinganalysis [13℄ and
ode generation [1℄ of loops having statements de�ned over Z-polyhedraliteration domains.The loops that have a pre
ise abstra
tion in the polyhedral model are
alled a�ne
ontrolloops or a
ls. As mentioned, exa
t dependen
e analysis has been developed for a
ls [8,25, 24℄. Based on the abstra
tion, sophisti
ated te
hniques su
h as memory optimization [6,17, 26, 20, 31, 4℄, automati
 parallelization [2, 3, 9, 10, 15, 16, 21, 23, 27, 28, 30℄ and, morere
ently, the automati
 and optimal de
rease in the asymptoti

omplexity of a

umulations[12℄ have been developed in the polyhedral model.However, there are many important loop programs that are not a
ls. Loops with non-unit stride are required to express
omputations su
h as the red-bla
k sor for solvingpartial di�erential equations. More importantly, tiled programs generally en
ode informationof the tile origins and latti
e. Any subsequent analysis of su
h programs, primarily for thepurpose of porting to di�erent ar
hite
tures requires the more general dependen
e analysispresented here. For similar mathemati
al reasons, non-unimodular transformations [11, 19,32, 29℄, used for program optimization and in the derivation of parallel ar
hite
tures with3

periodi
 pro
essor a
tivity su
h as multi-rate arrays [18℄ and bidire
tional systoli
 arraysresult in loops that are not a
ls, thus,
annot be expressed in the polyhedral model.We present the dependen
e analysis for loops having statements de�ned over Z-polyhedraldomains. In fa
t, we will a

ept loops having statements that are de�ned over arbitrary Pres-burger sets and use our previous result that shows the equivalen
e of Presburger sets andunions of Z-polyhedra. It is pre
isely this result that has enabled the extension proposedhere. The de
idable theory of Presburger formulae has been known for many de
ades whi
hhas also been in
orporated in the Omega tool [25℄ used extensively in optimizing
ompil-ers. In spite of the greater generality of the underlying ma
hinery, the Omega test is oftenrestri
ted to a
ls in pra
ti
e.In this paper we present the exa
t dependen
e analysis te
hnique for a ri
her
lass ofprograms where statements
an be de�ned over Presburger sets. Our main
ontributions are
• The extension of the exa
t data-�ow analysis to a more general
lass of programs thatin
lude non-unit stride loops and have mod, integer division, max and min operationsin loop bounds, guards and even memory a

ess fun
tions. These statements
an befurther restri
ted by guards that have existentially quanti�ed variables.
• A novel ilp formulation that enables us to reuse the existing tools and te
hniques witha simple pre- and post-pro
essing.The remainder of this paper is organized as follows. In the following se
tion, we providethe required mathemati
al ba
kground for our te
hnique. In Se
tion 3, we illustrate our ap-proa
h with an example. In Se
tion 4 we des
ribe our input language, pre
isely
hara
terizethe iteration spa
e of statements, and des
ribe the data-dependen
e problem of obtainingthe produ
er for values read by any statement. We then express this problem as an ilpformulation. Our iteration spa
es are Presburger sets whi
h may be expressed as a unionof Z-polyhedra. Finally, we post-pro
ess the results of the ilp solver to obtain an answerin terms of iterations of the Z-polyhedron. After dis
ussing related work in Se
tion 5, we4

�nally present our
on
lusions.2 Mathemati
al Ba
kgroundIn this se
tion, we will de�ne the mathemati
al obje
ts and
on
epts used in our analysis.As a
onvention, we will denote matri
es with the upper-
ase letters and ve
tors with thelower-
ase. All matri
es and ve
tors have integer elements. We will denote the identitymatrix by I. Synta
ti
ally, the di�erent elements of a ve
tor v will be written as a list.2.1 A�ne Latti
esThe latti
e generated by a matrix L is the set of all integer linear
ombinations of the
olumns of L. If the
olumns of a matrix are linearly independent, they
onstitute a basisof the generated latti
e.We use a generalization of the latti
es generated by a matrix, additionally allowing o�setsby
onstant ve
tors. These are
alled a�ne latti
es. An a�ne latti
e is a subset of Z
n and
an be represented as {Lz + l|z ∈ Z

m} where L and l are an n × m matrix and n-ve
torrespe
tively. We
all z the
oordinates of the a�ne latti
e.2.2 Integer PolyhedraAn integer polyhedron, P is a subset of Z
n that
an be de�ned by a �nite number of a�neinequalities (also
alled a�ne
onstraints or just
onstraints when there is no ambiguity)with integer
oe�
ients. We follow the
onvention that the a�ne
onstraint ci is givenas (aT

i z + αi ≥ 0) where z, ai ∈ Z
n, αi ∈ Z. The integer polyhedron, P, satisfying theset of
onstraints C = {c1, . . . , cb} is often written as {z ∈ Z

n|Qz + q ≥ 0} where Q =

(a1 . . . ab)
T is an b × n matrix and q = (α1 . . . αb)

