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Abstract

Parameterized tiled loops—where tile sizes are run-time parameters rather than constants
fixed at code generation time—are quite useful for several cases. Such cases include empirical
search for optimal tile sizes in iterative compilers and highly optimized library generators like
ATLAS, and parallelizing compilers that enable the number of processors to be a run-time
parameter. However, automatically generating such code is a luxury, only available for perfectly
nested loops (single iteration space) where all the statements are surrounded by the same set of
loops. We present a framework for generating parameterized tiled loops from arbitrarily nested
affine control loops. In this framework, tiling is applied dimension-by-dimension, disproving
the decades-long belief that the tiled loop generation problem has exponential complexity. For
perfectly nested loops, our algorithm has O(m x (d + p)) where m is the number of bounds, d
the maximum nesting depth of loops, and p the number of program parameters. Based on this,
we are able to avoid the exponential complexity even for imperfectly nest loops. In the currently
accepted view, imperfectly nested loops are handled by first embedding all iteration spaces into
a common higher dimensional space and then applying the techniques for perfectly nested loops.
This requires two expensive steps: the embedding itself and index set splitting to obtain efficient
code. We take a completely different view by exploiting the textual structure of the original loop
nest and dimension-by-dimension tiling. Also, we formulate a legality condition for imperfectly
nested loop tiling. Our code generation efficiency is better than fixed size tiling with embedding.
The efficiency of generated code is comparable to those techniques. Our technique does not rely
on the expensive polyhedral operations and works on loops. Its scalability and simplicity make
our techniques attractive for production compilers.

1 Introduction

Partitioning computation is a program transformation that is becoming more important with the
advent of multi-core chips and the growing gap between the memory/network performance and
computational power. There are many reasons to believe that this gap will continue to widen. The
number of cores on a chip is expected to increase at an exponential rate leading to a few hundred
cores in the near future while continuing to fulfill promise on machine performance implicitly made
in Moore’s law. Large computation and high performance cannot be achieved without partitioning
computation for exploiting parallelism and efficient use of memory hierarchy. Due to the lack of
tools, this program restructuring must often be done by hand, but is not easy even for specialized
programmers on a particular architecture. Moreover, a highly tuned programs for a particular
architecture are not portable. In the next generation, tools to aid programmers to write high
performance implementations will be a key component in software development.

In many compute- and data-intensive programs a significant portion of the execution time is
consumed by loops operating on arrays. Optimizing these loops involves improving data locality



and parallelizing the computation performed by loops. Tiling |15, 19, 30, 34| has been used for
improving data locality and exposing/exploiting the parallelism. Its effectiveness has been proven
through almost three decades of research and high performance implementations of linear algebra
and stencil computations, such as ATLAS and PHiPAC. With the advent of the multi/many core
era, tiling becomes even more important.

The transformation partitions a program into a set of smaller pieces (called tiles) so that each of
those pieces either fit to a resource such as registers, cache or physical memory, or reduce communica-
tion cost between processors and memory hierarchy. Various aspects of tiling have been extensively
studied: how to pre-process loops to make tiling legal and enhance data locality [19, 34| (e.g. loop
skewing, loop permutation and other unimodular transformations); tile shape selection [8, 14, 28|
and tile size selection for memory hierarchy as well as parallelism [5, 10]; the generation of tiled
loop [12, 15, 34|. Tiled code generation is often an ignored step in the process. This is partly
because techniques for loop generation from a union of polyhedra is well studied [17, 25, 33, 27, 6]
and tiled iteration space is a polyhedron [15|. Recently, a decomposition approach, where tile-loops
and point-loops are generated separately, was proposed to reduce the complexity of the generation
process [12].

Parameterized tiled loops are tiled loop nests where tile sizes are not constants but given as run-
time parameters. There are many situations where such tiled loops are preferable: any empirical
search for optimal tile sizes such as iterative compilers and auto-tuners [26, 32]; run-time tile size
adaptation for varying resource due to resource sharing |23, 24|; and parallelizing compilers |3] that
allow the number of processors to be a run-time parameter. Recently, Lakshminarayanan et al. [29]
presented a theory and tools for parameterized tiled loop generation.

Unfortunately, most of the above techniques are restricted to perfectly nested loops. No tech-
nique for parameterized tiled loop generation from imperfectly nest loops has been proposed, to
date. Additionally, all the previous solutions for fixed size tiling suffer from an expensive generation
process and complex generated code. When tiling is used for parallelism, especially on distributed
memory machines, the resulting code has an considerable impact on subsequent processes like gen-
erating statements for communications.

In this paper, we present an algorithm and tool for generating parameterized tiled loops for
arbitrary loop nests. It is novel in the sense that it does not rely on embedding—the conventional
approach to extend techniques for perfectly nested loop tiling to those for imperfectly nested loops.
To the best of our knowledge, all previous approaches for imperfectly nested loops are based on
embedding. The contributions of this paper are:

e a formulation for generating tiled loops dimension by dimension that enables us to generate
parameterized /fixed tiled loops without exponential complexity; this is directly applicable to
perfectly nested loops as well.

e a legality condition for tiling imperfectly nested loops that does not rely on making them
perfectly nested;

e An algorithm for generating parameterized tiled loops from arbitrary nested affine control
loops without complex polyhedral operations such as projections and index set splitting.

e In addition, since the algorithm works on only a loop AST, it is ideal for production compilers.

e An evaluation of the efficiency of both the generation itself and the generated code on bench-
marks such as stencil and matrix factorization code. It shows that our algorithm is efficient
and the resulting code is comparable to those of fixed size tiled loops with embedding functions
given at compile time.



e QOur parameterized tiled loop generators will be made available as an open source toolkit.

