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Parameterized Tiling for Imperfetly Nested LoopsDaeGon Kim and Sanjay V. Rajopadhye[kim|svr℄�s.olostate.eduFebruary 27, 2009AbstratParameterized tiled loops�where tile sizes are run-time parameters rather than onstants�xed at ode generation time�are quite useful for several ases. Suh ases inlude empirialsearh for optimal tile sizes in iterative ompilers and highly optimized library generators likeATLAS, and parallelizing ompilers that enable the number of proessors to be a run-timeparameter. However, automatially generating suh ode is a luxury, only available for perfetlynested loops (single iteration spae) where all the statements are surrounded by the same set ofloops. We present a framework for generating parameterized tiled loops from arbitrarily nesteda�ne ontrol loops. In this framework, tiling is applied dimension-by-dimension, disprovingthe deades-long belief that the tiled loop generation problem has exponential omplexity. Forperfetly nested loops, our algorithm has O(m × (d + p)) where m is the number of bounds, dthe maximum nesting depth of loops, and p the number of program parameters. Based on this,we are able to avoid the exponential omplexity even for imperfetly nest loops. In the urrentlyaepted view, imperfetly nested loops are handled by �rst embedding all iteration spaes intoa ommon higher dimensional spae and then applying the tehniques for perfetly nested loops.This requires two expensive steps: the embedding itself and index set splitting to obtain e�ientode. We take a ompletely di�erent view by exploiting the textual struture of the original loopnest and dimension-by-dimension tiling. Also, we formulate a legality ondition for imperfetlynested loop tiling. Our ode generation e�ieny is better than �xed size tiling with embedding.The e�ieny of generated ode is omparable to those tehniques. Our tehnique does not relyon the expensive polyhedral operations and works on loops. Its salability and simpliity makeour tehniques attrative for prodution ompilers.1 IntrodutionPartitioning omputation is a program transformation that is beoming more important with theadvent of multi-ore hips and the growing gap between the memory/network performane andomputational power. There are many reasons to believe that this gap will ontinue to widen. Thenumber of ores on a hip is expeted to inrease at an exponential rate leading to a few hundredores in the near future while ontinuing to ful�ll promise on mahine performane impliitly madein Moore's law. Large omputation and high performane annot be ahieved without partitioningomputation for exploiting parallelism and e�ient use of memory hierarhy. Due to the lak oftools, this program restruturing must often be done by hand, but is not easy even for speializedprogrammers on a partiular arhiteture. Moreover, a highly tuned programs for a partiulararhiteture are not portable. In the next generation, tools to aid programmers to write highperformane implementations will be a key omponent in software development.In many ompute- and data-intensive programs a signi�ant portion of the exeution time isonsumed by loops operating on arrays. Optimizing these loops involves improving data loality1



and parallelizing the omputation performed by loops. Tiling [15, 19, 30, 34℄ has been used forimproving data loality and exposing/exploiting the parallelism. Its e�etiveness has been proventhrough almost three deades of researh and high performane implementations of linear algebraand stenil omputations, suh as ATLAS and PHiPAC. With the advent of the multi/many oreera, tiling beomes even more important.The transformation partitions a program into a set of smaller piees (alled tiles) so that eah ofthose piees either �t to a resoure suh as registers, ahe or physial memory, or redue ommunia-tion ost between proessors and memory hierarhy. Various aspets of tiling have been extensivelystudied: how to pre-proess loops to make tiling legal and enhane data loality [19, 34℄ (e.g. loopskewing, loop permutation and other unimodular transformations); tile shape seletion [8, 14, 28℄and tile size seletion for memory hierarhy as well as parallelism [5, 10℄; the generation of tiledloop [12, 15, 34℄. Tiled ode generation is often an ignored step in the proess. This is partlybeause tehniques for loop generation from a union of polyhedra is well studied [17, 25, 33, 27, 6℄and tiled iteration spae is a polyhedron [15℄. Reently, a deomposition approah, where tile-loopsand point-loops are generated separately, was proposed to redue the omplexity of the generationproess [12℄.Parameterized tiled loops are tiled loop nests where tile sizes are not onstants but given as run-time parameters. There are many situations where suh tiled loops are preferable: any empirialsearh for optimal tile sizes suh as iterative ompilers and auto-tuners [26, 32℄; run-time tile sizeadaptation for varying resoure due to resoure sharing [23, 24℄; and parallelizing ompilers [3℄ thatallow the number of proessors to be a run-time parameter. Reently, Lakshminarayanan et al. [29℄presented a theory and tools for parameterized tiled loop generation.Unfortunately, most of the above tehniques are restrited to perfetly nested loops. No teh-nique for parameterized tiled loop generation from imperfetly nest loops has been proposed, todate. Additionally, all the previous solutions for �xed size tiling su�er from an expensive generationproess and omplex generated ode. When tiling is used for parallelism, espeially on distributedmemory mahines, the resulting ode has an onsiderable impat on subsequent proesses like gen-erating statements for ommuniations.In this paper, we present an algorithm and tool for generating parameterized tiled loops forarbitrary loop nests. It is novel in the sense that it does not rely on embedding�the onventionalapproah to extend tehniques for perfetly nested loop tiling to those for imperfetly nested loops.To the best of our knowledge, all previous approahes for imperfetly nested loops are based onembedding. The ontributions of this paper are:
• a formulation for generating tiled loops dimension by dimension that enables us to generateparameterized/�xed tiled loops without exponential omplexity; this is diretly appliable toperfetly nested loops as well.
• a legality ondition for tiling imperfetly nested loops that does not rely on making themperfetly nested;
• An algorithm for generating parameterized tiled loops from arbitrary nested a�ne ontrolloops without omplex polyhedral operations suh as projetions and index set splitting.
• In addition, sine the algorithm works on only a loop AST, it is ideal for prodution ompilers.
• An evaluation of the e�ieny of both the generation itself and the generated ode on benh-marks suh as stenil and matrix fatorization ode. It shows that our algorithm is e�ientand the resulting ode is omparable to those of �xed size tiled loops with embedding funtionsgiven at ompile time. 2