T is an b-ve
tor eg. {i, j|0 ≤ i, 0 ≤ j} isthe polyhedron
orresponding to the �rst orthant. A parameterized integer polyhedron isan integer polyhedron where some indi
es are interpreted as size parameters.5

2.3 Z-PolyhedraA Z-polyhedron is the interse
tion of an integer polyhedron and an a�ne latti
e. We usethe following representation of Z-polyhedra.
{Lz + l|Qz + q ≥ 0, z ∈ Z

m} (1)where the
olumns of L
onstitute a basis of the a�ne latti
e {Lz+l|z ∈ Z
m} and valid valuesof z are given by the
oordinate polyhedron {z|Qz + q ≥ 0, z ∈ Z

m} of the Z-polyhedron.Iteration points of the Z-polyhedral domain are points of the a�ne latti
e
orresponding tovalid
oordinates.A parameterized Z-polyhedron is a Z-polyhedron where some rows of its
orrespondinga�ne latti
e are interpreted as size parameters. We
an always express a Z-polyhedronsu
h that its size parameters have a one-to-one
orresponden
e with
ertain indi
es of its
oordinate polyhedron.2.4 Presburger SetsPresburger (integer) formulae
onsists of a�ne inequalities over integer variables and log-i
al operators
ombining a�ne inequalities. Formally, a Presburger formula is de�ned asfollows [22℄:
f = a | ∃x.f | f ∧ f | f ∨ f | ¬fwhere a = t < t and t = 0 | 1 | x | t + t | −t. Here, x represent an integer variable.The Presburger atom a is an single a�ne expression over integer variables, whi
h
an berepresented as a half-spa
e (or trivially an integer polyhedron). The universe, U , is also aninteger polyhedron. The family of unions of integer polyhedra is
losed under interse
tion,union and di�eren
e. In the absen
e of the existential quali�er, any f
an be expressed as aunion of integer polyhedra. However, the union of integer polyhedra is not
losed under theexistential quali�er, whi
h
an be viewed as a proje
tion. It has been proved re
ently that6

Presburger Set Constru
tion Rule Corresponding operation on a union of Z-polyhedraPresburger atom a < a′ A half spa
e whose
onstraint is a < a′

f1 ∧ f2 Df1
∩ Df2

f1 ∨ f2 Df1
∪ Df2

¬ f U \ Df

∃x . f image of Df by ((z, x) → z) fun
tionTable 1: Conversion rule from a Presburger set to a union of Z-polyhedra; f , f1 and f2 arePresburger formulae and Df , Df1
and Df2

are the
orresponding unions of Z-polyhedrathe family of unions of Z-polyhedra is
losed under image by arbitrary a�ne fun
tions, [14℄.As a
orollary, any Presburger set
an always be written as a union of Z-polyhedra. Theformal
onversion rule is given in Table 1. The existential quali�
ation on variable x
an beviewed as the image of the set Df satisfying f by the fun
tion that eliminates the variable
x. Note that a point z exists in the set des
ribed by ∃x.f if and only if (z, x) ∈ Df . Sin
ethe family of unions of Z-polyhedra is
losed under interse
tion, union, di�eren
e and imageby a�ne fun
tion, the results of any operation in Table 1 is still a union of Z-polyhedra.To derive the iteration spa
e of loop in example 1, we will �rst express it as a Presburgerset with the introdu
tion of existential variables to handle mod and div operators. Then,using the
losure result mentioned above, we obtain an equivalent representation of theiteration spa
e as a union of four Z-polyhedra.3 Illustrating ExampleWe �rst illustrate the problem and our approa
h with the help of the following example. Ourgoal is to express expli
itly the iteration spa
es as unions of Z-polyhedra and exa
t datadependen
e relation on these representation so that further analyses and transformations,spe
ially those in the polyhedral model,
an be applied.for i=2 to 2NC[i℄=0; --- Rfor i=1 to N 7

for j=(i div 2) to N step 2C[i+j℄=C[i+j℄+A[i℄*B[j℄; --- SHere, div represents integer division (also denoted by ′/′). The iteration spa
e D of astatement is the set of all valid loop indi
es of its surrounding loops. The iteration spa
e
DR of statement R is {i | 2 ≤ i ≤ 2N}. It is well known that the iteration spa
e of astatement in a
ls
an be represented by an parameterized integer polyhedron. However,
DS, the iteration spa
e of statement S,
annot be represented by a polyhedron be
ause ofinteger division on lower bounds and the non-unit stride.However, we
an write DS as the following set:

DS = {i, j | 1 ≤ i ≤ N ; (i div 2) ≤ j ≤ N ; (j − (i div 2)) mod 2 = 0}Now, we want to derive a Presburger set by introdu
ing new variables and using the divisionrule. We introdu
e a new integer variable α = i div 2.
DS = {i, j | ∃α, 1 ≤ i ≤ N ; α ≤ j ≤ N ; (j − α) mod 2 = 0; α = i div 2}By the division rule, we repla
e α = i div 2 with 0 ≤ i − 2α ≤ 1.

