
Computer Science
Technical Report

Parameterized Tiling for Imperfectly Nested
Loops

DaeGon Kim and Sanjay V. Rajopadhye
[kim|svr]@cs.colostate.edu

February 27, 2009

Technical Report CS-09-101

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Parameterized Tiling for Imperfe
tly Nested LoopsDaeGon Kim and Sanjay V. Rajopadhye[kim|svr℄�
s.
olostate.eduFebruary 27, 2009Abstra
tParameterized tiled loops�where tile sizes are run-time parameters rather than
onstants�xed at
ode generation time�are quite useful for several
ases. Su
h
ases in
lude empiri
alsear
h for optimal tile sizes in iterative
ompilers and highly optimized library generators likeATLAS, and parallelizing
ompilers that enable the number of pro
essors to be a run-timeparameter. However, automati
ally generating su
h
ode is a luxury, only available for perfe
tlynested loops (single iteration spa
e) where all the statements are surrounded by the same set ofloops. We present a framework for generating parameterized tiled loops from arbitrarily nesteda�ne
ontrol loops. In this framework, tiling is applied dimension-by-dimension, disprovingthe de
ades-long belief that the tiled loop generation problem has exponential
omplexity. Forperfe
tly nested loops, our algorithm has O(m × (d + p)) where m is the number of bounds, dthe maximum nesting depth of loops, and p the number of program parameters. Based on this,we are able to avoid the exponential
omplexity even for imperfe
tly nest loops. In the
urrentlya

epted view, imperfe
tly nested loops are handled by �rst embedding all iteration spa
es intoa
ommon higher dimensional spa
e and then applying the te
hniques for perfe
tly nested loops.This requires two expensive steps: the embedding itself and index set splitting to obtain e�
ient
ode. We take a
ompletely di�erent view by exploiting the textual stru
ture of the original loopnest and dimension-by-dimension tiling. Also, we formulate a legality
ondition for imperfe
tlynested loop tiling. Our
ode generation e�
ien
y is better than �xed size tiling with embedding.The e�
ien
y of generated
ode is
omparable to those te
hniques. Our te
hnique does not relyon the expensive polyhedral operations and works on loops. Its s
alability and simpli
ity makeour te
hniques attra
tive for produ
tion
ompilers.1 Introdu
tionPartitioning
omputation is a program transformation that is be
oming more important with theadvent of multi-
ore
hips and the growing gap between the memory/network performan
e and
omputational power. There are many reasons to believe that this gap will
ontinue to widen. Thenumber of
ores on a
hip is expe
ted to in
rease at an exponential rate leading to a few hundred
ores in the near future while
ontinuing to ful�ll promise on ma
hine performan
e impli
itly madein Moore's law. Large
omputation and high performan
e
annot be a
hieved without partitioning
omputation for exploiting parallelism and e�
ient use of memory hierar
hy. Due to the la
k oftools, this program restru
turing must often be done by hand, but is not easy even for spe
ializedprogrammers on a parti
ular ar
hite
ture. Moreover, a highly tuned programs for a parti
ularar
hite
ture are not portable. In the next generation, tools to aid programmers to write highperforman
e implementations will be a key
omponent in software development.In many
ompute- and data-intensive programs a signi�
ant portion of the exe
ution time is
onsumed by loops operating on arrays. Optimizing these loops involves improving data lo
ality1

and parallelizing the
omputation performed by loops. Tiling [15, 19, 30, 34℄ has been used forimproving data lo
ality and exposing/exploiting the parallelism. Its e�e
tiveness has been proventhrough almost three de
ades of resear
h and high performan
e implementations of linear algebraand sten
il
omputations, su
h as ATLAS and PHiPAC. With the advent of the multi/many
oreera, tiling be
omes even more important.The transformation partitions a program into a set of smaller pie
es (
alled tiles) so that ea
h ofthose pie
es either �t to a resour
e su
h as registers,
a
he or physi
al memory, or redu
e
ommuni
a-tion
ost between pro
essors and memory hierar
hy. Various aspe
ts of tiling have been extensivelystudied: how to pre-pro
ess loops to make tiling legal and enhan
e data lo
ality [19, 34℄ (e.g. loopskewing, loop permutation and other unimodular transformations); tile shape sele
tion [8, 14, 28℄and tile size sele
tion for memory hierar
hy as well as parallelism [5, 10℄; the generation of tiledloop [12, 15, 34℄. Tiled
ode generation is often an ignored step in the pro
ess. This is partlybe
ause te
hniques for loop generation from a union of polyhedra is well studied [17, 25, 33, 27, 6℄and tiled iteration spa
e is a polyhedron [15℄. Re
ently, a de
omposition approa
h, where tile-loopsand point-loops are generated separately, was proposed to redu
e the
omplexity of the generationpro
ess [12℄.Parameterized tiled loops are tiled loop nests where tile sizes are not
onstants but given as run-time parameters. There are many situations where su
h tiled loops are preferable: any empiri
alsear
h for optimal tile sizes su
h as iterative
ompilers and auto-tuners [26, 32℄; run-time tile sizeadaptation for varying resour
e due to resour
e sharing [23, 24℄; and parallelizing
ompilers [3℄ thatallow the number of pro
essors to be a run-time parameter. Re
ently, Lakshminarayanan et al. [29℄presented a theory and tools for parameterized tiled loop generation.Unfortunately, most of the above te
hniques are restri
ted to perfe
tly nested loops. No te
h-nique for parameterized tiled loop generation from imperfe
tly nest loops has been proposed, todate. Additionally, all the previous solutions for �xed size tiling su�er from an expensive generationpro
ess and
omplex generated
ode. When tiling is used for parallelism, espe
ially on distributedmemory ma
hines, the resulting
ode has an
onsiderable impa
t on subsequent pro
esses like gen-erating statements for
ommuni
ations.In this paper, we present an algorithm and tool for generating parameterized tiled loops forarbitrary loop nests. It is novel in the sense that it does not rely on embedding�the
onventionalapproa
h to extend te
hniques for perfe
tly nested loop tiling to those for imperfe
tly nested loops.To the best of our knowledge, all previous approa
hes for imperfe
tly nested loops are based onembedding. The
ontributions of this paper are:
• a formulation for generating tiled loops dimension by dimension that enables us to generateparameterized/�xed tiled loops without exponential
omplexity; this is dire
tly appli
able toperfe
tly nested loops as well.
• a legality
ondition for tiling imperfe
tly nested loops that does not rely on making themperfe
tly nested;
• An algorithm for generating parameterized tiled loops from arbitrary nested a�ne
ontrolloops without
omplex polyhedral operations su
h as proje
tions and index set splitting.
• In addition, sin
e the algorithm works on only a loop AST, it is ideal for produ
tion
ompilers.
• An evaluation of the e�
ien
y of both the generation itself and the generated
ode on ben
h-marks su
h as sten
il and matrix fa
torization
ode. It shows that our algorithm is e�
ientand the resulting
ode is
omparable to those of �xed size tiled loops with embedding fun
tionsgiven at
ompile time. 2