• Our parameterized tiled loop generators will be made available as an open soure toolkit.The key insight to the dimension-by-dimension tiling is that the tile spae for the projetion of theiteration spae is large enough to ontain the projetion of all the non-empty tile origins and theprojetion of the iteration spae is already present in the loop bounds. So, all the bounds of the tileloops an be diretly obtained from the bounds of the original loops without expensive proedureslike Fourier-Motzkin elimination.The main intuition behind our parameterized tiled loop generation from imperfetly nestedloops is that (i) a legality ondition for tiling an be formulated without embedding all the iterationspaes into a ommon spae�equivalently making the loops into perfetly nested loops and (ii) thestruture of tile loops an be derived from that of the original loops.The rest of the paper is organized in the following way. Setion 2 provides a bakground andnotation for the paper. Setion 3 explains a brief but powerful formulation for the tile spae leadingto an e�ient tiled loop generation algorithm. Setion 4 gives our main intuition on how to generateparameterized tiled loops using an example, provides the generation algorithm, and formulates alegality ondition for our tiling approah. Setion 5 provides an experimental result on omparisonwith �xed embedding tiled loop generation method.In Setion 6, we onlude our disussion.2 Bakground: Tiling Perfetly Nested LoopsThe tiling transformation takes a d-depth (perfetly) nested loop and produes a loop nest of depth(at most) 2d. The main idea is the deomposition of the iteration spae into a olletion of smallersets, alled tiles. Eah tile beomes an atomi blok of omputation, in other words, the order ofomputation is hanged.When loop bounds are a�ne funtions of program parameters and outer loop indies, the itera-tion spae an be expressed as a polyhedron. Consider the loop in Figure 1. Its iteration spae anbe written as
{i, j | i ≤ N ; 1 ≤ j ≤ i}Note that there are only three inequalities that de�ne the iteration spae beause 1 ≤ i is redundant.A geometri representation of this iteration spae is shown in Figure 2.for ( i = 1 ; i <= N ; i++)for ( j = 1 ; j <= i ; j++)S1 ( i , j ) ;Figure 1: Triangular iteration spae: the body of the loop is represented with the maro S1 forbrevityIn general, we an express an iteration spae of perfetly nested loops as

Piter = {~z|Q~z ≥ (~q + B~p)}where ~z is the iteration vetor of size d, Q is a m× d matrix, ~q is a onstant vetor of size m, ~p isa vetor of size n ontaining symboli parameters for the iteration spae, and B is a m× n matrix.Whenever there is no ambiguity we use z in the plae of ~z. We denote the k-th omponent of zas zk. We also denote tile size vetor as s.The �gure also shows a 3 × 3 retangular tiling of this iteration spae. Depending on theintersetion of a tile and the iteration spae, there are three kinds of tiles�empty tiles whose3
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(9,9)

i

j
{i, j | 1 ≤ j; j ≤ i; i ≤ N}

Empty tile

Partial tile Full tileFigure 2: An iteration spae when N = 9 and its 3× 3 tilingintersetion with the iteration spae is empty, full tiles whose intersetion is the tile itself, andpartial tiles whose intersetion is neither empty nor the tile itself. The lexiographially earliestpoint of eah tile is alled the tile origin.The essene of tiled loop generation is onstruting two sets of loops�tile-loops that enumerateall the tiles (all the tile origins) and point-loops that enumerate all the points in a tile. Whentile-loops and point-loops are separately generated, point-loop generation is trivial, just addingappropriate tile-bounds at the original loop bounds. Generation of tile-loops is not trivial beausethey must enumerate not only all the full tiles but also all partial tiles. Lakshminarayanan et al. [29℄de�ned a set an outset if it ontains all the partial/full tile origins. An outset is preise if it doesnot ontain any empty tile origins.They also proposed an outset that is not preise but a polyhedron. Their onstrution methodis based on shifting onstraints. Formally, their outset is written as
{z|Qz ≥ (q + Bp)−Q+s′}where s′ is s− 1 and
Q+

ij =

{

Qij, if Qij ≥ 0
0, if Qij < 0The term −Q+s′ an be interpreted as a shift of a hyperplane. The outset of the iteration spaefor the example in Figure 1 is shown in Figure 3. When a hyperplane is a lower bound of the k-thdimension, it will be shifted by sk. So, 1 ≤ j beomes 1− (sj − 1) ≤ tj.Then, an existing tool suh as CLOOG is used for generating all the points in the outset, andthen the generated loops are further proessed�lower bounds are adjusted and strides are set totile sizes�to visit only tile origins. Figure 4 shows the generated ode using their open soure toolHiTLOG [18℄. The maro up(t, s) in lower bound gives an integer p suh that p = ⌈t/s⌉ × s. Itadjusts the lower bounds so that the loops visit tile origins orretly.Later, we will use their shifting operation to obtain loop bounds and ompare this ode withour generated ode when input programs are perfetly nested.
4
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{i, j | 1 ≤ j; j ≤ i; i ≤ N}