The key insight to the dimension-by-dimension tiling is that the tile space for the projection of the
iteration space is large enough to contain the projection of all the non-empty tile origins and the
projection of the iteration space is already present in the loop bounds. So, all the bounds of the tile
loops can be directly obtained from the bounds of the original loops without expensive procedures
like Fourier-Motzkin elimination.

The main intuition behind our parameterized tiled loop generation from imperfectly nested
loops is that (i) a legality condition for tiling can be formulated without embedding all the iteration
spaces into a common space—equivalently making the loops into perfectly nested loops and (i) the
structure of tile loops can be derived from that of the original loops.

The rest of the paper is organized in the following way. Section 2 provides a background and
notation for the paper. Section 3 explains a brief but powerful formulation for the tile space leading
to an efficient tiled loop generation algorithm. Section 4 gives our main intuition on how to generate
parameterized tiled loops using an example, provides the generation algorithm, and formulates a
legality condition for our tiling approach. Section 5 provides an experimental result on comparison
with fixed embedding tiled loop generation method.In Section 6, we conclude our discussion.

2 Background: Tiling Perfectly Nested Loops

The tiling transformation takes a d-depth (perfectly) nested loop and produces a loop nest of depth
(at most) 2d. The main idea is the decomposition of the iteration space into a collection of smaller
sets, called tiles. Each tile becomes an atomic block of computation, in other words, the order of
computation is changed.

When loop bounds are affine functions of program parameters and outer loop indices, the itera-
tion space can be expressed as a polyhedron. Consider the loop in Figure 1. Its iteration space can
be written as

{i,j|i<N;1<j<i}

Note that there are only three inequalities that define the iteration space because 1 < 7 is redundant.
A geometric representation of this iteration space is shown in Figure 2.

;1 <= Nji+t)
i <= isith)
’

Figure 1: Triangular iteration space: the body of the loop is represented with the macro S1 for
brevity

In general, we can express an iteration space of perfectly nested loops as
Piter = {2|Q52 (CT"{' Bm}

where 7' is the iteration vector of size d, () is a m X d matrix, ¢’ is a constant vector of size m, p is
a vector of size n containing symbolic parameters for the iteration space, and B is a m X n matrix.
Whenever there is no ambiguity we use z in the place of Z. We denote the k-th component of z
as zr. We also denote tile size vector as s.
The figure also shows a 3 x 3 rectangular tiling of this iteration space. Depending on the
intersection of a tile and the iteration space, there are three kinds of tiles—empty tiles whose



{i,j|1<j:j<ii<N}
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Figure 2: An iteration space when N =9 and its 3 x 3 tiling

intersection with the iteration space is empty, full tiles whose intersection is the tile itself, and
partial tiles whose intersection is neither empty nor the tile itself. The lexicographically earliest
point of each tile is called the tile origin.

The essence of tiled loop generation is constructing two sets of loops—tile-loops that enumerate
all the tiles (all the tile origins) and point-loops that enumerate all the points in a tile. When
tile-loops and point-loops are separately generated, point-loop generation is trivial, just adding
appropriate tile-bounds at the original loop bounds. Generation of tile-loops is not trivial because
they must enumerate not only all the full tiles but also all partial tiles. Lakshminarayanan et al. [29]
defined a set an outset if it contains all the partial/full tile origins. An outset is precise if it does
not contain any empty tile origins.

They also proposed an outset that is not precise but a polyhedron. Their construction method
is based on shifting constraints. Formally, their outset is written as

{2|Qz = (¢ + Bp) - Q"s'}

where s’ is s — 1 and
+_ ] Qij, ifQy =0
Y 0, if Qij <0

The term —@QTs’ can be interpreted as a shift of a hyperplane. The outset of the iteration space
for the example in Figure 1 is shown in Figure 3. When a hyperplane is a lower bound of the k-th
dimension, it will be shifted by s;. So, 1 < j becomes 1 — (s; — 1) < t;.

Then, an existing tool such as CLOOG is used for generating all the points in the outset, and
then the generated loops are further processed—lower bounds are adjusted and strides are set to
tile sizes—to visit only tile origins. Figure 4 shows the generated code using their open source tool
HiTLOG [18]. The macro up(t,s) in lower bound gives an integer p such that p = [t/s]| x s. It
adjusts the lower bounds so that the loops visit tile origins correctly.