DS = {i, j | ∃α, 1 ≤ i ≤ N ; α ≤ j ≤ N ; (j − α) mod 2 = 0; 0 ≤ i − 2α ≤ 1}The modular operation (j − α) mod 2 = 0
an be removed by introdu
ing a new integervariable β and setting j − α = 2β. Finally, we get the following Presburger set.
DS = {i, j | ∃α, β, 1 ≤ i ≤ N ; α ≤ j ≤ N ; j − α = 2β; 0 ≤ i − 2α ≤ 1}We
an view this Presburger set as the image of T = {i, j, α, β | 1 ≤ i ≤ N ; α ≤ j ≤

N ; j−α = 2β; 0 ≤ i−2α ≤ 1} by the proje
tion (i, j, α, β) → (i, j). Note that (i, j, α, β) ∈ T8

i

j

2 4 6

2

4

6

21 3

2

1

3

21 3

2

1

3

{2i, i + 2j}
{2i + 1, i + 2j}

i

j

i

j

Figure 1: Illustrating Example: The diagram in the
enter is the iteration spa
e, DS, ofthe statement S whi
h is a union of two Z-polyhedra; the leftmost obje
t is the
oordinatepolyhedron of the bla
k points in DS; and the rightmost obje
t is the
oordinate polyhedronof the white points in DS.if and only if (i, j) ∈ DS.In this example, the exe
ution of statement S at the iteration (i′, j′) requires the valueof the array C at [i′ + j′]. We want to �nd the most re
ent instan
e (i, j) ∈ DS of S thatwrote its result to that lo
ation of the array C. Also, the answer (i, j) should be a fun
tionof (i′, j′).First, we �nd the set of all instan
es that write to C[i′ + j′] before the exe
ution of the
(i′, j′) instan
e. This set
an be des
ribed by the following four
onditions: (i) (i, j) ∈ DS,
(ii) (i′, j′) ∈ DS, (iii) i + j = i′ + j′ and (iv) i ≤ i′ − 1. Now, we express this set asa single polyhedron P indexed by (i, j, α, β, α′, β ′, i′, j′, N) where (i′, j′, N) are parameters.On
e we �nd the lexi
ographi
 maximum as a fun
tion of (i′, j′, N), the �rst two indi
es willbe the
omputation that writes the value read by the (i′, j′) instan
e. The parameterizedlexi
ographi
 maximum of P
an be obtained by the pip solver [7℄.Given a valid (i′, j′) we are assured that (i, j) belongs DS by the nature of the
onstraintsposed above. However, we need to devise a me
hanism to determine whether (i′, j′) belongs
DS. To verify whether (i′j′) ∈ DS, we need to �nd a point (i′, j′, α′, β ′) ∈ T . Alternatively,we must expli
itly represent the set without the use of extra variables. This iteration spa
e
an be represented dire
tly, as a union of Z-polyhedra.9

This iteration spa
e DS for N = 7 is shown in Figure 1. By investigating the �gure,we see that a translation from any valid iteration point along the (2, 1) and (0, 2) dire
tionsresults in either a valid point, or outside the polyhedral
losure of the domain. However,note that it is impossible to move a bla
k point to a white point with the (2, 1) and (0, 2)generators. The bla
k and white points
orrespond to two di�erent a�ne latti
es. The setof bla
k points
an be des
ribed as follows:
B = {2y1 + 1, y1 + 2y2 | 1 ≤ 2y1 + 1 ≤ N ; y1 + 2y2 ≤ N ; 0 ≤ y2} (2)The set of white points
an be des
ribed as:

W = {2y1, y1 + 2y2 | 1 ≤ 2y1 ≤ N ; y1 + 2y2 ≤ N ; 0 ≤ y2} (3)This iteration spa
e
an also be
omputed in a systemati
 way, i.e., by
omputing theimage of T by the fun
tion (i, j, α, β) → (i, j). The image of polyhedra by a�ne fun
tions
an be represented as a union of Z-polyhedra. More generally, any arbitrary Presburger set
an be expressed by a union of Z-polyhedra.Finally, what is remaining is to express the lexi
ographi
 maximum obtaining by thepip solver in terms of y1 and y2 instead of i′ and j′ for ea
h of the two Z-polyhedra in theiteration spa
e of statement S. This
an be a
hieved by simply repla
ing i′ by 2y1 + 1 and
j′ by y1 + 2y2 for B and i′ by 2y1 and j′ by y1 + 2y2 for W.4 Problem De�nition and ilp FormulationIn this se
tion, we want to answer the following three questions: (i) for the exe
ution ofa statement at a
ertain iteration (given as a ve
tor of loop indi
es and size parameters)requiring the value of a memory lo
ation, whi
h statement produ
es the value and at whi
hiteration; (ii) what is the set, D, of valid iteration ve
tors and its preferred representation;10