{i, j | 2− sj ≤ j; j ≤ i + si − 1; i ≤ N}

Outset

2− sj ≤ j

i ≤ N

j ≤ i + si − 1

Figure 3: An outset of triangular iteration spae when N = 9 (left) and its 3× 3 tiling// t i l e −l oopsfor ( ti = up(−si−sj+3,si ) ; ti <= N ; ti+=si )for (tj = up(−sj+2,sj ) ; tj <= ti+si−1; tj+=sj )// point−l oopsfor ( i = MAX(1 , ti ) ; i <= MIN(N , ti+si −1); i++)for ( j = MAX(1 , tj ) ; i <= MIN( i , tj+sj −1); j++)S1 ( i , j ) ;Figure 4: Tiled loops from the example in Figure 1 from HiTLOG3 Tiling Dimension-by-Dimension for Perfetly Nested LoopsThis setion shows how to apply tiling dimension by dimension, i.e., from the outermost loop toinnermost loop. To obtain the tile loops from the original loop nest, we apply three simple rules tohange the loop bounds:
• For eah lower bound at depth k, we subtrat sk − 1 from it.
• If an outer iterator i appears in an upper bound expression and its oe�ient ci is positive,we add ci × (si − 1) to the upper bound
• If an outer iterator i appears in a lower bound and its oe�ient ci is negative, we subtrat

ci × (si − 1) from the lower boundIf a bound has multiple a�ne expressions, we treat eah one individually with the above rules. Theomplexity of generating tile-loops with post-proessing is O(m× (d + p)) when there are m a�neloop bounds, d is the depth of the loops and p is the number of program parameters. We all thisapproah to generating tile-loops as dimension-by-dimension D-tiling.3.1 ExampleConsider the doubly nested loop in Figure 1. The bounds on i are 1 ≤ i and i ≤ N . We apply threerules and get 2− si ≤ i and i ≤ N . Note that N is a program parameter and is not onsidered asan outer iterator. Similarly, we obtain 2− sj ≤ j and j ≤ i + si − 1. The �nal tile loops are shownin Figure 5. The main di�erene between this tile-loop and the one in Figure 4 is that there is no
sj in the lower bound on i. To obtain sj in the lower bound of i, one needs an expensive operation,5



either Fourier-Motzkin elimination or projetion. Our lower bound is tighter, but it still visits allthe neessary tile origins.// t i l e −l oopsfor ( ti = up(2−si ,si ) ; ti <= N ; ti+=si )for (tj = up(2−sj ,sj ) ; tj <= ti+si−1; tj+=sj )// point−l oopsFigure 5: Tile loops obtained from the example in Figure 1 using dimension-by-dimension tilingAnother di�erene is that our tile-loops visit fewer tile origins. In other words, the outset weimpliitly onstrut is smaller than the outset proposed by Lakshminarayanan et al. In this example,we do not have any empty tile origins. The tile-loops in Figure 4 san an empty tile origin. However,in general, our tile-loops may also visit empty tiles.3.2 Why It WorksThe main idea behind our tile-loop onstrution is that the tile spae for a projetion of a polyhedronis big enough to inlude all the full/partial tile origins. This makes it unneessary to use polyhedraloperations of exponential omplexity that have been used in the all the existing tehniques. Infat, our loop bound modi�ation rules themselves are the onstraint shifting operation. The maindi�erene is the set of input onstraints and the way to onstrut tile-loops.As we said earlier, our outset is not preise. We still need to prove that the set we onstrutis an outset, i.e., it ontains all the full/partial tile origins. This follows from the fat that theoutset we onstrut is a partiular instane of outsets presented by Lakshminarayanan et. al. [29℄.The di�erene is that we may have some more redundant onstraints. Note that there are manydistint outsets from a single set depending on its onstraint form. The redundant onstraints inthe original iteration spae may beome non-redundant onstraints in its outsets.3.3 DisussionTile-loops that are generated by D-tiling san no more number of tile origins than the previousmethod. However, they may visit more iterations at outer loops. Take the example in Figure 1 andmodify the lower bound of i to −N ≤ i. HiTLOG will generate the same tile-loops as it does fromthe original example beause the bound is redundant and hanging the lower bound of i does nota�et the shape of the iteration spae. However, the tile-loops generated by D-tiling will visit allthe multiples of si between −N − si + 1 and N . Sine the input loops are typially well engineered,the tile-loop overhead may be insigni�ant. Moreover, this aspet of D-tiling is quite useful whenwe apply tiling to imperfetly nested loops.4 Tiled Loop GenerationSo far, we have disussed only perfetly nested loops. This setion provides an algorithm forgenerating tiled loops from imperfetly nested loops. First, we illustrate a simple sheme for tilingand disuss the legality issue. Then, we provide a detailed algorithm for the simple sheme. Insubsetion 4.5, we formulate a preise ondition when the simple sheme works and when it doesnot. Finally, we explain how to modify the algorithm so that it generates tile-loops for more generalase. 6



4.1 Running ExampleConsider the loop nest in Figure 6 whih is not perfetly nested like our previous example.for ( i = 1 ; i <= N ; i++)for ( j = 1 ; j <= i ; j++)S1 ( i , j ) ;S2 ( i ) ;Figure 6: An imperfetly nested loop where the iteration spae of S1 is a triangular and that of S2is a line segment: the body of the loop is represented with the maro S1 and S2.There are two statements in the loops. The atual statements are not given to avoid the legalityissue for the moment. We assume that it is legal to tile.Now, we apply D-tiling to the doubly nested loop, and get a loop nest that is similar to the onein Figure 5 but has two statements. We peel out the last iteration of tj tile-loop and annotate itwith two statements S1 and S2. The modi�ed loops are shown in Figure 7.// t i l e −l oopsfor ( ti = up(2−si ,si ) ; ti <= N ; ti+=si )for (tj = up(2−sj ,sj ) ; tj <= ti+si−sj −1; tj+=sj )// point−l oops (S1 )
tj = down(ti+si−1,sj ) ;// point−l oops (S1 , S2)Figure 7: Tile loops obtained from the example in Figure 6 using D-tiling and peeling out the lastiteration of tj loopTo generate point-loops, we take the original ode and simply add tile bounds to the lower andupper bounds. For instane, the lower bound of i beomes 1 and ti, i.e., max(1, ti). The resultingpoint-loops will have all the statements in the original loops. We obtain the point-loops that haveonly S1 by simply not printing S2 from point-loops with all the statements. The �nal tiled ode isshown in Figure 8.// t i l e −l oopsfor ( ti = up(2−si ,si ) ; ti <= N ; ti+=si )for (tj = up(2−sj ,sj ) ; tj <= ti+si−sj −1; tj+=sj )// point−l oops (S1 )for ( i=max(1 , ti ) ; i<=min(N ,ti+si −1); i++)for ( j=max(1 , tj ) ; j<=min( i , tj+sj −1); j++)S1 ( i , j ) ;
tj = down(ti+si−1,sj ) ;// point−l oops (S1 , S2)for ( i=max(1 , ti ) ; i<=min(N ,ti+si −1); i++)for ( j=max(1 , tj ) ; j<=min( i , tj+sj −1); j++)S1 ( i , j ) ;S2 ( i ) ; Figure 8: Final tiled loops from the example in Figure 6One may ask whether it is legal to tile in suh a way. If S1(i, j) is y(i)+=L(i,j)*x(j) and