Later, we will use their shifting operation to obtain loop bounds and compare this code with
our generated code when input programs are perfectly nested.
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Figure 3: An outset of triangular iteration space when N =9 (left) and its 3 x 3 tiling

2-s;<]

// tile—loops
for (t; = up(—s—s;+3,s:); t; <= N; ti+=s;)
for (t; = up(—s;+2,s;); tj <= ti+s;—1; tj+=s;)
// point—loops
for (1 = I\AAX(I,ti); i <= MIN(N,ti+Si—1); 1++)
for (j = MAX(1,t;); i <= MIN(i,tj+s;—1); j++)
SL(i,j);

Figure 4: Tiled loops from the example in Figure 1 from HiTLOG

3 Tiling Dimension-by-Dimension for Perfectly Nested Loops

This section shows how to apply tiling dimension by dimension, i.e., from the outermost loop to
innermost loop. To obtain the tile loops from the original loop nest, we apply three simple rules to
change the loop bounds:

e For each lower bound at depth k, we subtract s — 1 from it.

e If an outer iterator ¢ appears in an upper bound expression and its coefficient ¢; is positive,
we add ¢; x (s; — 1) to the upper bound

e If an outer iterator ¢ appears in a lower bound and its coefficient ¢; is negative, we subtract
¢i X (s; — 1) from the lower bound

If a bound has multiple affine expressions, we treat each one individually with the above rules. The
complexity of generating tile-loops with post-processing is O(m X (d + p)) when there are m affine
loop bounds, d is the depth of the loops and p is the number of program parameters. We call this
approach to generating tile-loops as dimension-by-dimension D-tiling.

3.1 Example

Counsider the doubly nested loop in Figure 1. The bounds on ¢ are 1 < ¢ and ¢ < N. We apply three
rules and get 2 —s; <7 and ¢ < N. Note that N is a program parameter and is not considered as
an outer iterator. Similarly, we obtain 2 —s; < j and j < i+ s; — 1. The final tile loops are shown
in Figure 5. The main difference between this tile-loop and the one in Figure 4 is that there is no
s;j in the lower bound on i. To obtain s; in the lower bound of 4, one needs an expensive operation,



either Fourier-Motzkin elimination or projection. Our lower bound is tighter, but it still visits all
the necessary tile origins.

// tile—loops
for (t; = up(2—s;,s;); t; <= N; ti+=s;)
for (t; = up(2—s;,s;); tj <= ti+s;—1; tj+=s;)
// point—loops

Figure 5: Tile loops obtained from the example in Figure 1 using dimension-by-dimension tiling

Another difference is that our tile-loops visit fewer tile origins. In other words, the outset we
implicitly construct is smaller than the outset proposed by Lakshminarayanan et al. In this example,
we do not have any empty tile origins. The tile-loops in Figure 4 scan an empty tile origin. However,
in general, our tile-loops may also visit empty tiles.

3.2 Why It Works

The main idea behind our tile-loop construction is that the tile space for a projection of a polyhedron
is big enough to include all the full/partial tile origins. This makes it unnecessary to use polyhedral
operations of exponential complexity that have been used in the all the existing techniques. In
fact, our loop bound modification rules themselves are the constraint shifting operation. The main
difference is the set of input constraints and the way to construct tile-loops.

As we said earlier, our outset is not precise. We still need to prove that the set we construct
is an outset, i.e., it contains all the full/partial tile origins. This follows from the fact that the
outset we construct is a particular instance of outsets presented by Lakshminarayanan et. al. [29].
The difference is that we may have some more redundant constraints. Note that there are many
distinct outsets from a single set depending on its constraint form. The redundant constraints in
the original iteration space may become non-redundant constraints in its outsets.

3.3 Discussion

Tile-loops that are generated by D-tiling scan no more number of tile origins than the previous
method. However, they may visit more iterations at outer loops. Take the example in Figure 1 and
modify the lower bound of i to —N < ¢. HITLOG will generate the same tile-loops as it does from
the original example because the bound is redundant and changing the lower bound of ¢ does not
affect the shape of the iteration space. However, the tile-loops generated by D-tiling will visit all
the multiples of s; between —N — s; + 1 and V. Since the input loops are typically well engineered,
the tile-loop overhead may be insignificant. Moreover, this aspect of D-tiling is quite useful when
we apply tiling to imperfectly nested loops.

4 Tiled Loop Generation

So far, we have discussed only perfectly nested loops. This section provides an algorithm for
generating tiled loops from imperfectly nested loops. First, we illustrate a simple scheme for tiling
and discuss the legality issue. Then, we provide a detailed algorithm for the simple scheme. In
subsection 4.5, we formulate a precise condition when the simple scheme works and when it does
not. Finally, we explain how to modify the algorithm so that it generates tile-loops for more general
case.



4.1 Running Example

Counsider the loop nest in Figure 6 which is not perfectly nested like our previous example.

for (i = 1; i <= Nj;i++)
for (j — 1; j <= i;j++)
S1(i,j)s
S2(1);

Figure 6: An imperfectly nested loop where the iteration space of S1 is a triangular and that of 52
is a line segment: the body of the loop is represented with the macro S1 and S2.

There are two statements in the loops. The actual statements are not given to avoid the legality
issue for the moment. We assume that it is legal to tile.

Now, we apply D-tiling to the doubly nested loop, and get a loop nest that is similar to the one
in Figure 5 but has two statements. We peel out the last iteration of ¢; tile-loop and annotate it
with two statements S1 and S2. The modified loops are shown in Figure 7.