Input program Grammar

Program : Stmt*
Stmt : Loop | If | Assignment
Loop : for Index = ALExpr to ALExpr step PINT
 Stmt*
If : if ’(’ ABExprs ’)’
 Stmt*
ArrayRef : Var[ALExpr*]
Assignment : ArrayRef = func ’(’ ArrayRef* ’)’
ALBExprs : ALBExprs ’&&’ ALBExprs |
 ALBExprs ’||’ ALBExprs |
 exists ’(’ Index ’,’ ALBExprs ’)’ |
 ALBExpr
ALBExpr : ALExpr Relation ALExpr
Relation : ’>’ | ’<’ | ’==’ | ’=<’ | ’=>’
ALExpr : ALExpr ’+’ Factor |
 ALExpr ’-’ Factor |
 ALExpr mod PINT |
 ALExpr div PINT |
 max ’(’ ALExpr* ’)’ |
 min ’(’ ALExpr* ’)’
Factor : PINT Index | Index | PINTFigure 2: Input program grammar. Index is an identi�er; ALExpr (
alled a�ne latti
eexpressions) are fun
tions of outer indi
es and size parameters; PINT is a positive integer;ArrayRef is a referen
e to a multidimensional array that is a

essed by an a�ne latti
eexpression of outer indi
es and size parameters; fun
 is a stri
t, side-e�e
t free fun
tion;div is a integer division (also denoted by ′/′); and mod is a modular operation (also denotedby ′%′).and (iii) how
an we represent the iteration ve
tor of the produ
er in
on
ordan
e with therepresentation of D.4.1 Input programsWe �rst des
ribe the
lass of programs that
an be analyzed by our te
hnique. This
lass
ontains a
ls but, in addition, allows loops with non-unit stride and arbitrarily nested mod,integer division, max and min operations on surrounding indi
es in loop bounds, guards andmemory a

ess fun
tions. In addition, we also allow existential quanti�ers in guards. Thegrammar for our input programs is given in Figure 2.We now present three example programs: a
ontrived example to illustrate the ilp for-mulation, a well-known matrix-matrix multipli
ation algorithm on a 2D-torus of pro
essors,11

and a sten
il program.Example 2 Contrived example for ilp formulation:for i=N%5 to N step 2for j=i/2+i%4 to N+i%3X[j℄ = X[i/2+j%2℄;Example 3 Cannon's algorithm for multiplying two matri
es. This example shows whatkinds of programs
an be des
ribed by the grammar in Figure 2. However, it is not useful forthe rest of the paper be
ause of trivial data dependen
e ex
ept dependen
e on input arrays.for k = 0 to 5forall i = 0 to 5forall j = 0 to 5C[i,j℄=C[i,j℄+A[i,(i+j+k)%6℄*B[(i+j+k)%6℄;For details please refer to [5℄.Example 4 Sten
il
omputation (red-bla
k sor):for t = 0 to 2Mfor i = 1 to N-1for j = (t+i-1)%2+1 to N-1 step 2X[i,j℄=(X[i-1,j℄+X[i+1,j℄+X[i,j-1℄+X[i,j+1℄)/4;In the paper, we use �statement� and �assignment� inter
hangeably and always meanassignment in terms of grammar. However, we distinguish an assignment and its operation(or instan
e) whi
h is a distin
t exe
ution of the statement. A statement
an be exe
utedmultiple times, but an operation is unique in the entire exe
ution of a program. An operationis des
ribed
ompletely by a statement and its asso
iated iteration ve
tor. We denote anoperation z ∈ DS of a statement S by (S, z).12

expression Additional variable Equivalent form Additional ConstraintALExpr div c ∃α ∈ Z α (0 ≤ ALExpr − cα ≤ c − 1)ALExpr mod c ∃α ∈ Z ALExpr − cα (0 ≤ ALExpr − cα ≤ c − 1)Table 2: Equivalent form for ALExpr⊙c where ⊙ is an integer division or mod by the positiveinteger c.4.2 Iteration Spa
e as a Presburger SetWe will �rst explain how to express the iteration spa
e of input loop nests as Presburger sets.A Presburger set
an be always seen as an image of a union of higher dimensional polyhedraby the proje
tion that eliminates all unne
essary variables. We use the higher dimensionalpolyhedron for our ilp formulation. Its
anoni
al proje
tion along all the existential variablesyields the iteration spa
e as a Presburger set.First, let us
onsider the simple
ase where the expression is a form of α = AE ⊙ cwhere ⊙ is either an integer division or modular operation and c is a positive integer e.g.,
α = (i + j) div 2. By the division rule, we may repla
e it by 0 ≤ i + j − cα ≤ c − 1. Forthe general
ase, transformations are given in Table 2. In obtaining the equivalent form, wehave introdu
ed an existential variable and an additional
onstraint.The pro
edure to
onstru
t a Presburger set from arbitrary loop bounds is to introdu
ea new existential variable for every mod or div operator until all the
onditions are a�neexpressions (with nested max and min). The maximum or minimum of a�ne expressions
anbe transformed into disjun
tion and
onjun
tion of a�ne expressions. Our iteration spa
eis then the proje
tion of a union of polyhedra along the
anoni
 dire
tions
orresponding toall the introdu
ed existential variables.We illustrate this algorithm through its appli
ation to Example 2. The iteration spa
e
an be expressed by