• Our parameterized tiled loop generators will be made available as an open sour
e toolkit.The key insight to the dimension-by-dimension tiling is that the tile spa
e for the proje
tion of theiteration spa
e is large enough to
ontain the proje
tion of all the non-empty tile origins and theproje
tion of the iteration spa
e is already present in the loop bounds. So, all the bounds of the tileloops
an be dire
tly obtained from the bounds of the original loops without expensive pro
edureslike Fourier-Motzkin elimination.The main intuition behind our parameterized tiled loop generation from imperfe
tly nestedloops is that (i) a legality
ondition for tiling
an be formulated without embedding all the iterationspa
es into a
ommon spa
e�equivalently making the loops into perfe
tly nested loops and (ii) thestru
ture of tile loops
an be derived from that of the original loops.The rest of the paper is organized in the following way. Se
tion 2 provides a ba
kground andnotation for the paper. Se
tion 3 explains a brief but powerful formulation for the tile spa
e leadingto an e�
ient tiled loop generation algorithm. Se
tion 4 gives our main intuition on how to generateparameterized tiled loops using an example, provides the generation algorithm, and formulates alegality
ondition for our tiling approa
h. Se
tion 5 provides an experimental result on
omparisonwith �xed embedding tiled loop generation method.In Se
tion 6, we
on
lude our dis
ussion.2 Ba
kground: Tiling Perfe
tly Nested LoopsThe tiling transformation takes a d-depth (perfe
tly) nested loop and produ
es a loop nest of depth(at most) 2d. The main idea is the de
omposition of the iteration spa
e into a
olle
tion of smallersets,
alled tiles. Ea
h tile be
omes an atomi
 blo
k of
omputation, in other words, the order of
omputation is
hanged.When loop bounds are a�ne fun
tions of program parameters and outer loop indi
es, the itera-tion spa
e
an be expressed as a polyhedron. Consider the loop in Figure 1. Its iteration spa
e
anbe written as
{i, j | i ≤ N ; 1 ≤ j ≤ i}Note that there are only three inequalities that de�ne the iteration spa
e be
ause 1 ≤ i is redundant.A geometri
 representation of this iteration spa
e is shown in Figure 2.for (i = 1 ; i <= N ; i++)for (j = 1 ; j <= i ; j++)S1 (i , j) ;Figure 1: Triangular iteration spa
e: the body of the loop is represented with the ma
ro S1 forbrevityIn general, we
an express an iteration spa
e of perfe
tly nested loops as

Piter = {~z|Q~z ≥ (~q + B~p)}where ~z is the iteration ve
tor of size d, Q is a m× d matrix, ~q is a
onstant ve
tor of size m, ~p isa ve
tor of size n
ontaining symboli
 parameters for the iteration spa
e, and B is a m× n matrix.Whenever there is no ambiguity we use z in the pla
e of ~z. We denote the k-th
omponent of zas zk. We also denote tile size ve
tor as s.The �gure also shows a 3 × 3 re
tangular tiling of this iteration spa
e. Depending on theinterse
tion of a tile and the iteration spa
e, there are three kinds of tiles�empty tiles whose3

1

Iteration space

9

(9,9)

i

j
{i, j | 1 ≤ j; j ≤ i; i ≤ N}

Empty tile

Partial tile Full tileFigure 2: An iteration spa
e when N = 9 and its 3× 3 tilinginterse
tion with the iteration spa
e is empty, full tiles whose interse
tion is the tile itself, andpartial tiles whose interse
tion is neither empty nor the tile itself. The lexi
ographi
ally earliestpoint of ea
h tile is
alled the tile origin.The essen
e of tiled loop generation is
onstru
ting two sets of loops�tile-loops that enumerateall the tiles (all the tile origins) and point-loops that enumerate all the points in a tile. Whentile-loops and point-loops are separately generated, point-loop generation is trivial, just addingappropriate tile-bounds at the original loop bounds. Generation of tile-loops is not trivial be
ausethey must enumerate not only all the full tiles but also all partial tiles. Lakshminarayanan et al. [29℄de�ned a set an outset if it
ontains all the partial/full tile origins. An outset is pre
ise if it doesnot
ontain any empty tile origins.They also proposed an outset that is not pre
ise but a polyhedron. Their
onstru
tion methodis based on shifting
onstraints. Formally, their outset is written as
{z|Qz ≥ (q + Bp)−Q+s′}where s′ is s− 1 and
Q+

ij =

{

Qij, if Qij ≥ 0
0, if Qij < 0The term −Q+s′
an be interpreted as a shift of a hyperplane. The outset of the iteration spa
efor the example in Figure 1 is shown in Figure 3. When a hyperplane is a lower bound of the k-thdimension, it will be shifted by sk. So, 1 ≤ j be
omes 1− (sj − 1) ≤ tj.Then, an existing tool su
h as CLOOG is used for generating all the points in the outset, andthen the generated loops are further pro
essed�lower bounds are adjusted and strides are set totile sizes�to visit only tile origins. Figure 4 shows the generated
ode using their open sour
e toolHiTLOG [18℄. The ma
ro up(t, s) in lower bound gives an integer p su
h that p = ⌈t/s⌉ × s. Itadjusts the lower bounds so that the loops visit tile origins
orre
tly.Later, we will use their shifting operation to obtain loop bounds and
ompare this
ode withour generated
ode when input programs are perfe
tly nested.
4

1

Iteration space

9

(9,9)

i

j

{i, j | 1 ≤ j; j ≤ i; i ≤ N}

{i, j | 2− sj ≤ j; j ≤ i + si − 1; i ≤ N}

Outset

2− sj ≤ j

i ≤ N

j ≤ i + si − 1

Figure 3: An outset of triangular iteration spa
e when N = 9 (left) and its 3× 3 tiling// t i l e −l oopsfor (ti = up(−si−sj+3,si) ; ti <= N ; ti+=si)for (tj = up(−sj+2,sj) ; tj <= ti+si−1; tj+=sj)// point−l oopsfor (i = MAX(1 , ti) ; i <= MIN(N , ti+si −1); i++)for (j = MAX(1 , tj) ; i <= MIN(i , tj+sj −1); j++)S1 (i , j) ;Figure 4: Tiled loops from the example in Figure 1 from HiTLOG3 Tiling Dimension-by-Dimension for Perfe
tly Nested LoopsThis se
tion shows how to apply tiling dimension by dimension, i.e., from the outermost loop toinnermost loop. To obtain the tile loops from the original loop nest, we apply three simple rules to
hange the loop bounds:
• For ea
h lower bound at depth k, we subtra
t sk − 1 from it.
• If an outer iterator i appears in an upper bound expression and its
oe�
ient ci is positive,we add ci × (si − 1) to the upper bound
• If an outer iterator i appears in a lower bound and its
oe�
ient ci is negative, we subtra
t