S2(i) is y(i)+=x(i) as in the produt of lower triangular matrix L with unit diagonal and a vetor
x, this tiling is legal and is what an expert programmer typially writes by hand. However, if thisomputation is a triangular linear system solver, this tiling is not always legal.7



In the remainder of this setion, we present the answer to the following three questions: (i)preisely what is suh tiling, (ii) how to know whether suh tiling is legal without human knowledgeabout the omputation, and (iii) how to handle the ase where suh tiling is not legal.4.2 Tile-Loop GenerationAs we saw in the example, tile loop generation onsists of two steps: (i) generating tile loop boundsusing D-tiling and (ii) restruturing the tile-loops suh that statements only appear in the innermostloops. Later, these statements in eah innermost loop will be replaed by point-loops that ontainsonly those statements.A detailed algorithm is given in Figure 9. The algorithm is for an imperfetly nested loop wherethere is one ommon outermost loop. When there are multiple outermost loops, we an apply thealgorithm to eah one individually. One may apply this algorithm to the original loops in Figure 6and easily obtain the tile-loop in Figure 7.One aspet of this tiling is that eah statement is tiled in exatly same way as eah statementis tiled separately exept the peeling of either �rst (or last) iteration or both. This is beause wedo not embed all the statements into a ommon spae. Statements do not have more ontext. Forexample, statement S2 in the example is assoiated to neither tj nor j.In the algorithm, statements are plaed into the immediately following loop if suh a loop exists,but di�erent loops are not ombined. One may want to hoose the preeding loop of the statements,if exists. This hoie an be made in either way, if this tiling is legal. We will address the legalityissue in subsetion 4.5.4.3 Point-Loop GenerationThe point-loop generation is straightforward. For eah bound in the original loop, we add anappropriate tile bound to it. For instane, we add ti at the lower bound lbi of i loop so that the newbound beomes max(ti, lbi). Similarly, we add ti + si − 1 at the upper bound ubi of i loop so thatthe bound beomes min(ti + si − 1, ubi). Note that the resulting tile-loops has statements only inthe innermost loops and the set of statements will be replaed by point-loops that ontains thosestatements. Depending on the set of statements, there may be a loop that ontains no statementsin the set. In suh ase, we do not print the loop itself.4.4 Legality of Tiled-Loop GenerationWe use a sequene of operations on a loop AST. Here we explain what the algorithm ahievesand provide an informal argument for one aspet of legality of tiling: the tiled loops must exeutethe exatly same set of instanes of eah statement in the original loops. When tile-loops areonstruted, statements may have been repliated beause of peeling tile-loop iteration. Also, thenumber of surrounding loops of statements is hanged in the peeled tile-loop iteration. If there is nopeeling of surrounding loops of a statement at depth k, the number of its surrounding loops in thetiled loops is 2k. However, if we reverse the loop peeling operations, eah statement have exatlysame tile-loops as those obtained by applying perfetly nested loop tiling to that statement alone.Also, The point-loops of eah statement is exatly same as that of perfetly nested tiling to thestatement. Consequently, this whole transformation is a bijetion from an instane of a statementin the original loops to an instane of a statement in the �nal tiled loops. In other words, tiling islegal in terms of operations that the program performs. The legality issue of the order of operationswill be disussed in the following subsetion. 8



Input: AST - imperfetly nested loops1: Apply D-tiling to AST /* To obtain tile loop bounds */2:3: for L : eah loop of AST from depth 1 to maximum depth do4: hasStatement← false5: StmtList← ∅6: for c : eah hild of L do7: if c is statement then8: add c to StmtList9: hasStatement← true10: else if c is loop then11: if hasStatement = true then12: peel the �rst iteration of c and add StmtList before the hildren of c13: StmtList← ∅14: hasStatement← false15: LastLoop← c16: end if17: end if18: end for19: if hasStatement = true then20: peel the last iteration of LastLoop and add StmtList after the hildren of
LastLoop /* If the �rst iteration of LastLoop is peeled out, then add a guardstatement to ensure that a tile is exeuted only one. */21: hasStatement← false22: end if23: end for Figure 9: An algorithm for generating tile-loops4.5 Legality ConditionNow we provide a legality ondition similar to that of full permutability of perfetly nested loops.Unlike the legality ondition for perfetly nested loops, the order of tiles annot be desribed justin the terms of lexiographi order of tiles, but requires the information about textual order of tiles(point-loops) as well.Sine the loops are not perfetly nested, we use a more general dependene abstration, ratherthan just a�ne funtions. So, a dependene for imperfetly nested loops is a funtion from a pair ofa statement and its iteration point to another pair. We denote the depth of ommon surroundingloops of two statements S and T as nST .A legality ondition on tiling is a ertain restrition on dependenes among tiles, not withinpoints in a tile. For example, full permutability of loops, a well known legality ondition forperfetly nested loops, imposes that dependenes among tiles are non-negative in all omponents.So, the tile-loops themselves are fully permutable. It is based on the fat that the relative orderamong points within a tile remains same. This property holds also for our imperfetly nested looptiling sheme.Before deriving a ondition, let us examine the legality issue of our running example. When
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S1(i, j) is y(i)+=L(i,j)*x(j) and S2(i) is y(i)+=x(i), there are two �ow dependenes:
(S1, (i, j)) → (S1, (i, j − 1))