{i, j | N%5 ≤ i ≤ N ; (i − N%5)%2 = 0; (i/2) + i%4 ≤ j ≤ N + i%3}Now, we repla
e N%5 by N − 5α1 by introdu
ing a new variable α1 and the new
onstraint13

0 ≤ N − 5α1 ≤ 4. Then, we get
{i, j | ∃α1, 0 ≤ N−5α1 ≤ 4; N−5α1 ≤ i ≤ N ; (i−(N−5α1))%2 = 0; (i/2)+i%4 ≤ j ≤ N+i%3}We introdu
e three more variables α2, α3 and α4 to repla
e i%4, i%3 and (i− (N −5α1))%2by i − 4α2, i − 3α3 and (i − (N − 5α1)) − 2α4, respe
tively along with the introdu
tion ofthe
onstraints 0 ≤ i − 4α2 ≤ 3, 0 ≤ i − 3α3 ≤ 2 and 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1.
{i, j | ∃α1, α2, α3, α4, 0 ≤ N − 5α1 ≤ 4; 0 ≤ i − 4α2 ≤ 3; 0 ≤ i − 3α3 ≤ 2; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1;

N − 5α1 ≤ i ≤ N ; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1; (i/2) + (i − 4α2) ≤ j ≤ N + (i − 3α3)}To remove the only div (or ′/′) operator, we introdu
e α5 to repla
e (i/2) by α5 alongwith the introdu
tion of the
onstraint 0 ≤ i − 2α5 ≤ 1.
{i, j | ∃α1, α2, α3, α4, α5,

0 ≤ N − 5α1 ≤ 4; 0 ≤ i − 4α2 ≤ 3; 0 ≤ i − 3α3 ≤ 2; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1; 0 ≤ i − 2α5 ≤ 1;

N − 5α1 ≤ i ≤ N ; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1; α5 + (i − 4α2) ≤ j ≤ N + (i − 3α3)}Note that the
onstraints
onsists of only a�ne
onstraints. This Presburger set isequivalent to the proje
tion of the polyhedron, P
ontrived:
{i, j, α1, α2, α3, α4, α5 |

0 ≤ N − 5α1 ≤ 4; 0 ≤ i − 4α2 ≤ 3; 0 ≤ i − 3α3 ≤ 2; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1; 0 ≤ i − 2α5 ≤ 1;

N − 5α1 ≤ i ≤ N ; 0 ≤ (i − (N − 5α1)) − 2α4 ≤ 1; α5 + (i − 4α2) ≤ j ≤ N + (i − 3α3)}by the fun
tion (i, j, α1, α2, α3, α4, α5 → i, j).The iteration spa
e in Example 4
an be
onstru
ted by introdu
ing two additional
14

variables to obtain the Presburger set, Dsten
il
{t, i, j|∃α1, α2, 0 ≤ t ≤ 2M ; 0 ≤ i ≤ N − 1;

0 ≤ t + i − 1 − 2α1 ≤ 1; (t + i − 2α1) ≤ j ≤ N − 1; j − (t + i − 2α1) − 2α2 = 0}In general, we may have guards on the exe
ution of statements. This simply requires theaddition of the
onstraints in the if
ondition to the iteration spa
e of the
orrespondingstatement. A subtle point to note is that user-de�ned existential variables may only o

urin the if statements.4.3 Predi
ate for exe
ution orderThis se
tion fo
uses on the ordering of operations in input programs. In other words, itprovides the
ondition that an operation (S, z′) is exe
uted before another operation (R, z).We denote the depth of
ommon loops of S and R by NSR and the textual order of statements
S and R by the boolean predi
ate BSR.A operation (S, z′) is exe
uted before (R, z) if

z′[1 . . . NSR] ≺ z[1 . . . NSR] ∨ (BSR ∧ z′[1 . . .NSR] = z[1 . . . NSR]) (4)When NSR = 0, the
ondition will be just BSR.For our illustrating example, CSR = 0 and BRS is true. So, an operation of the assignment
R pre
edes any operations of S. An operation (R, z) pre
edes (R, z′) if z ≺ z′. Similarly,
(S, z) pre
edes (S, z′) if z ≺ z′.Note that this sequen
ing predi
ate is the same as the predi
ate for a
ls. It is be
ausesteps in input programs are positive integers and the
onditional statements do not a�e
t theorder of iteration ve
tors. A
onditional statement only restri
ts the spa
e of valid iterationve
tors. For a more detail des
ription, please refer to Feautrier's work [8℄ on the exa
tdependen
e analysis of a
ls. 15