// tile—loops
for (t; = up(2—s;,s:); ti <= N; ti+=s;)
for (t; = up(2—s;,s;); tj <= ti+si—s; —1; tj+=s;)
// point—loops (S1)
t; = down(ti+s;—1,s5);
// point—loops (S1,S52)

Figure 7: Tile loops obtained from the example in Figure 6 using D-tiling and peeling out the last
iteration of ¢; loop

To generate point-loops, we take the original code and simply add tile bounds to the lower and
upper bounds. For instance, the lower bound of i becomes 1 and ¢;, i.e., max(1,¢;). The resulting
point-loops will have all the statements in the original loops. We obtain the point-loops that have
only S1 by simply not printing S2 from point-loops with all the statements. The final tiled code is
shown in Figure 8.

// tile—loops
for (t; = up(2—s;,s:); ti <= N; ti+=s;)
for (t; = up(2—s;,s;); tj <= ti+si—s; —1; tj+=s;)
// point—loops (S1)
for (i=max(1,t;);i<=min(N ,ti+s; —1);i++)
for (j=max(1,t;);j<=min(i,t;+s; —1);j++)
S1(i,i);
t; = down(ti+s;—1,55);
// point—loops (S1,52)
for (i=max(1l,t;);i<=min(N ,ti+s; —1);i++)
for (j=max(1l,t;);j<=min(i,tj+s; —1);j++)
S1(i,i);
52(1);

Figure 8: Final tiled loops from the example in Figure 6

One may ask whether it is legal to tile in such a way. If S1(4,j) is y(i)+=L(i,j)*x(j) and
S2(i) is y(1)+=x(1) as in the product of lower triangular matrix L with unit diagonal and a vector
x, this tiling is legal and is what an expert programmer typically writes by hand. However, if this
computation is a triangular linear system solver, this tiling is not always legal.



In the remainder of this section, we present the answer to the following three questions: (i)
precisely what is such tiling, (i7) how to know whether such tiling is legal without human knowledge
about the computation, and (ii7) how to handle the case where such tiling is not legal.

4.2 Tile-Loop Generation

As we saw in the example, tile loop generation consists of two steps: (i) generating tile loop bounds
using D-tiling and (i%) restructuring the tile-loops such that statements only appear in the innermost
loops. Later, these statements in each innermost loop will be replaced by point-loops that contains
only those statements.

A detailed algorithm is given in Figure 9. The algorithm is for an imperfectly nested loop where
there is one common outermost loop. When there are multiple outermost loops, we can apply the
algorithm to each one individually. One may apply this algorithm to the original loops in Figure 6
and easily obtain the tile-loop in Figure 7.

One aspect of this tiling is that each statement is tiled in exactly same way as each statement
is tiled separately except the peeling of either first (or last) iteration or both. This is because we
do not embed all the statements into a common space. Statements do not have more context. For
example, statement S2 in the example is associated to neither ¢; nor j.

In the algorithm, statements are placed into the immediately following loop if such a loop exists,
but different loops are not combined. One may want to choose the preceding loop of the statements,
if exists. This choice can be made in either way, if this tiling is legal. We will address the legality
issue in subsection 4.5.

4.3 Point-Loop Generation

The point-loop generation is straightforward. For each bound in the original loop, we add an
appropriate tile bound to it. For instance, we add t; at the lower bound Ib; of 7 loop so that the new
bound becomes max(t;,lb;). Similarly, we add ¢; + s; — 1 at the upper bound ub; of i loop so that
the bound becomes min(t; + s; — 1, ub;). Note that the resulting tile-loops has statements only in
the innermost loops and the set of statements will be replaced by point-loops that contains those
statements. Depending on the set of statements, there may be a loop that contains no statements
in the set. In such case, we do not print the loop itself.

4.4 Legality of Tiled-Loop Generation

We use a sequence of operations on a loop AST. Here we explain what the algorithm achieves
and provide an informal argument for one aspect of legality of tiling: the tiled loops must execute
the exactly same set of instances of each statement in the original loops. When tile-loops are
constructed, statements may have been replicated because of peeling tile-loop iteration. Also, the
number of surrounding loops of statements is changed in the peeled tile-loop iteration. If there is no
peeling of surrounding loops of a statement at depth k, the number of its surrounding loops in the
tiled loops is 2k. However, if we reverse the loop peeling operations, each statement have exactly
same tile-loops as those obtained by applying perfectly nested loop tiling to that statement alone.
Also, The point-loops of each statement is exactly same as that of perfectly nested tiling to the
statement. Consequently, this whole transformation is a bijection from an instance of a statement
in the original loops to an instance of a statement in the final tiled loops. In other words, tiling is
legal in terms of operations that the program performs. The legality issue of the order of operations
will be discussed in the following subsection.



Input: AST - imperfectly nested loops
1: Apply D-tiling to AST /* To obtain tile loop bounds */

2:

3: for L : each loop of AST from depth 1 to maximum depth do
4:  hasStatement «— false

5. StmtList — ()

6: for c : each child of L do

7 if c is statement then

8: add c to StmtList

9: hasStatement «— true

10: else if c is loop then

11: if hasStatement = true then

12: peel the first iteration of ¢ and add StmtList before the children of ¢
13: StmtList «— ()

14: hasStatement «— false

15: LastLoop « c

16: end if

17 end if

18: end for

19:  if hasStatement = true then

20: peel the last iteration of LastLoop and add StmitList after the children of
LastLoop /* If the first iteration of LastLoop is peeled out, then add a guard
statement to ensure that a tile is executed only once. */

21: hasStatement «— false
22: end if
23: end for

Figure 9: An algorithm for generating tile-loops

4.5 Legality Condition

Now we provide a legality condition similar to that of full permutability of perfectly nested loops.
Unlike the legality condition for perfectly nested loops, the order of tiles cannot be described just
in the terms of lexicographic order of tiles, but requires the information about textual order of tiles
(point-loops) as well.