ci × (si − 1) from the lower boundIf a bound has multiple a�ne expressions, we treat ea
h one individually with the above rules. The
omplexity of generating tile-loops with post-pro
essing is O(m× (d + p)) when there are m a�neloop bounds, d is the depth of the loops and p is the number of program parameters. We
all thisapproa
h to generating tile-loops as dimension-by-dimension D-tiling.3.1 ExampleConsider the doubly nested loop in Figure 1. The bounds on i are 1 ≤ i and i ≤ N . We apply threerules and get 2− si ≤ i and i ≤ N . Note that N is a program parameter and is not
onsidered asan outer iterator. Similarly, we obtain 2− sj ≤ j and j ≤ i + si − 1. The �nal tile loops are shownin Figure 5. The main di�eren
e between this tile-loop and the one in Figure 4 is that there is no
sj in the lower bound on i. To obtain sj in the lower bound of i, one needs an expensive operation,5

either Fourier-Motzkin elimination or proje
tion. Our lower bound is tighter, but it still visits allthe ne
essary tile origins.// t i l e −l oopsfor (ti = up(2−si ,si) ; ti <= N ; ti+=si)for (tj = up(2−sj ,sj) ; tj <= ti+si−1; tj+=sj)// point−l oopsFigure 5: Tile loops obtained from the example in Figure 1 using dimension-by-dimension tilingAnother di�eren
e is that our tile-loops visit fewer tile origins. In other words, the outset weimpli
itly
onstru
t is smaller than the outset proposed by Lakshminarayanan et al. In this example,we do not have any empty tile origins. The tile-loops in Figure 4 s
an an empty tile origin. However,in general, our tile-loops may also visit empty tiles.3.2 Why It WorksThe main idea behind our tile-loop
onstru
tion is that the tile spa
e for a proje
tion of a polyhedronis big enough to in
lude all the full/partial tile origins. This makes it unne
essary to use polyhedraloperations of exponential
omplexity that have been used in the all the existing te
hniques. Infa
t, our loop bound modi�
ation rules themselves are the
onstraint shifting operation. The maindi�eren
e is the set of input
onstraints and the way to
onstru
t tile-loops.As we said earlier, our outset is not pre
ise. We still need to prove that the set we
onstru
tis an outset, i.e., it
ontains all the full/partial tile origins. This follows from the fa
t that theoutset we
onstru
t is a parti
ular instan
e of outsets presented by Lakshminarayanan et. al. [29℄.The di�eren
e is that we may have some more redundant
onstraints. Note that there are manydistin
t outsets from a single set depending on its
onstraint form. The redundant
onstraints inthe original iteration spa
e may be
ome non-redundant
onstraints in its outsets.3.3 Dis
ussionTile-loops that are generated by D-tiling s
an no more number of tile origins than the previousmethod. However, they may visit more iterations at outer loops. Take the example in Figure 1 andmodify the lower bound of i to −N ≤ i. HiTLOG will generate the same tile-loops as it does fromthe original example be
ause the bound is redundant and
hanging the lower bound of i does nota�e
t the shape of the iteration spa
e. However, the tile-loops generated by D-tiling will visit allthe multiples of si between −N − si + 1 and N . Sin
e the input loops are typi
ally well engineered,the tile-loop overhead may be insigni�
ant. Moreover, this aspe
t of D-tiling is quite useful whenwe apply tiling to imperfe
tly nested loops.4 Tiled Loop GenerationSo far, we have dis
ussed only perfe
tly nested loops. This se
tion provides an algorithm forgenerating tiled loops from imperfe
tly nested loops. First, we illustrate a simple s
heme for tilingand dis
uss the legality issue. Then, we provide a detailed algorithm for the simple s
heme. Insubse
tion 4.5, we formulate a pre
ise
ondition when the simple s
heme works and when it doesnot. Finally, we explain how to modify the algorithm so that it generates tile-loops for more general
ase. 6

4.1 Running ExampleConsider the loop nest in Figure 6 whi
h is not perfe
tly nested like our previous example.for (i = 1 ; i <= N ; i++)for (j = 1 ; j <= i ; j++)S1 (i , j) ;S2 (i) ;Figure 6: An imperfe
tly nested loop where the iteration spa
e of S1 is a triangular and that of S2is a line segment: the body of the loop is represented with the ma
ro S1 and S2.There are two statements in the loops. The a
tual statements are not given to avoid the legalityissue for the moment. We assume that it is legal to tile.Now, we apply D-tiling to the doubly nested loop, and get a loop nest that is similar to the onein Figure 5 but has two statements. We peel out the last iteration of tj tile-loop and annotate itwith two statements S1 and S2. The modi�ed loops are shown in Figure 7.// t i l e −l oopsfor (ti = up(2−si ,si) ; ti <= N ; ti+=si)for (tj = up(2−sj ,sj) ; tj <= ti+si−sj −1; tj+=sj)// point−l oops (S1)
tj = down(ti+si−1,sj) ;// point−l oops (S1 , S2)Figure 7: Tile loops obtained from the example in Figure 6 using D-tiling and peeling out the lastiteration of tj loopTo generate point-loops, we take the original
ode and simply add tile bounds to the lower andupper bounds. For instan
e, the lower bound of i be
omes 1 and ti, i.e., max(1, ti). The resultingpoint-loops will have all the statements in the original loops. We obtain the point-loops that haveonly S1 by simply not printing S2 from point-loops with all the statements. The �nal tiled
ode isshown in Figure 8.// t i l e −l oopsfor (ti = up(2−si ,si) ; ti <= N ; ti+=si)for (tj = up(2−sj ,sj) ; tj <= ti+si−sj −1; tj+=sj)// point−l oops (S1)for (i=max(1 , ti) ; i<=min(N ,ti+si −1); i++)for (j=max(1 , tj) ; j<=min(i , tj+sj −1); j++)S1 (i , j) ;
tj = down(ti+si−1,sj) ;// point−l oops (S1 , S2)for (i=max(1 , ti) ; i<=min(N ,ti+si −1); i++)for (j=max(1 , tj) ; j<=min(i , tj+sj −1); j++)S1 (i , j) ;S2 (i) ; Figure 8: Final tiled loops from the example in Figure 6One may ask whether it is legal to tile in su
h a way. If S1(i, j) is y(i)+=L(i,j)*x(j) and

S2(i) is y(i)+=x(i) as in the produ
t of lower triangular matrix L with unit diagonal and a ve
tor
x, this tiling is legal and is what an expert programmer typi
ally writes by hand. However, if this
omputation is a triangular linear system solver, this tiling is not always legal.7