4.4 ILP formulationWe have statements whose iteration spa
es are Presburger sets. For a
onsumer statement
C whose memory (read) a

ess fun
tion is MC and a
andidate produ
er statement P whose(write) a

ess fun
tion is MP .We will assume that the iteration spa
e of a statement given by the Presburger set Dis su
h that it is the image of a single polyhedron P by the
anoni
al proje
tion along thedire
tions
orresponding to existential variables. This is restri
tive. However, we will seethat generalizations are straightforward extensions to the basi
 te
hnique presented for this
ase.First, we want to �nd all the instan
es of P that write to the lo
ation MC(z′) before z′where z′ ∈ DC . This set C
an be des
ribed as:

C = {z ∈ DP | z′ ∈ DC ; MP (z) = MC(z′); zc ≺ z′c}where zc (resp., z′c) is z[1 . . . NPC] (resp., z′[1 . . . NPC]). Note that depending on textualorder zc may be allowed to be z′c. Using the fa
t that z ∈ DP i� (z, α) ∈ PP we get
C′ = {(z, α) ∈ Pp | (z′, α′) ∈ PC ; MP (z) = MC(z′); zc ≺ z′c}As a spe
ial
ase, if the memory fun
tion MP and MC are both a�ne fun
tions, wehave the same ilp formulation as that of a
ls. However, its naive formulation
auses theproblem that the ilp solution depends on z′, as well as α′. We
an avoid this by treating α′as unknown indi
es as well, rather than parameters, when
onstru
ting the parameterizedpolyhedra Q given as

Q = {(z′, z, α, α′) | (z′, α′) ∈ PC ; (z, α) ∈ PC ; MP (z) = MC(z′); zc ≺ z′c}

Q is parameterized by only z′ and size parameters. In the solution of the ilp solver,16

(z, α, α′) will be expressed as a fun
tion of z′ and size parameters. The intuition behind su
ha formulation is that the values of (α, α′) do not matter as long as (α, α′) simply exists and
z is the
orresponding lexi
ographi
 maximum.Consider the sten
il
omputation in Example 4. We want to formulate an ilp problemto �nd out the produ
er of (t′, i′, j′) as a fun
tion of the indi
es t′, i′ and j′ for the memoryreferen
e X[i, j − 1]. Then, the set of
andidate operations
an be spe
i�ed by
Qsten
il = {t′, i′, j′, t, i, j, α1, α2, α

′

1
, α′

2
| (t′, i′, j′) ∈ Psten
il; (t, i, j) ∈ Psten
il; i′ = i; j′−1 = j; (t, i, j) ≺ (tThis set is a polyhedra parameterized by (t′, i′, j′). Using the pip solver, we �nd thelast-write operation (t, i, j, α1, α2, α3, α
′

1
, α′

2
, α′

3
) as a fun
tion of (t′, i′, j′). It is only the �rstthree
omponents, (t, i, j), of the last-write operation of (t′, i′, j′) that we seek. Note thatthe proper values for the remaining variables exist given (t′, i′, j′) and (t, i, j).In fa
t, Qsten
il is not a single polyhedron be
ause of the lexi
ographi
 order, but aunion of three polyhedra. The lexi
ographi
 order (t, i, j) ≺ (t′, i′, j′) is de
omposed to three
ases: t < t′, t = t′ ∧ i < i′ and t = t′ ∧ i = i′ ∧ j < j′. So, for ea
h polyhedron, adi�erent ilp problem is solved and all the individual solutions are
ombined to obtain theprodu
er iteration that last wrote the value. In the presen
e of multiple
andidate produ
erstatements these solutions are further
ombined to obtain the produ
er statement and itsiteration. For a detailed des
ription of su
h steps, again refer to Feautrier's work [8℄.With this understanding, it is straightforward to see that when the iteration spa
e ofa statement is the image of a union of polyhedra, we
an solve the ilp problem on
e forea
h pair of
onsumer and produ
er polyhedron in the unions and subsequently
ombine theresults to obtain the required produ
er iteration. Note that the number of
alls to pip are afun
tion of the number of the disjun
tions in the Presburger set, not that of the exponentialnumber of elements in the union of Z-polyhedra.Our memory a

ess fun
tions are not always simple a�ne fun
tions (refer to Example17

2). To obtain the required Presburger set for
omplex memory a

ess, we simplify the
onstraints Mp(z) = MC(z′) using the te
hniques presented previously in the
onstru
tionof the iteration spa
e of statements.With the help of Example 2, we now illustrate this approa
h. Consider the set thatsatis�es i′/2 + j′%2 = j:
{(i′, j′, i, j) | i′/2 + j′%2 = j}We introdu
e two existential variables β1 and β2 to remove the modular the integer divisionoperations to obtain