Since the loops are not perfectly nested, we use a more general dependence abstraction, rather
than just affine functions. So, a dependence for imperfectly nested loops is a function from a pair of
a statement and its iteration point to another pair. We denote the depth of common surrounding
loops of two statements S and T as ngp.

A legality condition on tiling is a certain restriction on dependences among tiles, not within
points in a tile. For example, full permutability of loops, a well known legality condition for
perfectly nested loops, imposes that dependences among tiles are non-negative in all components.
So, the tile-loops themselves are fully permutable. It is based on the fact that the relative order
among points within a tile remains same. This property holds also for our imperfectly nested loop
tiling scheme.

Before deriving a condition, let us examine the legality issue of our running example. When



S1(i,7) is y(2)+=L(i,j)*x(j) and S2(i) is y(1)+=x(i), there are two flow dependences:

(51,(5,5)) — (51,065 — 1))
(S2,(7)) — (S1,(i,i—1))
First, consider the dependence from (i,7) of S1 to (7,7 — 1) of S1. Let (til,t}) and (t?,t?) be the
tile origins of the tiles containing (4,7) and (i,j — 1) respectively. Then, t} = ? and t? is either t;-
or tjl- — 1. After tiling, this dependence will be preserved. This is also clear from the fact that the
loop without 52 is fully permutable.

Now, consider the second dependence, (52, (i)) — (S1, (i, — 1)). Let (tt},tt;) and (tt%,tt;) be
the tile origins of (i) and (i,i — 1). Then, tt} = tt? because the i loop is common. We have only
two possible cases: either the point-loop that contains the statement S1 textually precedes that of
containing statement S2, or two statements are in the same point-loop. So, the dependence will be
satisfied either by the textual order of point-loops or within a point-loop (tile).

Theorem 4.1. An imperfectly nested loop tiling in the algorithm in Figure 9 is legal if for each
data dependence d of (S,z) on (T,2'), the first ngr components of z — 2’ are non-negative and T
textually precedes S.

Proof of Theorem 4.1 Let 2z = (21,... 2Zngy, -+ 2ng) and 2" = (21,... 2,05 2,,). Let t =
(t1, - tngps -+ stng) and t' = (¢4, ..., ... 1, ) be the tile origin of z and 2/, respectively. We

are given that zj < zj for 1 < k < ngp. Then, t} < ¢ for all 1 < k < ngp. By the scheme of
loop peeling on tile-loops or the order of loops, either of the following is true: any set of point-loops
containing 7T textually precedes any set of point-loops containing S, or both S and T appear in the
same point-loops. The main idea is that the textual order of statements are preserved after tiling.

This restriction on the direction of dependence and textual order is quite strong. Imagine that
we just tile the first ¢ dimension of the running example. For a given tile, any computation of S1
can be done without any computation of S2. Another view of this theorem is that tiling is applied
to the common loops and the remainder of the loops are tiled independently.

However, some dependences in real programs do not satisfy this condition. Common examples
are triangular linear system solver and matrix factorization such as LU and Cholesky decomposition.
Let us further investigate these computations more carefully.

Now, we assume that our running example is a triangular linear system solver. Then, S1(i, j)
becomes y(1)+=L(1,j)*x(j) and S2(7) is y(1) /=L(i,1). There are three dependences:

(S1,(,9)) — (51,055 - 1))
(52,(1)) — (S1,(,i — 1))

From the previous analysis, we know that the first two dependences satisfy the condition in theorem
4.1. We only consider the last dependence. Since j < ¢, the first component of dependence is non-
negative. However, the dependence direction from S1 to S2 is the same as the textual order of two
statements. Let (¢;,¢;) be a tile origin of (51, (4,7)). We want to find the iterations that produces
the values being read by tile (¢;,t;). The image of the tile by dependence function is the precise set
of the iterations that produces such values. So, we get {i € Dgs | t; <4 < tj+s;—1}. On the other
hand, the iterations that are executed in the tile ¢; of S2 are {i € Dgo | t; <i <t;+s; — 1}. Figure
10 shows geometric view of this dependence relation. The value of ¢; determines which iterations
of S2 are being used. If these two sets are disjoint like two bottom tiles with origin at (6,0) and

10



(6,3), the dependences are satisfied. However, they are not disjoint for some tiles. Specially, if we
decrease the size of s; to 1, the tiled code generated by our method executes no iterations in (52, 6),
(52,7) and (52, 8) until all the tiles whose ¢; = 6. The intersection is not empty, so this is not legal
execution order. So we cannot tile the region where these two sets are not disjoint.

i

Iteration space
of S1

Iteration space
of S2

Figure 10: Tiles of S1 and the iterations of S2 on which they depend in the example of Figure 6

In the analysis of this example, we took a tile of a producer statement and applied the dependence
function to it. We derived a precise condition when our tiling method becomes illegal. The following
theorem gives a precise reasoning for the general cases.