In the remainder of this se
tion, we present the answer to the following three questions: (i)pre
isely what is su
h tiling, (ii) how to know whether su
h tiling is legal without human knowledgeabout the
omputation, and (iii) how to handle the
ase where su
h tiling is not legal.4.2 Tile-Loop GenerationAs we saw in the example, tile loop generation
onsists of two steps: (i) generating tile loop boundsusing D-tiling and (ii) restru
turing the tile-loops su
h that statements only appear in the innermostloops. Later, these statements in ea
h innermost loop will be repla
ed by point-loops that
ontainsonly those statements.A detailed algorithm is given in Figure 9. The algorithm is for an imperfe
tly nested loop wherethere is one
ommon outermost loop. When there are multiple outermost loops, we
an apply thealgorithm to ea
h one individually. One may apply this algorithm to the original loops in Figure 6and easily obtain the tile-loop in Figure 7.One aspe
t of this tiling is that ea
h statement is tiled in exa
tly same way as ea
h statementis tiled separately ex
ept the peeling of either �rst (or last) iteration or both. This is be
ause wedo not embed all the statements into a
ommon spa
e. Statements do not have more
ontext. Forexample, statement S2 in the example is asso
iated to neither tj nor j.In the algorithm, statements are pla
ed into the immediately following loop if su
h a loop exists,but di�erent loops are not
ombined. One may want to
hoose the pre
eding loop of the statements,if exists. This
hoi
e
an be made in either way, if this tiling is legal. We will address the legalityissue in subse
tion 4.5.4.3 Point-Loop GenerationThe point-loop generation is straightforward. For ea
h bound in the original loop, we add anappropriate tile bound to it. For instan
e, we add ti at the lower bound lbi of i loop so that the newbound be
omes max(ti, lbi). Similarly, we add ti + si − 1 at the upper bound ubi of i loop so thatthe bound be
omes min(ti + si − 1, ubi). Note that the resulting tile-loops has statements only inthe innermost loops and the set of statements will be repla
ed by point-loops that
ontains thosestatements. Depending on the set of statements, there may be a loop that
ontains no statementsin the set. In su
h
ase, we do not print the loop itself.4.4 Legality of Tiled-Loop GenerationWe use a sequen
e of operations on a loop AST. Here we explain what the algorithm a
hievesand provide an informal argument for one aspe
t of legality of tiling: the tiled loops must exe
utethe exa
tly same set of instan
es of ea
h statement in the original loops. When tile-loops are
onstru
ted, statements may have been repli
ated be
ause of peeling tile-loop iteration. Also, thenumber of surrounding loops of statements is
hanged in the peeled tile-loop iteration. If there is nopeeling of surrounding loops of a statement at depth k, the number of its surrounding loops in thetiled loops is 2k. However, if we reverse the loop peeling operations, ea
h statement have exa
tlysame tile-loops as those obtained by applying perfe
tly nested loop tiling to that statement alone.Also, The point-loops of ea
h statement is exa
tly same as that of perfe
tly nested tiling to thestatement. Consequently, this whole transformation is a bije
tion from an instan
e of a statementin the original loops to an instan
e of a statement in the �nal tiled loops. In other words, tiling islegal in terms of operations that the program performs. The legality issue of the order of operationswill be dis
ussed in the following subse
tion. 8

Input: AST - imperfe
tly nested loops1: Apply D-tiling to AST /* To obtain tile loop bounds */2:3: for L : ea
h loop of AST from depth 1 to maximum depth do4: hasStatement← false5: StmtList← ∅6: for c : ea
h
hild of L do7: if c is statement then8: add c to StmtList9: hasStatement← true10: else if c is loop then11: if hasStatement = true then12: peel the �rst iteration of c and add StmtList before the
hildren of c13: StmtList← ∅14: hasStatement← false15: LastLoop← c16: end if17: end if18: end for19: if hasStatement = true then20: peel the last iteration of LastLoop and add StmtList after the
hildren of
LastLoop /* If the �rst iteration of LastLoop is peeled out, then add a guardstatement to ensure that a tile is exe
uted only on
e. */21: hasStatement← false22: end if23: end for Figure 9: An algorithm for generating tile-loops4.5 Legality ConditionNow we provide a legality
ondition similar to that of full permutability of perfe
tly nested loops.Unlike the legality
ondition for perfe
tly nested loops, the order of tiles
annot be des
ribed justin the terms of lexi
ographi
 order of tiles, but requires the information about textual order of tiles(point-loops) as well.Sin
e the loops are not perfe
tly nested, we use a more general dependen
e abstra
tion, ratherthan just a�ne fun
tions. So, a dependen
e for imperfe
tly nested loops is a fun
tion from a pair ofa statement and its iteration point to another pair. We denote the depth of
ommon surroundingloops of two statements S and T as nST .A legality
ondition on tiling is a
ertain restri
tion on dependen
es among tiles, not withinpoints in a tile. For example, full permutability of loops, a well known legality
ondition forperfe
tly nested loops, imposes that dependen
es among tiles are non-negative in all
omponents.So, the tile-loops themselves are fully permutable. It is based on the fa
t that the relative orderamong points within a tile remains same. This property holds also for our imperfe
tly nested looptiling s
heme.Before deriving a
ondition, let us examine the legality issue of our running example. When

9

S1(i, j) is y(i)+=L(i,j)*x(j) and S2(i) is y(i)+=x(i), there are two �ow dependen
es:
(S1, (i, j)) → (S1, (i, j − 1))

(S2, (i)) → (S1, (i, i − 1))First,
onsider the dependen
e from (i, j) of S1 to (i, j − 1) of S1. Let (t1i , t
1
j) and (t2i , t

2
j) be thetile origins of the tiles
ontaining (i, j) and (i, j − 1) respe
tively. Then, t1i = t2i and t2j is either t1jor t1j − 1. After tiling, this dependen
e will be preserved. This is also
lear from the fa
t that theloop without S2 is fully permutable.Now,
onsider the se
ond dependen
e, (S2, (i)) → (S1, (i, i − 1)). Let (tt1i , tt

1
j) and (tt2i , tt

2
j) bethe tile origins of (i) and (i, i − 1). Then, tt1i = tt2i be
ause the i loop is
ommon. We have onlytwo possible
ases: either the point-loop that
ontains the statement S1 textually pre
edes that of
ontaining statement S2, or two statements are in the same point-loop. So, the dependen
e will besatis�ed either by the textual order of point-loops or within a point-loop (tile).Theorem 4.1. An imperfe
tly nested loop tiling in the algorithm in Figure 9 is legal if for ea
hdata dependen
e d of (S, z) on (T, z′), the �rst nST
omponents of z − z′ are non-negative and Ttextually pre
edes S.Proof of Theorem 4.1 Let z = (z1, . . . znST

, . . . , znS
) and z′ = (z′1, . . . z

′

nST
, . . . , z′nT

). Let t =
(t1, . . . tnST

, . . . , tnS
) and t′ = (t′1, . . . t

′

nST
, . . . , t′nT

) be the tile origin of z and z′, respe
tively. Weare given that z′k ≤ zk for 1 ≤ k ≤ nST . Then, t′k ≤ tk for all 1 ≤ k ≤ nST . By the s
heme ofloop peeling on tile-loops or the order of loops, either of the following is true: any set of point-loops
ontaining T textually pre
edes any set of point-loops
ontaining S, or both S and T appear in thesame point-loops. The main idea is that the textual order of statements are preserved after tiling.This restri
tion on the dire
tion of dependen
e and textual order is quite strong. Imagine thatwe just tile the �rst i dimension of the running example. For a given tile, any
omputation of S1
an be done without any
omputation of S2. Another view of this theorem is that tiling is appliedto the
ommon loops and the remainder of the loops are tiled independently.However, some dependen
es in real programs do not satisfy this
ondition. Common examplesare triangular linear system solver and matrix fa
torization su
h as LU and Cholesky de
omposition.Let us further investigate these
omputations more
arefully.Now, we assume that our running example is a triangular linear system solver. Then, S1(i, j)be
omes y(i)+=L(i,j)*x(j) and S2(i) is y(i)/=L(i,i). There are three dependen
es:
(S1, (i, j)) → (S1, (i, j − 1))