(S2, (i)) → (S1, (i, i − 1))First, onsider the dependene from (i, j) of S1 to (i, j − 1) of S1. Let (t1i , t
1
j) and (t2i , t

2
j) be thetile origins of the tiles ontaining (i, j) and (i, j − 1) respetively. Then, t1i = t2i and t2j is either t1jor t1j − 1. After tiling, this dependene will be preserved. This is also lear from the fat that theloop without S2 is fully permutable.Now, onsider the seond dependene, (S2, (i)) → (S1, (i, i − 1)). Let (tt1i , tt

1
j) and (tt2i , tt

2
j ) bethe tile origins of (i) and (i, i − 1). Then, tt1i = tt2i beause the i loop is ommon. We have onlytwo possible ases: either the point-loop that ontains the statement S1 textually preedes that ofontaining statement S2, or two statements are in the same point-loop. So, the dependene will besatis�ed either by the textual order of point-loops or within a point-loop (tile).Theorem 4.1. An imperfetly nested loop tiling in the algorithm in Figure 9 is legal if for eahdata dependene d of (S, z) on (T, z′), the �rst nST omponents of z − z′ are non-negative and Ttextually preedes S.Proof of Theorem 4.1 Let z = (z1, . . . znST

, . . . , znS
) and z′ = (z′1, . . . z

′

nST
, . . . , z′nT

). Let t =
(t1, . . . tnST

, . . . , tnS
) and t′ = (t′1, . . . t

′

nST
, . . . , t′nT

) be the tile origin of z and z′, respetively. Weare given that z′k ≤ zk for 1 ≤ k ≤ nST . Then, t′k ≤ tk for all 1 ≤ k ≤ nST . By the sheme ofloop peeling on tile-loops or the order of loops, either of the following is true: any set of point-loopsontaining T textually preedes any set of point-loops ontaining S, or both S and T appear in thesame point-loops. The main idea is that the textual order of statements are preserved after tiling.This restrition on the diretion of dependene and textual order is quite strong. Imagine thatwe just tile the �rst i dimension of the running example. For a given tile, any omputation of S1an be done without any omputation of S2. Another view of this theorem is that tiling is appliedto the ommon loops and the remainder of the loops are tiled independently.However, some dependenes in real programs do not satisfy this ondition. Common examplesare triangular linear system solver and matrix fatorization suh as LU and Cholesky deomposition.Let us further investigate these omputations more arefully.Now, we assume that our running example is a triangular linear system solver. Then, S1(i, j)beomes y(i)+=L(i,j)*x(j) and S2(i) is y(i)/=L(i,i). There are three dependenes:
(S1, (i, j)) → (S1, (i, j − 1))

(S2, (i)) → (S1, (i, i − 1))

(S1, (i, j)) → (S2, (j))From the previous analysis, we know that the �rst two dependenes satisfy the ondition in theorem4.1. We only onsider the last dependene. Sine j < i, the �rst omponent of dependene is non-negative. However, the dependene diretion from S1 to S2 is the same as the textual order of twostatements. Let (ti, tj) be a tile origin of (S1, (i, j)). We want to �nd the iterations that produesthe values being read by tile (ti, tj). The image of the tile by dependene funtion is the preise setof the iterations that produes suh values. So, we get {i ∈ DS2 | tj ≤ i ≤ tj +sj−1}. On the otherhand, the iterations that are exeuted in the tile ti of S2 are {i ∈ DS2 | ti ≤ i ≤ ti + si− 1}. Figure10 shows geometri view of this dependene relation. The value of tj determines whih iterationsof S2 are being used. If these two sets are disjoint like two bottom tiles with origin at (6, 0) and10



(6, 3), the dependenes are satis�ed. However, they are not disjoint for some tiles. Speially, if wederease the size of sj to 1, the tiled ode generated by our method exeutes no iterations in (S2, 6),
(S2, 7) and (S2, 8) until all the tiles whose ti = 6. The intersetion is not empty, so this is not legalexeution order. So we annot tile the region where these two sets are not disjoint.

1 9

(9,8)

i

j

1

Iteration space
of S1

Iteration space
of S2

iFigure 10: Tiles of S1 and the iterations of S2 on whih they depend in the example of Figure 6In the analysis of this example, we took a tile of a produer statement and applied the dependenefuntion to it. We derived a preise ondition when our tiling method beomes illegal. The followingtheorem gives a preise reasoning for the general ases.Claim 4.2. For a dependene d of (S, z) on (T, z′) where the omponents up to nST are non-negativeand S textually preedes T , tiling is not always legal if Proj(image(t, f), nST ) ∩ Proj(t, nST ) 6= ∅where z′ = f(z) and t is a tile.Note that we an ompare the sets up to the ommon dimensions. This ondition just tells uswhen tiling is not legal, but it an also be used to guide tiled loop generation.We elaborate what this theorem tells us with the help of another example. Consider the loop forCholesky deomposition in Figure 11. There are three statements and six (value-based) dependenes.
(S1, (k)) → (S3, (k − 1, k, k))

(S2, (k, i) → (S3, (k − 1, i, k))

(S2, (k, i)) → (S1, (k))