Claim 4.2. For a dependence d of (S, z) on (T, 2’) where the components up to ngr are non-negative
and S textually precedes T, tiling is not always legal if Proj(image(t, f),nsr) N Proj(t,nsr) # 0
where 2/ = f(z) and t is a tile.

Note that we can compare the sets up to the common dimensions. This condition just tells us
when tiling is not legal, but it can also be used to guide tiled loop generation.

We elaborate what this theorem tells us with the help of another example. Consider the loop for
Cholesky decomposition in Figure 11. There are three statements and six (value-based) dependences.

(S1,(k)) — (S3,(k—1,k,k))
(52, (k,i) — (53,(k—1,i,k))
(52, (k,i)) — (5L, (k)
(53, (k,4,5)) — (93, (k= 1,4,5))
(53, (k,i,5))  — (52,(k,1))
(53, (k,i,5)) — (52,(k, 7))

The last four dependences satisfy the condition in Theorem 4.1, but the first two dependences do
not satisfy that condition. Now, let ¢ be a tile of S1. The set of points in the tile can be described
as {k |ty <k <tp+s,—1}. Now, take an image of t; by the dependence function (k — k—1,k, k).
The points of S3 in the image of tile {k, 4,7 | tx —1 <k <tp+sp —2;tpx <i <tp+sp— Lt <j<
ti + sk — 1} are the value that ¢ is depends on. Similarly, we do the same analysis for the second
dependence. The iterations of S3 on which a tile t’ = {k, i | {tx < k < tp+sp—1;t; <i < t;+s;—1} of
S3depend are {k,i,j | tx—1 < k < tp+sp—2;tx < i < tp+sp—1;t < j < tp+sp—1}. Tomake tiling
legal, we can impose that the intersection of the projection of those iteration with a tile is empty. For
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instance, to make tiling legal on the first dependence, the projection {k | tx, — 1 < k <t + s — 2}
of the image is disjoint with the original tile {k | tx < k < tp + s — 1}. Then, the condition
becomes s; = 1. If this condition is imposed, the second dependence has the same property that
the intersection of projections of—a tile and its image by dependence function—on the common
dimension is empty. We know that tiling of only &k loops are legal. Another way to make tiling legal
is to map all the points in the image into a single point-point, i.e., not to tile.

for (k = 1; i < Nj;i++)
A(k,k)=sqrt (A(k,k)); — S1
for (i = k+1; j < N;j++)
A(i,k)/=A(k,k); — S2
for (j = k+1; j <= i;j++)
A(i,j)—=A(i,k)*A(j,k); — S3

Figure 11: Cholesky decomposition

4.6 Tiled Loop Generation

Our strategy is that we do not tile when tiling is not legal at certain area or impose an condition
on the relation between tile sizes so that the generated code using the algorithm in Figure 9. For
example, we produce the tiled loops shown in Figure 12 for a triangular linear system solver. We do
not tile as soon as tiling become not legal. Note that the point-loops for S1 and S2 do not have tile
upper bound and after the point loops ¢; is assigned to its upper bound. Using our simple tiled loop
generation algorithm with this simple modification, we can the code that appears in the literature
that address tiling imperfectly nested loops.

With the knowledge of legality issue, one may be able to choose a different approach for tiled loop
generation. Another way to efficiently use our technique is developing an enabling transformation
so that the parameterized tiled generation is legal and simple, and the resulting code is efficiency.
A detailed study for enabling transformation is beyond the scope of this paper.

Our algorithm provide the separation of perfectly nested point-loops and imperfectly nested
point-loops. One may want to separate full tiles from empty/partial tiles. We can directly use the
inset [29], which contains only full tile origins, by constructing it dimension by dimension. The inset
of a point-loop is just the inset of its surrounding loops.

// tile—loops
for (t; = up(2—s;,s:); ti <= N; ti+=s;)
for (t; = up(2-s;,s;); tj <= titsi—1; tjt+=s;)
// tiling is legal
if ( tits;—1<t; H tits;—1<t; )
// point—loops (S1)
for (i=max(1,t;);i<=min(N ,ti+s; —1);i++)
for (j=max(1l,t;);j<=min(i,ti+s;—1);j++)
S1(i,ji);
// tiling is not legal
else
// point—loops (S1,52)
for (i=max(1,t;);i<=min(N ,ti+s; —1);i++)
for (j=max(l,t;);j<=i);j++)
S1(i,j);
S2(i);
t; = ti+s;i—1; // last iteration

Figure 12: Tiled loops for a triangular linear system solver.
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5 Implementation and Experimental Result

We implemented our tiled loop generation algorithm as simple visitors written in Java on a loop
AST(Abstract Syntax Tree) generated by the SableCC compiler generator [11|. Our code generator
generates parameterized tiled loops as well as fixed tiled loops. Also, tile-loops and point-loops can
be generated independently. The generator will be available as an open source toolkit.

5.1 Experimental Setup

To evaluate the efficiency of our code generator, we used four common benchmarks in Table 1. We
compared our method with a fixed size tiling using CLOOG [6]. We used gmp-enabled CLOOG
0.14.1. All the statements are embedded into a common high dimensional polyhedron and we use
Xue’s formulation [34] to generate fixed tiled loops. We tiled all the loops.