(S2, (i)) → (S1, (i, i − 1))

(S1, (i, j)) → (S2, (j))From the previous analysis, we know that the �rst two dependen
es satisfy the
ondition in theorem4.1. We only
onsider the last dependen
e. Sin
e j < i, the �rst
omponent of dependen
e is non-negative. However, the dependen
e dire
tion from S1 to S2 is the same as the textual order of twostatements. Let (ti, tj) be a tile origin of (S1, (i, j)). We want to �nd the iterations that produ
esthe values being read by tile (ti, tj). The image of the tile by dependen
e fun
tion is the pre
ise setof the iterations that produ
es su
h values. So, we get {i ∈ DS2 | tj ≤ i ≤ tj +sj−1}. On the otherhand, the iterations that are exe
uted in the tile ti of S2 are {i ∈ DS2 | ti ≤ i ≤ ti + si− 1}. Figure10 shows geometri
 view of this dependen
e relation. The value of tj determines whi
h iterationsof S2 are being used. If these two sets are disjoint like two bottom tiles with origin at (6, 0) and10

(6, 3), the dependen
es are satis�ed. However, they are not disjoint for some tiles. Spe
ially, if wede
rease the size of sj to 1, the tiled
ode generated by our method exe
utes no iterations in (S2, 6),
(S2, 7) and (S2, 8) until all the tiles whose ti = 6. The interse
tion is not empty, so this is not legalexe
ution order. So we
annot tile the region where these two sets are not disjoint.

1 9

(9,8)

i

j

1

Iteration space
of S1

Iteration space
of S2

iFigure 10: Tiles of S1 and the iterations of S2 on whi
h they depend in the example of Figure 6In the analysis of this example, we took a tile of a produ
er statement and applied the dependen
efun
tion to it. We derived a pre
ise
ondition when our tiling method be
omes illegal. The followingtheorem gives a pre
ise reasoning for the general
ases.Claim 4.2. For a dependen
e d of (S, z) on (T, z′) where the
omponents up to nST are non-negativeand S textually pre
edes T , tiling is not always legal if Proj(image(t, f), nST) ∩ Proj(t, nST) 6= ∅where z′ = f(z) and t is a tile.Note that we
an
ompare the sets up to the
ommon dimensions. This
ondition just tells uswhen tiling is not legal, but it
an also be used to guide tiled loop generation.We elaborate what this theorem tells us with the help of another example. Consider the loop forCholesky de
omposition in Figure 11. There are three statements and six (value-based) dependen
es.
(S1, (k)) → (S3, (k − 1, k, k))

(S2, (k, i) → (S3, (k − 1, i, k))

(S2, (k, i)) → (S1, (k))

(S3, (k, i, j)) → (S3, (k − 1, i, j))

(S3, (k, i, j)) → (S2, (k, i))

(S3, (k, i, j)) → (S2, (k, j))The last four dependen
es satisfy the
ondition in Theorem 4.1, but the �rst two dependen
es donot satisfy that
ondition. Now, let t be a tile of S1. The set of points in the tile
an be des
ribedas {k | tk ≤ k ≤ tk +sk−1}. Now, take an image of tk by the dependen
e fun
tion (k → k−1, k, k).The points of S3 in the image of tile {k, i, j | tk − 1 ≤ k ≤ tk + sk − 2; tk ≤ i ≤ tk + sk − 1; tk ≤ j ≤
tk + sk − 1} are the value that t is depends on. Similarly, we do the same analysis for the se
onddependen
e. The iterations of S3 on whi
h a tile t′ = {k, i | {tk ≤ k ≤ tk+sk−1; ti ≤ i ≤ ti+si−1} of
S3 depend are {k, i, j | tk−1 ≤ k ≤ tk+sk−2; tk ≤ i ≤ tk+sk−1; tk ≤ j ≤ tk+sk−1}. To make tilinglegal, we
an impose that the interse
tion of the proje
tion of those iteration with a tile is empty. For11

instan
e, to make tiling legal on the �rst dependen
e, the proje
tion {k | tk − 1 ≤ k ≤ tk + sk − 2}of the image is disjoint with the original tile {k | tk ≤ k ≤ tk + sk − 1}. Then, the
onditionbe
omes sk = 1. If this
ondition is imposed, the se
ond dependen
e has the same property thatthe interse
tion of proje
tions of�a tile and its image by dependen
e fun
tion�on the
ommondimension is empty. We know that tiling of only k loops are legal. Another way to make tiling legalis to map all the points in the image into a single point-point, i.e., not to tile.for (k = 1 ; i < N ; i++)A(k , k)= sq r t (A(k , k)) ; −− S1for (i = k+1; j < N; j++)A(i , k)/=A(k , k) ; −− S2for (j = k+1; j <= i ; j++)A(i , j)−=A(i , k)∗A(j , k) ; −− S3Figure 11: Cholesky de
omposition4.6 Tiled Loop GenerationOur strategy is that we do not tile when tiling is not legal at
ertain area or impose an
onditionon the relation between tile sizes so that the generated
ode using the algorithm in Figure 9. Forexample, we produ
e the tiled loops shown in Figure 12 for a triangular linear system solver. We donot tile as soon as tiling be
ome not legal. Note that the point-loops for S1 and S2 do not have tileupper bound and after the point loops tj is assigned to its upper bound. Using our simple tiled loopgeneration algorithm with this simple modi�
ation, we
an the
ode that appears in the literaturethat address tiling imperfe
tly nested loops.With the knowledge of legality issue, one may be able to
hoose a di�erent approa
h for tiled loopgeneration. Another way to e�
iently use our te
hnique is developing an enabling transformationso that the parameterized tiled generation is legal and simple, and the resulting
ode is e�
ien
y.A detailed study for enabling transformation is beyond the s
ope of this paper.Our algorithm provide the separation of perfe
tly nested point-loops and imperfe
tly nestedpoint-loops. One may want to separate full tiles from empty/partial tiles. We
an dire
tly use theinset [29℄, whi
h
ontains only full tile origins, by
onstru
ting it dimension by dimension. The insetof a point-loop is just the inset of its surrounding loops.// t i l e −l oopsfor (ti = up(2−si ,si) ; ti <= N ; ti+=si)for (tj = up(2−sj ,sj) ; tj <= ti+si−1; tj+=sj)// t i l i n g i s l e g a li f (ti+si−1<tj | | tj+sj−1<ti)// point−l oops (S1)for (i=max(1 , ti) ; i<=min(N , ti+si −1); i++)for (j=max(1 , tj) ; j<=min(i , ti+si −1); j++)S1 (i , j) ;// t i l i n g i s not l e g a lelse// point−l oops (S1 , S2)for (i=max(1 , ti) ; i<=min(N , ti+si −1); i++)for (j=max(1 , tj) ; j<=i) ; j++)S1 (i , j) ;S2 (i) ;
tj = ti+si−1; // l a s t i t e r a t i o nFigure 12: Tiled loops for a triangular linear system solver.12