(S3, (k, i, j)) → (S3, (k − 1, i, j))

(S3, (k, i, j)) → (S2, (k, i))

(S3, (k, i, j)) → (S2, (k, j))The last four dependenes satisfy the ondition in Theorem 4.1, but the �rst two dependenes donot satisfy that ondition. Now, let t be a tile of S1. The set of points in the tile an be desribedas {k | tk ≤ k ≤ tk +sk−1}. Now, take an image of tk by the dependene funtion (k → k−1, k, k).The points of S3 in the image of tile {k, i, j | tk − 1 ≤ k ≤ tk + sk − 2; tk ≤ i ≤ tk + sk − 1; tk ≤ j ≤
tk + sk − 1} are the value that t is depends on. Similarly, we do the same analysis for the seonddependene. The iterations of S3 on whih a tile t′ = {k, i | {tk ≤ k ≤ tk+sk−1; ti ≤ i ≤ ti+si−1} of
S3 depend are {k, i, j | tk−1 ≤ k ≤ tk+sk−2; tk ≤ i ≤ tk+sk−1; tk ≤ j ≤ tk+sk−1}. To make tilinglegal, we an impose that the intersetion of the projetion of those iteration with a tile is empty. For11



instane, to make tiling legal on the �rst dependene, the projetion {k | tk − 1 ≤ k ≤ tk + sk − 2}of the image is disjoint with the original tile {k | tk ≤ k ≤ tk + sk − 1}. Then, the onditionbeomes sk = 1. If this ondition is imposed, the seond dependene has the same property thatthe intersetion of projetions of�a tile and its image by dependene funtion�on the ommondimension is empty. We know that tiling of only k loops are legal. Another way to make tiling legalis to map all the points in the image into a single point-point, i.e., not to tile.for ( k = 1 ; i < N ; i++)A(k , k)= sq r t (A(k , k ) ) ; −− S1for ( i = k+1; j < N; j++)A( i , k)/=A(k , k ) ; −− S2for ( j = k+1; j <= i ; j++)A( i , j )−=A( i , k )∗A( j , k ) ; −− S3Figure 11: Cholesky deomposition4.6 Tiled Loop GenerationOur strategy is that we do not tile when tiling is not legal at ertain area or impose an onditionon the relation between tile sizes so that the generated ode using the algorithm in Figure 9. Forexample, we produe the tiled loops shown in Figure 12 for a triangular linear system solver. We donot tile as soon as tiling beome not legal. Note that the point-loops for S1 and S2 do not have tileupper bound and after the point loops tj is assigned to its upper bound. Using our simple tiled loopgeneration algorithm with this simple modi�ation, we an the ode that appears in the literaturethat address tiling imperfetly nested loops.With the knowledge of legality issue, one may be able to hoose a di�erent approah for tiled loopgeneration. Another way to e�iently use our tehnique is developing an enabling transformationso that the parameterized tiled generation is legal and simple, and the resulting ode is e�ieny.A detailed study for enabling transformation is beyond the sope of this paper.Our algorithm provide the separation of perfetly nested point-loops and imperfetly nestedpoint-loops. One may want to separate full tiles from empty/partial tiles. We an diretly use theinset [29℄, whih ontains only full tile origins, by onstruting it dimension by dimension. The insetof a point-loop is just the inset of its surrounding loops.// t i l e −l oopsfor ( ti = up(2−si ,si ) ; ti <= N ; ti+=si )for (tj = up(2−sj ,sj ) ; tj <= ti+si−1; tj+=sj )// t i l i n g i s l e g a li f ( ti+si−1<tj | | tj+sj−1<ti )// point−l oops (S1 )for ( i=max(1 , ti ) ; i<=min(N , ti+si −1); i++)for ( j=max(1 , tj ) ; j<=min( i , ti+si −1); j++)S1 ( i , j ) ;// t i l i n g i s not l e g a lelse// point−l oops (S1 , S2 )for ( i=max(1 , ti ) ; i<=min(N , ti+si −1); i++)for ( j=max(1 , tj ) ; j<=i ) ; j++)S1 ( i , j ) ;S2 ( i ) ;
tj = ti+si−1; // l a s t i t e r a t i o nFigure 12: Tiled loops for a triangular linear system solver.12



5 Implementation and Experimental ResultWe implemented our tiled loop generation algorithm as simple visitors written in Java on a loopAST(Abstrat Syntax Tree) generated by the SableCC ompiler generator [11℄. Our ode generatorgenerates parameterized tiled loops as well as �xed tiled loops. Also, tile-loops and point-loops anbe generated independently. The generator will be available as an open soure toolkit.5.1 Experimental SetupTo evaluate the e�ieny of our ode generator, we used four ommon benhmarks in Table 1. Weompared our method with a �xed size tiling using CLOOG [6℄. We used gmp-enabled CLOOG0.14.1. All the statements are embedded into a ommon high dimensional polyhedron and we useXue's formulation [34℄ to generate �xed tiled loops. We tiled all the loops.We ran all experiments for generated ode e�ieny evaluation on Intel Core 2 Duo running2.2 GHz with 2MB L2 Cahe and 1GB memory. We ompiled all the ode using g 4.1.2 with theoptimization level -O3. The timings were measured using gettimeofday(). For generation e�ienyevaluation, we use only default option of CLOOG and reports the generation time given by CLOOG.All the I/O times are ignored. To measure our ode generation time we use urrentTimeMillis()method in java.lang.System lass. Desription loopdepth/s-tate-mentsMatMul Matrix multipliation 3/2MultiTriSolver Multiple triangularlinear systems solver 3/2LUD LU deomposition of amatrix withoutpivoting 3/2Cholesky Choleskydeomposition 3/3Table 1: Benhmarks used for generation e�ieny and generated ode quality evaluation5.2 ResultsWe �rst pro�le the ode generation time of our ode generator and that of �xed embedding approahusing CLOOG. For �xed size tiling, we generated all the tile sizes that is a power of 2 and between2 and 512. We use data when tile sizes are 64. When tile sizes are small like 2 and 4, the generationis fast and the size of ode is small. After that, the generation time and ode sizes are almost same.The generated data is shown in Table 2. Even though all the benhmarks have a relatively smallnumber of statements and the maximum depth, �xed tile size tiling took 8.78 seonds for LUD.In terms of generation e�ieny, our ode generator is signi�antly faster. We also measured thenumber of lines. The CLOOG generated ode is highly optimized based on the range of programparameters. For a spei� range, the number of lines is a lot smaller than the reported number.However, it is still larger than the ode generated by our method.13