We ran all experiments for generated code efficiency evaluation on Intel Core 2 Duo running
2.2 GHz with 2MB L2 Cache and 1GB memory. We compiled all the code using gcc 4.1.2 with the
optimization level -O3. The timings were measured using gettimeofday(). For generation efficiency
evaluation, we use only default option of CLOOG and reports the generation time given by CLOOG.
All the I/O times are ignored. To measure our code generation time we use currentTimeMillis()
method in java.lang.System class.

Description loop
depth/s-
tate-
ments
MatMul Matrix multiplication 3/2
MultiTriSolver Multiple triangular 3/2

linear systems solver
LUD LU decomposition of a 3/2
matrix without

pivoting
Cholesky Cholesky 3/3
decomposition

Table 1: Benchmarks used for generation efficiency and generated code quality evaluation

5.2 Results

We first profile the code generation time of our code generator and that of fixed embedding approach
using CLOOG. For fixed size tiling, we generated all the tile sizes that is a power of 2 and between
2 and 512. We use data when tile sizes are 64. When tile sizes are small like 2 and 4, the generation
is fast and the size of code is small. After that, the generation time and code sizes are almost same.
The generated data is shown in Table 2. Even though all the benchmarks have a relatively small
number of statements and the maximum depth, fixed tile size tiling took 8.78 seconds for LUD.
In terms of generation efficiency, our code generator is significantly faster. We also measured the
number of lines. The CLOOG generated code is highly optimized based on the range of program
parameters. For a specific range, the number of lines is a lot smaller than the reported number.
However, it is still larger than the code generated by our method.
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Benchmarks| Parameterized Fixed +
Embedding
MatMul 0.009 sec/ 24 0.33 sec/ 41
lines lines
MultiTriSolver?.025 sec/ 25 0.67 sec/ 224
lines lines
LUD 0.002 sec/ 24 | 8.78 sec/ 5583
lines lines
Cholesky 0.004 sec/ 47 | 2.38 sec/ 1287
lines lines

Table 2: Comparison of generation time and the number of lines—parameterized vs fixed tiling—an
embedding is given for fixed size tiling (*: the generated code is modified by hand)

Figure 13-17 shows the execution time and loop overhead of the four benchmark. The loop
overhead is measured by replacing the actual statements with a simple statement that increments
a scalar variable.

Figure 13 shows the total execution time of MatMul. We only measured the execution time of
matrix multiplication because the structures of loops from two different approach are very similar.
The program is written in a trivial triply nested loops, and the innermost loop accumulated the
values. There is an initialization statement just before the innermost loop. The embedding function
for the initialization statement is (i,j — ¢,7,0), i.e., it is aligned at k = 0. The efficiency of our
generated code is as good as that of fixed size tiling with embedding.

Figure 14 and 15 shows the execution time and the loop overhead of MultiTriSolver. The
outermost loop ¢ iterates over problem instances of a single triangular system solver. We first
generated the code using our generator and then modified it so that it does not tile when tiling
is not legal. So, its tile-loops are perfectly nested and the tile-loops has a guard of testing the
legality. The embedding function is the same as the one given in [1]. The division statement has
an embedding function (i,j,k — 4,7,7). When tile sizes are very small, the execution time of our
code is larger than that of fixed size tiling with embedding. When tiles size are more than 8, they
become similar. In terms of loop overhead, our code is better than the other.

For Cholesky and LUDom, we generated parameterized tiled loops using our code generator, and
then restricted the tile sizes (rather than introducing a guard) so that the generated code is correct.
In Cholesky, the loop overhead is comparable for most of tile sizes, but the total execution time is
40 percent higher than that of fixed size tiling with embedding. In LUDom, the loop overhead of
fixed size tiling with embedding approach is high, and the execution time has a similar pattern with
MultiTriSolver.

In summary, in terms of the efficiency of tiled loop generation our method is better than fixed
size tiling with embedding. The generated code from our techniques is more compact and readable.
Our generated code has more loop overhead when tile sizes are small and similar or less when tile
sizes are big. In terms of total execution time of benchmark, the efficiency of our generated code
is comparable when tile size is not small. Although our code is not as efficient as that of fixed
embedding tiling, we expect that the imperfectly nested tiling is used with bigger tile sizes.
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Comparision of two different tiling approach on Matrix product
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Figure 13: Total execution time for MatMul on two 2000 x 2000 matrices

6 Related Work

Ancourt and Irigoin [4] proposed a technique for generating loops scanning a single polyhedron
using Fourier-Motzkin elimination over inequality constraints. Le Verge et al. [20, 21| proposed a
technique using the dual representation of polyhedra. The loop generation from a polyhedron is
often required after uni-modular transformations such as loop permutation and skewing.

Irigoin and Triolet [15] show that the tiled iteration space after fixed size tiling can be formulated
as a polyhedron with higher dimension by adding d dimensions. For example, the 3 x 3 tiled iteration
space of our example is

{tity,,5 | 3ti <i<3t;+2;3t; < j < 3tj+2
i < N;1<j<i }

Either of the above tools may be used (in fact, most of them can generate such tiled code).
However, it is well known that since the worst case complexity of Fourier-Motzkin elimination is
doubly exponential in the number of dimensions, this may be inefficient especially when multi-level
tiling is needed. Due to this problem, Goumas et al. [12] proposed a method where the tiled loop
generation problem is decomposed into two sub-problems, one to scan the tile origins, and the other
to scan points within a tile, thus obtaining significant reduction of the worst case complexity.