M = {i′, j′, i, j, β1, β2 | 0 ≤ i′ − 2β1 ≤ 1; 0 ≤ j′ − 2β2 ≤ 1; β1 + (j′ − 2β2) = j}Finally, the set of
andidate operations
an be spe
i�ed by
Q
ontrived = {(z′, z, α, α′, β) | (z′, α′) ∈ P
ontrived; (z, α) ∈ P
ontrived; (z′, z, β) ∈ M; z ≺ z′}On
e again, we treat this set as a polyhedra parameterized by z′ and size parameters and�nd the lexi
ographi
 maximum using the pip solver to obtain the produ
er for the iterationat z′.4.5 Iteration Spa
e as a Union of Z-polyhedraThus far, we have expressed the iteration spa
e of statements as Presburger sets and pre-sented in detail how to
onstru
t these sets. However, the existential quanti�
ation inPresburger equations makes it di�
ult to obtain the pre
ise set of iterations. For this, weexpress Presburger sets as a union of Z-polyhedra and spe
ialize the last-write fun
tion toea
h individual Z-polyhedron. Let ZP = {Ly + l|y ∈ P} be a Z-polyhedron in the unionand f(z′) is the last-write fun
tion. The last-write fun
tion in terms of the
oordinates ofthe Z-polyhedron is then simply f(Ly + l). 18

5 Con
lusion & Future WorkWe presented a
ompiler analysis for performing exa
t value-based dependen
e analysis fora ri
her
lass of �stati

ontrol loop programs.� This
lass is signi�
antly more generalthan the largest previously known
lass, namely a�ne
ontrol loops for whi
h su
h analysiswas possible [8, 25, 24℄. It in
ludes loop programs whose iteration spa
es are arbitraryPressburger sets and whose a

ess fun
tions are a�ne fun
tions extended with div and modoperators and existential quanti�ers. Su
h a
lass is not only more general, but it is alsoimportant, sin
e many
ommon appli
ations su
h as red-bla
k SOR, and Canon's algorithmfor matrix multipli
ation,
an be
on
isely and naturally written using the extended syntaxthat we provide.Our analysis may be viewed as (i) an initial pre-pro
essing step to transform the inputspe
i�
ation so that all existentially quanti�ed formulae are repla
ed by polyhedral sets ofhigher dimensions; (ii) formulation of the pre
eden
e
onstraints as a parametri
 integerlinear program that
an be solved by well known tools su
h as PIP [7℄; and (iii) a �nal post-pro
essing step that
onverts the results of this into system of a�ne re
urren
e equationsde�ned over Z-polyhedral domains (
alled Z-Polyhedral sares, or zpsares). Be
ause ofthe pre
isely de�ned pre- and post-pro
essing steps, we are able to simply reuse existingma
hinery and tools that have been previously developed for the limited
ase of a
ls.The output of the analysis, zpsares,
an exploit a novel representation ofZ-polyhedra [14℄and
an be analyzed for parallelism using sophisti
ated and more pre
ise s
heduling te
h-niques, that allow us to dete
t more parallelism than is possible under the polyhedral modelalone [13℄.Our ongoing work involves the implementation of these te
hniques. The
onstru
tion ofthe pre
ise iteration spa
e requires two important tools: a library for manipulating unions of
Z-polyhedra and a
omponent for
onverting a Presburger set to a union of Z-polyhedra.

19

Referen
es[1℄ Cédri
 Bastoul. Code generation in the polyhedral model is easier than you think. InIEEE PACT, pages 7�16, 2004.[2℄ A. Darte and Y. Robert. A�ne-by statement s
heduling of uniform and a�ne loop nestsover parametri
 domains. Journal of Parallel and Distributed Computing, 29(1):43�59,February 1995.[3℄ A. Darte, Y. Robert, and F. Vivien. S
heduling and Automati
 Parallelization.Birkhäuser, 2000.[4℄ A. Darte, R. S
hreiber, and G. Villard. Latti
e-based memory allo
ation. IEEE Trans-a
tions on Computers, 54(10):1242�1257, O
tober 2005.[5℄ Alain Darte, Mi
hèle Dion, and Yves Robert. A
hara
terization of one-to-one modularmappings. Parallel Pro
essing Letters, 5:145�157, 1996.[6℄ E. De Greef, F. Catthoor, and H. De Man. Memory size redu
tion through storage orderoptimization for embedded parallel multimedia appli
ations. In Parallel Pro
essing andMultimedia, Geneva, Switzerland, July 1997.[7℄ P. Feautrier. Parametri
 integer programming. RAIRO Re
her
he Opérationelle,22(3):243�268, Sep 1988.[8℄ P. Feautrier. Data�ow analysis of array and s
alar referen
es. International Journal ofParallel Programming, 20(1):23�53, Feb 1991.[9℄ P. Feautrier. Some e�
ient solutions to the a�ne s
heduling problem, Part I, one-dimensional time. Te
hni
al Report 28, Labaratoire MASI, Institut Blaise Pas
al, April1992.
20