Benhmarks Parameterized Fixed +EmbeddingMatMul 0.009 se/ 24lines 0.33 se/ 41linesMultiTriSolver*0.025 se/ 25lines 0.67 se/ 224linesLUD 0.002 se/ 24lines 8.78 se/ 5583linesCholesky 0.004 se/ 47lines 2.38 se/ 1287linesTable 2: Comparison of generation time and the number of lines�parameterized vs �xed tiling�anembedding is given for �xed size tiling (*: the generated ode is modi�ed by hand)Figure 13-17 shows the exeution time and loop overhead of the four benhmark. The loopoverhead is measured by replaing the atual statements with a simple statement that inrementsa salar variable.Figure 13 shows the total exeution time of MatMul. We only measured the exeution time ofmatrix multipliation beause the strutures of loops from two di�erent approah are very similar.The program is written in a trivial triply nested loops, and the innermost loop aumulated thevalues. There is an initialization statement just before the innermost loop. The embedding funtionfor the initialization statement is (i, j → i, j, 0), i.e., it is aligned at k = 0. The e�ieny of ourgenerated ode is as good as that of �xed size tiling with embedding.Figure 14 and 15 shows the exeution time and the loop overhead of MultiTriSolver. Theoutermost loop i iterates over problem instanes of a single triangular system solver. We �rstgenerated the ode using our generator and then modi�ed it so that it does not tile when tilingis not legal. So, its tile-loops are perfetly nested and the tile-loops has a guard of testing thelegality. The embedding funtion is the same as the one given in [1℄. The division statement hasan embedding funtion (i, j, k → i, j, j). When tile sizes are very small, the exeution time of ourode is larger than that of �xed size tiling with embedding. When tiles size are more than 8, theybeome similar. In terms of loop overhead, our ode is better than the other.For Cholesky and LUDom, we generated parameterized tiled loops using our ode generator, andthen restrited the tile sizes (rather than introduing a guard) so that the generated ode is orret.In Cholesky, the loop overhead is omparable for most of tile sizes, but the total exeution time is40 perent higher than that of �xed size tiling with embedding. In LUDom, the loop overhead of�xed size tiling with embedding approah is high, and the exeution time has a similar pattern withMultiTriSolver.In summary, in terms of the e�ieny of tiled loop generation our method is better than �xedsize tiling with embedding. The generated ode from our tehniques is more ompat and readable.Our generated ode has more loop overhead when tile sizes are small and similar or less when tilesizes are big. In terms of total exeution time of benhmark, the e�ieny of our generated odeis omparable when tile size is not small. Although our ode is not as e�ient as that of �xedembedding tiling, we expet that the imperfetly nested tiling is used with bigger tile sizes.
14
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Figure 13: Total exeution time for MatMul on two 2000 × 2000 matries6 Related WorkAnourt and Irigoin [4℄ proposed a tehnique for generating loops sanning a single polyhedronusing Fourier-Motzkin elimination over inequality onstraints. Le Verge et al. [20, 21℄ proposed atehnique using the dual representation of polyhedra. The loop generation from a polyhedron isoften required after uni-modular transformations suh as loop permutation and skewing.Irigoin and Triolet [15℄ show that the tiled iteration spae after �xed size tiling an be formulatedas a polyhedron with higher dimension by adding d dimensions. For example, the 3×3 tiled iterationspae of our example is
{ti, tj, i, j | 3ti ≤ i ≤ 3ti + 2; 3tj ≤ j ≤ 3tj + 2