Another disadvantage of the above tiled iteration space formulation is that it is no longer a
polyhedron when tile sizes are not constants. The constraints become bi-linear forms. For the case
where tile sizes are symbolic parameters, a simple case called orthogonal tiling — either rectangular
loops tiled with rectangular tiles, or loops that can be easily transformed to this — was first
considered. For the more general case, the standard solution, as described in Xue’s text [34] has
been to simply extend the iteration space to a rectangular one (i.e., to consider its bounding box),
apply the orthogonal technique with appropriate guards to avoid computations outside the original
iteration space. Jiménez et al. |[16] develop code generation techniques for register tiling of non-
rectangular iteration spaces. They generate code that traverses the bounding box of the tile iteration
space to enable parameterized tile sizes, but the focus of their paper is applying index-set splitting
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Figure 14: Total execution time for MultiTriSolver on 2000 variables and 3000 instances

to tiled code to traverse parts of the tile space that include only full tiles. Amarasinghe and
Lam [2, 3| implemented, in the SUIF tool set, a version of FME that can deal with a limited class
of symbolic coefficients (parameters and/or block sizes), but the full details have not been made
available. Groflinger et al. [13] proposed an extension to the polyhedral model, in which they
allow arbitrary rational polynomials as coefficients in the linear constraints that define the iteration
space. Their genericity comes at the price of requiring computationally expensive machinery like
quantifier elimination in polynomials over the real algebra, to simplify constraints that arise during
loop generations. Due to this their method does not scale with the number of dimensions and the
number of non-linear parameters. Lakshminarayanan et al. [29] proposed an approach where tile
space is parameterized by tile sizes in addition to program parameters.

However, these techniques, decomposition and tile size parameterization, are restricted to per-
fectly nested loops. When tile sizes are constants, tiling has been extended to imperfectly nested
loops. Although some authors do not consider arbitrary affine control loops, they proposed limited
extension to imperfectly nested loops. Carr and Kennedy |9] proposed a technique that use an in-
dex set splitting to make tiling legal before it is applied. Song and Li [31]| proposed a technique for
stencil programs consisting of one outer time loop and a sequence of perfectly nested loops within
the time loop.

Several general approaches have been proposed for tiling imperfectly nested loops. Roughly
speaking, the existing techniques for arbitrary nested loops consist of the following steps: (i) con-
verting them to perfectly nested loops (or embedding each iteration space into a common space),
and (ii) applying all the knowledge developed for perfectly nested loops, such as legality conditions,
finding linear transformations for enhancing data locality in the program, etc., and (iii) code gen-
eration. Unfortunately, the code generation step in these approaches is not as simple as that for
perfectly nested loops, often requiring index set splitting to get efficient final code. This inher-
ently comes from the first step, where guards or equalities are introduced to embed a statement
surrounded by fewer loops into a higher dimensional loop nest. Also, finding an appropriate em-
bedding function itself is not a trivial problem. Also, the previous work on imperfectly nested loop
tiling focused on how to find embedding functions and tiled loop generation are left as a scanning
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Comparision of two different tiling approach
on multiple triangular solver — loop overhead only
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Figure 15: Loop overhead of MultiTriSolver on 2000 variables and 3000 instances

a union of polyhedron.

Ahmed et al. [1] proposed a technique for general imperfectly nested loops based on embedding
into a common Cartesian product space. Lim et al. [22] proposed a technique for independent
threads that have no dependence between them, and also use their algorithm for finding largest
outermost fully permutable loops for embedding. Bondhugula et al. |[7| proposed a approach based
on tiling hyperplanes that are linearly independent relaxed pipeline scheduling hyperplanes and
the set of tiling hyperplanes provides an affine transformation. The transformed loops are fully
permutable. Also, our focus is to generate parameterized tiled loops from imperfectly nested loops,
rather than finding a good embedding.

7 Conclusion

Tiling imperfectly nested loops is an important loop transformation that enables us to parallelize
programs and improve the overall performance of more general applications. Several approaches have
been proposed for fixed imperfectly nested loops. Although parameterized tiled loops where tile sizes
are a symbolic parameters are a quite useful, the existing methods only handle perfectly nested loops.
We proposed D-tiling that reduces the complexity of the generation of fixed/parameterized /mixed
tiled loops for perfectly nested loops to O(mx (d+p)). We presented the technique for parameterized
tiled loop generation problem based on the reasoning of legality conditions without making the
original loop nest into a perfectly nested one. We compare the efficiency of our code generation and
the generated code with fixed embedding approach. Experimental result shows that the efficiency of
code generation is better than that of fixed embedding approach and the efficiency of the generated
code is as good as that of fixed size tiling with embedding.

Our ongoing work includes a more detailed study on the relation between dependence presented
in imperfectly nested loops and tiled loop generation. Our aim is to generate a more efficient code
based on the constraints on tile sizes.
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Comparision of two different tiling approach on Cholesky
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Figure 16: Total execution time for Cholesky on 3000 x 3000 matrix
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