5 Implementation and Experimental ResultWe implemented our tiled loop generation algorithm as simple visitors written in Java on a loopAST(Abstra
t Syntax Tree) generated by the SableCC
ompiler generator [11℄. Our
ode generatorgenerates parameterized tiled loops as well as �xed tiled loops. Also, tile-loops and point-loops
anbe generated independently. The generator will be available as an open sour
e toolkit.5.1 Experimental SetupTo evaluate the e�
ien
y of our
ode generator, we used four
ommon ben
hmarks in Table 1. We
ompared our method with a �xed size tiling using CLOOG [6℄. We used gmp-enabled CLOOG0.14.1. All the statements are embedded into a
ommon high dimensional polyhedron and we useXue's formulation [34℄ to generate �xed tiled loops. We tiled all the loops.We ran all experiments for generated
ode e�
ien
y evaluation on Intel Core 2 Duo running2.2 GHz with 2MB L2 Ca
he and 1GB memory. We
ompiled all the
ode using g

 4.1.2 with theoptimization level -O3. The timings were measured using gettimeofday(). For generation e�
ien
yevaluation, we use only default option of CLOOG and reports the generation time given by CLOOG.All the I/O times are ignored. To measure our
ode generation time we use
urrentTimeMillis()method in java.lang.System
lass. Des
ription loopdepth/s-tate-mentsMatMul Matrix multipli
ation 3/2MultiTriSolver Multiple triangularlinear systems solver 3/2LUD LU de
omposition of amatrix withoutpivoting 3/2Cholesky Choleskyde
omposition 3/3Table 1: Ben
hmarks used for generation e�
ien
y and generated
ode quality evaluation5.2 ResultsWe �rst pro�le the
ode generation time of our
ode generator and that of �xed embedding approa
husing CLOOG. For �xed size tiling, we generated all the tile sizes that is a power of 2 and between2 and 512. We use data when tile sizes are 64. When tile sizes are small like 2 and 4, the generationis fast and the size of
ode is small. After that, the generation time and
ode sizes are almost same.The generated data is shown in Table 2. Even though all the ben
hmarks have a relatively smallnumber of statements and the maximum depth, �xed tile size tiling took 8.78 se
onds for LUD.In terms of generation e�
ien
y, our
ode generator is signi�
antly faster. We also measured thenumber of lines. The CLOOG generated
ode is highly optimized based on the range of programparameters. For a spe
i�
 range, the number of lines is a lot smaller than the reported number.However, it is still larger than the
ode generated by our method.13

Ben
hmarks Parameterized Fixed +EmbeddingMatMul 0.009 se
/ 24lines 0.33 se
/ 41linesMultiTriSolver*0.025 se
/ 25lines 0.67 se
/ 224linesLUD 0.002 se
/ 24lines 8.78 se
/ 5583linesCholesky 0.004 se
/ 47lines 2.38 se
/ 1287linesTable 2: Comparison of generation time and the number of lines�parameterized vs �xed tiling�anembedding is given for �xed size tiling (*: the generated
ode is modi�ed by hand)Figure 13-17 shows the exe
ution time and loop overhead of the four ben
hmark. The loopoverhead is measured by repla
ing the a
tual statements with a simple statement that in
rementsa s
alar variable.Figure 13 shows the total exe
ution time of MatMul. We only measured the exe
ution time ofmatrix multipli
ation be
ause the stru
tures of loops from two di�erent approa
h are very similar.The program is written in a trivial triply nested loops, and the innermost loop a

umulated thevalues. There is an initialization statement just before the innermost loop. The embedding fun
tionfor the initialization statement is (i, j → i, j, 0), i.e., it is aligned at k = 0. The e�
ien
y of ourgenerated
ode is as good as that of �xed size tiling with embedding.Figure 14 and 15 shows the exe
ution time and the loop overhead of MultiTriSolver. Theoutermost loop i iterates over problem instan
es of a single triangular system solver. We �rstgenerated the
ode using our generator and then modi�ed it so that it does not tile when tilingis not legal. So, its tile-loops are perfe
tly nested and the tile-loops has a guard of testing thelegality. The embedding fun
tion is the same as the one given in [1℄. The division statement hasan embedding fun
tion (i, j, k → i, j, j). When tile sizes are very small, the exe
ution time of our
ode is larger than that of �xed size tiling with embedding. When tiles size are more than 8, theybe
ome similar. In terms of loop overhead, our
ode is better than the other.For Cholesky and LUDom, we generated parameterized tiled loops using our
ode generator, andthen restri
ted the tile sizes (rather than introdu
ing a guard) so that the generated
ode is
orre
t.In Cholesky, the loop overhead is
omparable for most of tile sizes, but the total exe
ution time is40 per
ent higher than that of �xed size tiling with embedding. In LUDom, the loop overhead of�xed size tiling with embedding approa
h is high, and the exe
ution time has a similar pattern withMultiTriSolver.In summary, in terms of the e�
ien
y of tiled loop generation our method is better than �xedsize tiling with embedding. The generated
ode from our te
hniques is more
ompa
t and readable.Our generated
ode has more loop overhead when tile sizes are small and similar or less when tilesizes are big. In terms of total exe
ution time of ben
hmark, the e�
ien
y of our generated
odeis
omparable when tile size is not small. Although our
ode is not as e�
ient as that of �xedembedding tiling, we expe
t that the imperfe
tly nested tiling is used with bigger tile sizes.
14

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach on Matrix product

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

60
70 Parameterized tiling

Embedding approach with fixed size

Figure 13: Total exe
ution time for MatMul on two 2000 × 2000 matri
es6 Related WorkAn
ourt and Irigoin [4℄ proposed a te
hnique for generating loops s
anning a single polyhedronusing Fourier-Motzkin elimination over inequality
onstraints. Le Verge et al. [20, 21℄ proposed ate
hnique using the dual representation of polyhedra. The loop generation from a polyhedron isoften required after uni-modular transformations su
h as loop permutation and skewing.Irigoin and Triolet [15℄ show that the tiled iteration spa
e after �xed size tiling
an be formulatedas a polyhedron with higher dimension by adding d dimensions. For example, the 3×3 tiled iterationspa
e of our example is
{ti, tj, i, j | 3ti ≤ i ≤ 3ti + 2; 3tj ≤ j ≤ 3tj + 2