[10℄ P. Feautrier. Some e�
ient solutions to the a�ne s
heduling problem, Part II, mul-tidimensional time. Te
hni
al Report 78, Labaratoire MASI, Institut Blaise Pas
al,O
tober 1992.[11℄ Agustin Fernández, José M. Llabería, and Miguel Valero-Gar
ía. Loop transformationusing nonunimodular matri
es. IEEE Trans. Parallel Distrib. Syst., 6(8):832�840, 1995.[12℄ Gautam and S. Rajopadhye. Simplifying redu
tions. In POPL '06: Conferen
e re
ord ofthe 33rd ACM SIGPLAN-SIGACT symposium on Prin
iples of programming languages,pages 30�41, New York, NY, USA, 2006. ACM Press.[13℄ Gautam Gupta, DaeGon Kim, and Sanjay V. Rajopadhye. S
heduling in the Z-polyhedral model. In IPDPS, pages 1�10, 2007.[14℄ Gautam Gupta and Sanjay V. Rajopadhye. The Z-polyhedral model. In PPOPP, pages237�248, 2007.[15℄ Ri
hard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of
omputations for uniform re
urren
e equations. Journal of the ACM, 14(3):563�590,1967.[16℄ Leslie Lamport. The parallel exe
ution of DO loops. Communi
ations of the ACM,pages 83�93, February 1974.[17℄ V. Lefebvre and P. Feautrier. Optimizing storage size for stati

ontrol programs inautomati
 parallelizers. In Lengauer, Griebl, and Gorlat
h, editors, Euro-Par'97, volume1300. Springer-Verlag, 1997.[18℄ Patri
k Lenders and Sanjay Rajopadhye. Multirate vlsi arrays and their synthesis. IEEETrans. Comput., 46(5):515�529, 1997.[19℄ Wei Li and Keshav Pingali. A singular loop transformation framework based on non-singular matri
es. Int. J. Parallel Program., 22(2):183�205, 1994.21

[20℄ Amy W. Lim, Shih-Wei Liao, and Moni
a S. Lam. Blo
king and array
ontra
tion a
rossarbitrarily nested loops using a�ne partitioning. In PPoPP '01: Pro
eedings of theeighth ACM SIGPLAN symposium on Prin
iples and pra
ti
es of parallel programming,pages 103�112, New York, NY, USA, 2001. ACM Press.[21℄ B. Lisper. Linear programming methods for minimizing exe
ution time of indexed
omputations. In Int. Workshop on Compilers for Parallel Computers, 1990.[22℄ Josh Ma
Donald. Program analysis with presburger integer formulae.[23℄ C. Mauras, P. Quinton, S. Rajopadhye, and Y. Saouter. S
heduling a�ne parametrizedre
urren
es by means of variable dependent timing fun
tions. In International Confer-en
e on Appli
ation Spe
i�
 Array Pro
essing, pages 100�110, 1990.[24℄ D. Maydan, S. P. Amarsinghe, and M. Lam. Array data �ow analysis and its usein array privatization. In Prin
iples of Programming Languages, pages 2�15. ACM,January 1993.[25℄ W. Pugh. A pra
ti
al algorithm for exa
t array dependen
e analysis. Commun. ACM,35(8):102�114, 1992.[26℄ Fabien Quilleré and Sanjay Rajopadhye. Optimizing memory usage in the polyhedralmodel. ACM Trans. Program. Lang. Syst., 22(5):773�815, 2000.[27℄ Patri
e Quinton and Vin
ent Van Dongen. The mapping of linear re
urren
e equationson regular arrays. Journal of VLSI Signal Pro
essing, 1(2):95�113, 1989.[28℄ S. V. Rajopadhye, S. Purushothaman, and R. M. Fujimoto. On synthesizing systoli
arrays from re
urren
e equations with linear dependen
ies. In Pro
eedings, Sixth Confer-en
e on Foundations of Software Te
hnology and Theoreti
al Computer S
ien
e, pages488�503, New Delhi, India, De
ember 1986. Springer Verlag, LNCS 241. Later appearedin Parallel Computing, June 1990. 22

[29℄ J. Ramanujam. Beyond unimodular transformations. J. Super
omput., 9(4):365�389,1995.[30℄ Sailesh Rao. Regular Iterative Algorithms and their Implementations on Pro
essor Ar-rays. PhD thesis, Stanford University, Information Systems Lab., Stanford, Ca, O
tober1985.[31℄ W. Thies, F. Vivien, J. Sheldon, and S. Amarasinghe. A uni�ed framework for s
heduleand storage optimization. In Pro
eedings of the ACM SIGPLAN 2001
onferen
e onProgramming language design and implementation, pages 232�242. ACM Press, 2001.[32℄ Jingling Xue. Automating non-unimodular loop transformations for massive parallelism.Parallel Computing, 20(5):711�728, 1994.

23