; i ≤ N ; 1 ≤ j ≤ i }Either of the above tools may be used (in fat, most of them an generate suh tiled ode).However, it is well known that sine the worst ase omplexity of Fourier-Motzkin elimination isdoubly exponential in the number of dimensions, this may be ine�ient espeially when multi-leveltiling is needed. Due to this problem, Goumas et al. [12℄ proposed a method where the tiled loopgeneration problem is deomposed into two sub-problems, one to san the tile origins, and the otherto san points within a tile, thus obtaining signi�ant redution of the worst ase omplexity.Another disadvantage of the above tiled iteration spae formulation is that it is no longer apolyhedron when tile sizes are not onstants. The onstraints beome bi-linear forms. For the asewhere tile sizes are symboli parameters, a simple ase alled orthogonal tiling � either retangularloops tiled with retangular tiles, or loops that an be easily transformed to this � was �rstonsidered. For the more general ase, the standard solution, as desribed in Xue's text [34℄ hasbeen to simply extend the iteration spae to a retangular one (i.e., to onsider its bounding box),apply the orthogonal tehnique with appropriate guards to avoid omputations outside the originaliteration spae. Jiménez et al. [16℄ develop ode generation tehniques for register tiling of non-retangular iteration spaes. They generate ode that traverses the bounding box of the tile iterationspae to enable parameterized tile sizes, but the fous of their paper is applying index-set splitting15
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Figure 14: Total exeution time for MultiTriSolver on 2000 variables and 3000 instanesto tiled ode to traverse parts of the tile spae that inlude only full tiles. Amarasinghe andLam [2, 3℄ implemented, in the SUIF tool set, a version of FME that an deal with a limited lassof symboli oe�ients (parameters and/or blok sizes), but the full details have not been madeavailable. Gröÿlinger et al. [13℄ proposed an extension to the polyhedral model, in whih theyallow arbitrary rational polynomials as oe�ients in the linear onstraints that de�ne the iterationspae. Their generiity omes at the prie of requiring omputationally expensive mahinery likequanti�er elimination in polynomials over the real algebra, to simplify onstraints that arise duringloop generations. Due to this their method does not sale with the number of dimensions and thenumber of non-linear parameters. Lakshminarayanan et al. [29℄ proposed an approah where tilespae is parameterized by tile sizes in addition to program parameters.However, these tehniques, deomposition and tile size parameterization, are restrited to per-fetly nested loops. When tile sizes are onstants, tiling has been extended to imperfetly nestedloops. Although some authors do not onsider arbitrary a�ne ontrol loops, they proposed limitedextension to imperfetly nested loops. Carr and Kennedy [9℄ proposed a tehnique that use an in-dex set splitting to make tiling legal before it is applied. Song and Li [31℄ proposed a tehnique forstenil programs onsisting of one outer time loop and a sequene of perfetly nested loops withinthe time loop.Several general approahes have been proposed for tiling imperfetly nested loops. Roughlyspeaking, the existing tehniques for arbitrary nested loops onsist of the following steps: (i) on-verting them to perfetly nested loops (or embedding eah iteration spae into a ommon spae),and (ii) applying all the knowledge developed for perfetly nested loops, suh as legality onditions,�nding linear transformations for enhaning data loality in the program, et., and (iii) ode gen-eration. Unfortunately, the ode generation step in these approahes is not as simple as that forperfetly nested loops, often requiring index set splitting to get e�ient �nal ode. This inher-ently omes from the �rst step, where guards or equalities are introdued to embed a statementsurrounded by fewer loops into a higher dimensional loop nest. Also, �nding an appropriate em-bedding funtion itself is not a trivial problem. Also, the previous work on imperfetly nested looptiling foused on how to �nd embedding funtions and tiled loop generation are left as a sanning16
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Figure 15: Loop overhead of MultiTriSolver on 2000 variables and 3000 instanesa union of polyhedron.Ahmed et al. [1℄ proposed a tehnique for general imperfetly nested loops based on embeddinginto a ommon Cartesian produt spae. Lim et al. [22℄ proposed a tehnique for independentthreads that have no dependene between them, and also use their algorithm for �nding largestoutermost fully permutable loops for embedding. Bondhugula et al. [7℄ proposed a approah basedon tiling hyperplanes that are linearly independent relaxed pipeline sheduling hyperplanes andthe set of tiling hyperplanes provides an a�ne transformation. The transformed loops are fullypermutable. Also, our fous is to generate parameterized tiled loops from imperfetly nested loops,rather than �nding a good embedding.7 ConlusionTiling imperfetly nested loops is an important loop transformation that enables us to parallelizeprograms and improve the overall performane of more general appliations. Several approahes havebeen proposed for �xed imperfetly nested loops. Although parameterized tiled loops where tile sizesare a symboli parameters are a quite useful, the existing methods only handle perfetly nested loops.We proposed D-tiling that redues the omplexity of the generation of �xed/parameterized/mixedtiled loops for perfetly nested loops to O(m×(d+p)). We presented the tehnique for parameterizedtiled loop generation problem based on the reasoning of legality onditions without making theoriginal loop nest into a perfetly nested one. We ompare the e�ieny of our ode generation andthe generated ode with �xed embedding approah. Experimental result shows that the e�ieny ofode generation is better than that of �xed embedding approah and the e�ieny of the generatedode is as good as that of �xed size tiling with embedding.Our ongoing work inludes a more detailed study on the relation between dependene presentedin imperfetly nested loops and tiled loop generation. Our aim is to generate a more e�ient odebased on the onstraints on tile sizes.
17
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Figure 16: Total exeution time for Cholesky on 3000 × 3000 matrixReferenes[1℄ Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfetly-nested loop nests.In Superomputing '00: Proeedings of the 2000 ACM/IEEE onferene on Superomputing(CDROM), page 31, Washington, DC, USA, 2000. IEEE Computer Soiety.[2℄ S. Amarasinghe. Parallelizing Compiler Tehniques Based on Linear Inequalities. PhD thesis,Stanford University, 1997.[3℄ S. P. Amarasinghe and M. S. Lam. Communiation optimization and ode generation for dis-tributed memory mahines. In PLDI '93: Proeedings of the ACM SIGPLAN 1993 onfereneon Programming language design and implementation, pages 126�138, New York, NY, USA,1993. ACM Press.[4℄ C. Anourt and F. Irigoin. Sanning polyhedra with DO loops. In Proeedings of the 3rd ACMSIGPLAN Symposium on Priniples and Pratie of Parallel Programming, pages 39�50, April1991.[5℄ R. Andonov and S. Rajopadhye. Optimal orthogonal tiling of 2-d iterations. Journal of Paralleland Distributed Computing, 45(2):159�165, September 1997.[6℄ C. Bastoul. Code generation in the polyhedral model is easier than you think. In PACT'13IEEE International Conferene on Parallel Arhiteture and Compilation Tehniques, pages7�16, Juan-les-Pins, September 2004.[7℄ Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A pratial automatipolyhedral parallelizer and loality optimizer. In PLDI '08: Proeedings of the 2008 ACMSIGPLAN onferene on Programming language design and implementation, pages 101�113,New York, NY, USA, 2008. ACM.[8℄ P. Boulet, A. Darte, T. Risset, and Y. Robert. (pen)-ultimate tiling? INTEGRATION, theVLSI journal, 17:33�51, August 1994. 18
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