; i ≤ N ; 1 ≤ j ≤ i }Either of the above tools may be used (in fa
t, most of them
an generate su
h tiled
ode).However, it is well known that sin
e the worst
ase
omplexity of Fourier-Motzkin elimination isdoubly exponential in the number of dimensions, this may be ine�
ient espe
ially when multi-leveltiling is needed. Due to this problem, Goumas et al. [12℄ proposed a method where the tiled loopgeneration problem is de
omposed into two sub-problems, one to s
an the tile origins, and the otherto s
an points within a tile, thus obtaining signi�
ant redu
tion of the worst
ase
omplexity.Another disadvantage of the above tiled iteration spa
e formulation is that it is no longer apolyhedron when tile sizes are not
onstants. The
onstraints be
ome bi-linear forms. For the
asewhere tile sizes are symboli
 parameters, a simple
ase
alled orthogonal tiling � either re
tangularloops tiled with re
tangular tiles, or loops that
an be easily transformed to this � was �rst
onsidered. For the more general
ase, the standard solution, as des
ribed in Xue's text [34℄ hasbeen to simply extend the iteration spa
e to a re
tangular one (i.e., to
onsider its bounding box),apply the orthogonal te
hnique with appropriate guards to avoid
omputations outside the originaliteration spa
e. Jiménez et al. [16℄ develop
ode generation te
hniques for register tiling of non-re
tangular iteration spa
es. They generate
ode that traverses the bounding box of the tile iterationspa
e to enable parameterized tile sizes, but the fo
us of their paper is applying index-set splitting15

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach
 on MultiTriSolver

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

60
70

Parameterized tiling
Embedding approach with fixed size

Figure 14: Total exe
ution time for MultiTriSolver on 2000 variables and 3000 instan
esto tiled
ode to traverse parts of the tile spa
e that in
lude only full tiles. Amarasinghe andLam [2, 3℄ implemented, in the SUIF tool set, a version of FME that
an deal with a limited
lassof symboli

oe�
ients (parameters and/or blo
k sizes), but the full details have not been madeavailable. Gröÿlinger et al. [13℄ proposed an extension to the polyhedral model, in whi
h theyallow arbitrary rational polynomials as
oe�
ients in the linear
onstraints that de�ne the iterationspa
e. Their generi
ity
omes at the pri
e of requiring
omputationally expensive ma
hinery likequanti�er elimination in polynomials over the real algebra, to simplify
onstraints that arise duringloop generations. Due to this their method does not s
ale with the number of dimensions and thenumber of non-linear parameters. Lakshminarayanan et al. [29℄ proposed an approa
h where tilespa
e is parameterized by tile sizes in addition to program parameters.However, these te
hniques, de
omposition and tile size parameterization, are restri
ted to per-fe
tly nested loops. When tile sizes are
onstants, tiling has been extended to imperfe
tly nestedloops. Although some authors do not
onsider arbitrary a�ne
ontrol loops, they proposed limitedextension to imperfe
tly nested loops. Carr and Kennedy [9℄ proposed a te
hnique that use an in-dex set splitting to make tiling legal before it is applied. Song and Li [31℄ proposed a te
hnique forsten
il programs
onsisting of one outer time loop and a sequen
e of perfe
tly nested loops withinthe time loop.Several general approa
hes have been proposed for tiling imperfe
tly nested loops. Roughlyspeaking, the existing te
hniques for arbitrary nested loops
onsist of the following steps: (i)
on-verting them to perfe
tly nested loops (or embedding ea
h iteration spa
e into a
ommon spa
e),and (ii) applying all the knowledge developed for perfe
tly nested loops, su
h as legality
onditions,�nding linear transformations for enhan
ing data lo
ality in the program, et
., and (iii)
ode gen-eration. Unfortunately, the
ode generation step in these approa
hes is not as simple as that forperfe
tly nested loops, often requiring index set splitting to get e�
ient �nal
ode. This inher-ently
omes from the �rst step, where guards or equalities are introdu
ed to embed a statementsurrounded by fewer loops into a higher dimensional loop nest. Also, �nding an appropriate em-bedding fun
tion itself is not a trivial problem. Also, the previous work on imperfe
tly nested looptiling fo
used on how to �nd embedding fun
tions and tiled loop generation are left as a s
anning16

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach
 on multiple triangular solver − loop overhead only

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
5

10
15

20

Parameterized tiling
Embedding approach with fixed size

Figure 15: Loop overhead of MultiTriSolver on 2000 variables and 3000 instan
esa union of polyhedron.Ahmed et al. [1℄ proposed a te
hnique for general imperfe
tly nested loops based on embeddinginto a
ommon Cartesian produ
t spa
e. Lim et al. [22℄ proposed a te
hnique for independentthreads that have no dependen
e between them, and also use their algorithm for �nding largestoutermost fully permutable loops for embedding. Bondhugula et al. [7℄ proposed a approa
h basedon tiling hyperplanes that are linearly independent relaxed pipeline s
heduling hyperplanes andthe set of tiling hyperplanes provides an a�ne transformation. The transformed loops are fullypermutable. Also, our fo
us is to generate parameterized tiled loops from imperfe
tly nested loops,rather than �nding a good embedding.7 Con
lusionTiling imperfe
tly nested loops is an important loop transformation that enables us to parallelizeprograms and improve the overall performan
e of more general appli
ations. Several approa
hes havebeen proposed for �xed imperfe
tly nested loops. Although parameterized tiled loops where tile sizesare a symboli
 parameters are a quite useful, the existing methods only handle perfe
tly nested loops.We proposed D-tiling that redu
es the
omplexity of the generation of �xed/parameterized/mixedtiled loops for perfe
tly nested loops to O(m×(d+p)). We presented the te
hnique for parameterizedtiled loop generation problem based on the reasoning of legality
onditions without making theoriginal loop nest into a perfe
tly nested one. We
ompare the e�
ien
y of our
ode generation andthe generated
ode with �xed embedding approa
h. Experimental result shows that the e�
ien
y of
ode generation is better than that of �xed embedding approa
h and the e�
ien
y of the generated
ode is as good as that of �xed size tiling with embedding.Our ongoing work in
ludes a more detailed study on the relation between dependen
e presentedin imperfe
tly nested loops and tiled loop generation. Our aim is to generate a more e�
ient
odebased on the
onstraints on tile sizes.
17

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach on Cholesky

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40

Parameterized tiling
Embedding approach with fixed size

Figure 16: Total exe
ution time for Cholesky on 3000 × 3000 matrixReferen
es[1℄ Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfe
tly-nested loop nests.In Super
omputing '00: Pro
eedings of the 2000 ACM/IEEE
onferen
e on Super
omputing(CDROM), page 31, Washington, DC, USA, 2000. IEEE Computer So
iety.[2℄ S. Amarasinghe. Parallelizing Compiler Te
hniques Based on Linear Inequalities. PhD thesis,Stanford University, 1997.[3℄ S. P. Amarasinghe and M. S. Lam. Communi
ation optimization and
ode generation for dis-tributed memory ma
hines. In PLDI '93: Pro
eedings of the ACM SIGPLAN 1993
onferen
eon Programming language design and implementation, pages 126�138, New York, NY, USA,1993. ACM Press.[4℄ C. An
ourt and F. Irigoin. S
anning polyhedra with DO loops. In Pro
eedings of the 3rd ACMSIGPLAN Symposium on Prin
iples and Pra
ti
e of Parallel Programming, pages 39�50, April1991.[5℄ R. Andonov and S. Rajopadhye. Optimal orthogonal tiling of 2-d iterations. Journal of Paralleland Distributed Computing, 45(2):159�165, September 1997.[6℄ C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT'13IEEE International Conferen
e on Parallel Ar
hite
ture and Compilation Te
hniques, pages7�16, Juan-les-Pins, September 2004.[7℄ Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A pra
ti
al automati
polyhedral parallelizer and lo
ality optimizer. In PLDI '08: Pro
eedings of the 2008 ACMSIGPLAN
onferen
e on Programming language design and implementation, pages 101�113,New York, NY, USA, 2008. ACM.[8℄ P. Boulet, A. Darte, T. Risset, and Y. Robert. (pen)-ultimate tiling? INTEGRATION, theVLSI journal, 17:33�51, August 1994. 18

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach on Cholesky
 − loop overhead only

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
5

10
15

20
25

30
35

Parameterized tiling
Embedding approach with fixed size

Figure 17: Loop overhead of Cholesky for the matrix of size 3000 × 3000 matrix[9℄ Steve Carr and Ken Kennedy. Compiler blo
kability of numeri
al algorithms. In In Pro
eedingsof Super
omputing '92, pages 114�124, 1992.[10℄ S. Coleman and K. S. M
Kinley. Tile size sele
tion using
a
he organization and data layout. InACM SIGPLAN Conferen
e on Programming Language Design and Implementation (PLDI),June 1995.[11℄ Etienne Gagnon and Laurie Hendren. An obje
t-oriented
ompiler framework. In In Pro
eedingsof TOOLS, pages 140�154, 1998.[12℄ G. Goumas, M. Athanasaki, and N. Koziris. An e�
ient
ode generation te
hnique for tilediteration spa
es. IEEE Transa
tions on Parallel and Distributed Systems, 14(10), O
tober 2003.[13℄ A. Gröÿlinger, M. Griebl, and C. Lengauer. Introdu
ing non-linear parameters to the polyhe-dron model. In Mi
hael Gerndt and Edmond Kereku, editors, Pro
. 11th Workshop on Com-pilers for Parallel Computers (CPC 2004), Resear
h Report Series, pages 1�12. LRR-TUM,Te
hnis
he Universität Mün
hen, July 2004.[14℄ K. Högstedt, L. Carter, and J. Ferrante. Determining the idle time of a tiling. In Prin
iples ofProgramming Languages, pages 160�173, Paris, Fran
e, January 1997. ACM.[15℄ F. Irigoin and R. Triolet. Supernode partitioning. In 15th ACM Symposium on Prin
iples ofProgramming Languages, pages 319�328. ACM, January 1988.[16℄ M. Jiménez, J. M. Llabería, and A. Fernández. Register tiling in nonre
tangular iterationspa
es. ACM Trans. Program. Lang. Syst., 24(4):409�453, 2002.[17℄ W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Frontiers '95:The 5th Symposium on the Frontiers of Massively Parallel Computation, M
Lean, VA, 1995.[18℄ DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay Rajopadhye, andMi
helle Mills Strout. Multi-level tiling: M for the pri
e of one. In SC '07: Pro
eedings of19

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach on LUDom

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
10

20
30

40
50

Parameterized tiling
Embedding approach with fixed size

Figure 18: Total exe
ution time of LUDom for the matrix of size 3000 × 3000 matrixthe 2007 ACM/IEEE
onferen
e on Super
omputing, pages 1�12, New York, NY, USA, 2007.ACM.[19℄ M. S. Lam and M. E. Wolf. A data lo
ality optimizing algorithm (with retrospe
tive). In Bestof PLDI, pages 442�459, 1991.[20℄ H. Le Verge, V. Van Dongen, and D. Wilde. La synthèse de nids de bou
les ave
 la bibliothèquepolyédrique. In RenPar`6, Lyon, Fran
e, June 1994. English version �Loop Nest Synthesis Usingthe Polyhedral Library�in IRISA TR 830, May 1994.[21℄ H. Le Verge, V. Van Dongen, and D. Wilde. Loop nest synthesis using the polyhedral library.Te
hni
al Report PI 830, IRISA, Rennes, Fran
e, May 1994. Also published as INRIA Resear
hReport 2288.[22℄ Amy W. Lim, Shih-Wei Liao, and Moni
a S. Lam. Blo
king and array
ontra
tion a
rossarbitrarily nested loops using a�ne partitioning. In Pro
eedings of the eighth ACM SIGPLANsymposium on Prin
iples and para
ti
es of Parallel Programming, pages 103�112, New York,USA, 2001. ACM Press.[23℄ D. K. Lowenthal. A

urately sele
ting blo
k size at runtime in pipelined parallel programs.Int. J. Parallel Program., 28(3):245�274, 2000.[24℄ D. S. Nikolopoulos. Dynami
 tiling for e�e
tive use of shared
a
hes on multithreaded pro
es-sors. International Journal of High Performan
e Computing and Networking, pages 22 � 35,2004.[25℄ W. Pugh. Omega test: A pra
ti
al algorithm for exa
t array dependen
y analysis. Comm. ofthe ACM, 35(8):102, 1992.[26℄ M. Püs
hel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong,F. Fran
hetti, A. Ga
i
, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. Spiral:Code generation for dsp transforms. Pro
eedings of the IEEE, 93(2):232�275, February 2005.20

2 4 8 16 32 64 128 256 512

Comparision of two different tiling approach on LUDom
 − loop overhead only

Cubic Cache−Tile Sizes

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

0
5

10
15

20
25

30

Parameterized tiling
Embedding approach with fixed size

Figure 19: Loop overhead of LUDom for the matrix of size 3000 × 3000 matrix[27℄ F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of e�
ient nested loops from polyhedra.International Journal Parallel Programming, 28(5):469�498, 2000.[28℄ J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spa
es for multi
omput-ers. Journal of Parallel and Distributed Computing, 16(2):108�120, 1992.[29℄ Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and Mi
helle MillsStrout. Parameterized tiled loops for free. In PLDI '07: ACM SIGPLAN Conferen
e onProgramming Language Design and Implementation, pages 405�414, New York, NY, USA,2007. ACM Press.[30℄ R. S
hreiber and J. Dongarra. Automati
 blo
king of nested loops. Te
hni
al Report 90.38,RIACS, NASA Ames Resear
h Center, August 1990.[31℄ Yonghong Song and Zhiyuan Li. A
ompiler framework for tiling imperfe
tly-nested loops. InLCPC '99: Pro
eedings of the 12th International Workshop on Languages and Compilers forParallel Computing, pages 185�200, London, UK, 2000. Springer-Verlag.[32℄ R. C. Whaley and J. J. Dongarra. Automati
ally tuned linear algebra software. In Super-
omputing '98: Pro
eedings of the 1998 ACM/IEEE
onferen
e on Super
omputing (CDROM),pages 1�27, Washington, DC, USA, 1998. IEEE Computer So
iety.[33℄ R. P. Wilson, R. S. Fren
h, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang,S-W. Liao, C-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: An infrastru
turefor resear
h on parallelizing and optimizing
ompilers. SIGPLAN Noti
es, 29(12):31�37, 1994.[34℄ J. Xue. Loop Tiling For Parallelism. Kluwer A
ademi
 Publishers, 2000.
21

